Last time
• Class NP

Today
• Polynomial-time reductions
P is the class of languages decidable in polynomial time on a deterministic 1-tape TM:

\[P = \bigcup_{k} \text{TIME}(n^k). \]

NP is the class of languages that have polynomial-time verifiers.
Classes P, NP, EXP

- **P**. Languages for which there is a poly-time algorithm.
- **EXP**. Languages for which there is an exponential-time algorithm.
- **NP**. Languages for which there is a poly-time verifier.

- **Lemma.** $P \subseteq NP$.
- **Lemma.** $NP \subseteq EXP$.
- **Lemma.** A language L is in NP iff L can be decided by a polynomial-time nondeterministic TM.
P vs. NP

- Does $P = NP$? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 - Is the decision problem as easy as the verification problem?
 - Clay 1 million prize.

- If yes: Efficient algorithms for HamPath, SAT, TSP, factoring
 - Cryptography is impossible*
 - Creativity is automatable

- If no: No efficient algorithms possible for these problems.

- Consensus opinion on $P = NP$? Probably no.
Classify Problems

- **Desiderata:** classify problems according to those that can be solved in polynomial-time and those that cannot.
- Some problems *provably require exponential time* (next month):
 - Given a Turing machine, does it halt in at most k steps?
 - Given a board position in an n-by-n generalization of chess, can black guarantee a win?
- **Frustrating news:** huge number of fundamental problems have defied classification for decades.
- **Chapters 7.4-7.5 (NP-completeness):** Show that these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem.
Polynomial-time reductions

- $f : \Sigma^* \rightarrow \Sigma^*$ is polynomial-time computable if there is a poly-time TM that, on every input $w \in \Sigma^*$ halts with just $f(w)$ on its tape.
- $f : \Sigma^* \rightarrow \Sigma^*$ is a polynomial-time mapping reduction from language A to language B if:
 - f is polytime computable
 - For all $w \in \Sigma^*$: $w \in A \iff f(w) \in B$
- When such a reduction exists, write $A \leq_P B$

Polynomial-time reductions are the major tool we have to understand P and NP
Given languages A and B, $A \leq_p B$
if there is a \textit{poly-time} computable function f, such that for all strings w,
\[w \in A \text{ iff } f(w) \in B. \]
Implication of poly-time reductions

Theorem. If $A \leq_p B$ and $B \in \mathbf{P}$ then $A \in \mathbf{P}$.
(So, if $A \leq_p B$ and $A \notin \mathbf{P}$ then $B \notin \mathbf{P}$.)

Theorem. If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$.
(Poly-time reductions compose.)
Basic reduction strategies

• Reduction by simple equivalence.
• Reduction from special case to general case.
• Reduction by encoding with gadgets.
Given an undirected graph G, an **independent set** in G is a set of nodes, which includes at most one endpoint of every edge.

\[
\text{INDEPENDENT SET} = \{\langle G, k \rangle | \text{ } G \text{ is an undirected graph which has an independent set with } k \text{ nodes}\}
\]

- Is there an independent set of size ≥ 6?
 - Yes.

- Is there an independent set of size ≥ 7?
 - No.
Vertex Cover

Given an undirected graph G, a **vertex cover** in G is a set of nodes, which includes at least one endpoint of every edge.

$\text{VERTEX COVER} = \{ \langle G, k \rangle | G \text{ is an undirected graph which has a vertex cover with } k \text{ nodes} \}$

- Is there vertex cover of size ≤ 4?
 - Yes.

- Is there a vertex cover of size ≤ 3?
 - No.
Claim. S is an independent set iff $V - S$ is a vertex cover.

- \Rightarrow
 - Let S be any independent set.
 - Consider an arbitrary edge (u, v).
 - S is independent $\Rightarrow u \notin S$ or $v \notin S \Rightarrow u \in V - S$ or $v \in V - S$.
 - Thus, $V - S$ covers (u, v).

- \Leftarrow
 - Let $V - S$ be any vertex cover.
 - Consider two nodes $u \in S$ and $v \in S$.
 - Then $(u, v) \notin E$ since $V - S$ is a vertex cover.
 - Thus, no two nodes in S are joined by an edge $\Rightarrow S$ independent set.
Theorem. \textsc{independent-set} \leq_p \textsc{vertex-cover}.

