Intro to Theory of Computation

Lecture 29

Last time

- Space complexity
- Savitch's theorem

Today

- The class PSPACE
- TQBF is PSPACE-complete
- Hierarchy theorems

Sofya Raskhodnikova

I-clicker question (frequency: AC)

Let f(n) be a function, where $f(n) \ge n$.

If a language A is decided by a NTM that runs in space f(n) then

A is decided by a TM that runs in space $f^2(n)$.

- A. True
- **B.** False
- C. Unknown
- D. None of the above

3/17/2016

The class PSPACE

PSPACE is the class of languages decidable in polynomial space on a *deterministic* TM:

$$PSPACE = \bigcup_{k} SPACE(n^{k}).$$

- NPSPACE the same, but for NTMs.
- By Savitch's Theorem,

PSPACE = NPSPACE

Relationships between classes

1. $P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

Recall: a TM that runs

in space f(n) has

 $\leq f(n)2^{O(f(n))}$

configurations

2. P≠ EXPTIME

Which containments in (1) are proper?

Unknown!

I-clicker question (frequency: AC)

Relationships between the following classes are an open question

- A. P vs NP
- **B.** P vs PSPACE
- C. NP vs EXPTIME
- **D.** All of the above
- E. All of the above and P vs EXPTIME

3/17/2016 L29.5

Hardest problems in PSPACE

A language B is **PSPACE-complete** if

- B∈ PSPACE
- 2. B is **PSPACE-hard**, i.e., every language in PSPACE is poly-time reducible to B.

The TQBF problem

- **Boolean variables:** variables that can take on values T/F (or 1/0)
- **Boolean operations:** \vee , \wedge , and \neg
- Boolean formula: expression with Boolean variables and ops
- Quantified Boolean formula: Boolean formula with quantifiers (∀, ∃)
- Fully Quantified Boolean formula: all variables have quantifiers (\forall, \exists) We only consider the form where all quantifiers appear in the beginning.

Ex.
$$\forall x \exists y [(x \lor y) \land (\bar{x} \lor \bar{y})]$$
 True $\exists y \forall x [(x \lor y) \land (\bar{x} \lor \bar{y})]$ **False**

- Each fully quantified Boolean formula is either true or false.
- The order of quantifiers matters!

TQBF = $\{\langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula}\}$

TQBF is **PSPACE-complete**

- 1. TQBF is in PSPACE
- 2. TQBF is PSPACE-hard

Prove: TQBF ∈ PSPACE

- T = `` On input $\langle \phi \rangle$, where ϕ is a fully quantified Boolean formula:
 - 1. If ϕ has no quantifiers, it has only constants (and no variables). Evaluate ϕ . If true, accept; o.w., reject.
 - 2. If ϕ is of the form $\exists x \psi$, recursively call T on ψ with x = 0 and then on ψ with x = 1. If either call accepts, accept; o.w., reject.
 - 3. If ϕ is of the form $\forall x \psi$, recursively call T on ψ with x = 0 and then on ψ with x = 1. If both calls accepts, accept; o.w., reject."
- If n is the input length, T uses space O(n).

I-clicker question (frequency: AC)

If TQBF is in P then it implies that

- $\mathbf{A} \cdot \mathbf{P} = \mathbf{NP}$
- **B.** P = PSPACE
- $\mathbf{C.} \mathbf{P} = \mathbf{EXPTIME}$
- D. (A) and (B) are true
- **E.** (A), (B), (C) are true

3/17/2016

Motivating question

Is there a decidable language which is provably not in P?

A function $f: \mathbb{N} \to \mathbb{N}$ is space constructible if the function that maps the string 1^n to the binary representation of f(n) is computable in space O(f(n)).

- Fractional functions are sounded down.
- Examples: $\log_2 n$, \sqrt{n} , $n \log_2 n$, n^2 , 2^n , all commonly occurring functions that are $\Omega(\log n)$

L29.12

Space Hierarchy Theorem

For any space constructible function f, a language exists that is decidable in O(f(n)) space, but not in o(f(n)) space.

- Corollary 1: For all $\alpha, \beta \ge 0$, where $\alpha < \beta$, SPACE (n^{α}) is a strict subset of SPACE (n^{β}) .
- Corollary 2: PSPACE is a strict subset of EXPSPACE, where EXPSPACE= $\bigcup_k SPACE(2^{n^k})$

A function $f: \mathbb{N} \to \mathbb{N}$ is **time constructible** if the function that maps the string 1^n to the binary representation of f(n) is computable in time O(f(n)).

- Fractional functions are sounded down.
- Examples: $n \log_2 n$, n^2 , 2^n , all commonly occurring functions that are $\Omega(n \log n)$

Time Hierarchy Theorem

For any time constructible function f, a language exists that is decidable in O(f(n)) time, but not in $O\left(\frac{f(n)}{\log f(t)}\right)$ time.

- Corollary 1: For all $\alpha, \beta \geq 0$, where $\alpha < \beta$, TIME (n^{α}) is a strict subset of TIME (n^{β}) .
- Corollary 2: P is a strict subset of EXPTIME

Hardest problems in EXPSPACE

A language B is **EXPSPACE-complete** if

- 1. B∈ **EXPSPACE**
- 2. B is **EXPSPACE-hard**, i.e., every language in EXPSPACE is poly-time reducible to B.

The $EQ_{REX\uparrow}$ problem

- Regular operations: ∩, ∘, *
- Regular expressions: use regular operations, \emptyset , ε , Σ , members of Σ
- We can test equivalence of two regular expressions in poly space (problem in the book).
- Exponentiation operation: $R^k = R \uparrow k = R \circ \cdots \circ R$ (k times)

 $EQ_{REX\uparrow} = \{\langle Q, R \rangle \mid Q \text{ and } R \text{ are equivalent regular expressions}$ with exponentiation}

 $EQ_{REX\uparrow}$ is EXPSPACE-complete.