Proof. “On input \langle G, k \rangle, where G is an undirected graph and k is an integer,

1. Output \langle G, n - k \rangle, where n is the number of nodes in G.”

Correctness:

• G has an independent set of size k iff it has a vertex cover of size \(n - k \).
• Reduction runs in linear time.
Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.
Set Cover

Given a set U, called a *universe*, and a collection of its subsets S_1, S_2, \ldots, S_m, a *set cover* of U is a subcollection of subsets whose union is U.

- **Set Cover** = \{ $\langle U, S_1, S_2, \ldots, S_m; k \rangle$ | U has a set cover of size k \}

- Sample application.
 - m available pieces of software.
 - Set U of n capabilities that we would like our system to have.
 - The ith piece of software provides the set $S_i \subseteq U$ of capabilities.
 - Goal: achieve all n capabilities using fewest pieces of software.

$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$

$k = 2$

$S_1 = \{ 3, 7 \}$

$S_2 = \{ 3, 4, 5, 6 \}$

$S_3 = \{ 1 \}$

$S_4 = \{ 2, 4 \}$

$S_5 = \{ 5 \}$

$S_6 = \{ 1, 2, 6, 7 \}$
Theorem. VERTEX-COVER \leq_P SET-COVER.

Proof. “On input $\langle G, k \rangle$, where $G = (V, E)$ is an undirected graph and k is an integer,
1. Output $\langle U, S_1, S_2, \ldots, S_m; k \rangle$, where $U=E$ and
 $$S_v = \{ e \in E : e \text{ incident to } v \}$$

Correctness:
• G has a vertex cover of size k iff U has a set cover of size k.
• Reduction runs in linear time.
Basic reduction strategies

• Reduction by simple equivalence.
• Reduction from special case to general case.
• Reduction by encoding with gadgets.
Satisfiability

- **Boolean variables**: variables that can take on values T/F (or 1/0)
- **Boolean operations**: ∨, ∧, and ¬
- **Boolean formula**: expression with Boolean variables and ops

\[
\text{SAT} = \{\langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean formula}\}
\]

- **Literal**: A Boolean variable or its negation.

\[
C_j = x_1 \lor \overline{x_2} \lor x_3
\]

- **Clause**: OR of literals.

\[
\Phi = C_1 \land C_2 \land C_3 \land C_4
\]

- **Conjunctive normal form (CNF)**: AND of clauses.

\[
3\text{SAT} = \{\langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean CNF formula, where each clause contains exactly 3 literals}\}
\]

Ex: \[
\left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(x_2 \lor x_3 \right) \land \left(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \right)
\]

Yes: \(x_1 = \text{true}, x_2 = \text{true} \Rightarrow x_3 = \text{false}\).
Theorem. \(3\text{-SAT} \leq \text{P INDEPENDENT-SET} \).

Proof. “On input \(\langle \Phi \rangle \), where \(\Phi \) is a 3CNF formula,

1. Construct graph \(G \) from \(\Phi \)
 - \(G \) contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect literal to each of its negations.

2. Output \(\langle G, k \rangle \), where \(k \) is the number of clauses in \(G \).”

\[
\Phi = (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4)
\]

\(k = 3 \)
Correctness. Let $k = \# \text{ of clauses}$ and $\ell = \# \text{ of literals in } \Phi$.

Φ is satisfiable iff G contains an independent set of size k.

- \implies Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.

- \impliedby Let S be an independent set of size k.
 - S must contain exactly one vertex in each triangle.
 - Set these literals to true, and other literals in a consistent way.
 - Truth assignment is consistent and all clauses are satisfied.

Run time. $O(k + \ell^2)$, i.e. polynomial in the input size.
Summary

• Basic reduction strategies.
 – Simple equivalence: \(\text{INDEPENDENT-SET} \equiv_P \text{VERTEX-COVER} \).
 – Special case to general case: \(\text{VERTEX-COVER} \leq_P \text{SET-COVER} \).
 – Encoding with gadgets: \(3\text{-SAT} \leq_P \text{INDEPENDENT-SET} \).

• Transitivity. If \(X \leq_P Y \) and \(Y \leq_P Z \), then \(X \leq_P Z \).

• Proof idea. Compose the two algorithms.

• Ex: \(3\text{-SAT} \leq_P \text{INDEPENDENT-SET} \leq_P \text{VERTEX-COVER} \leq_P \text{SET-COVER} \).