Last time
• Reductions
• Mapping reductions

Today
• Mapping reductions
• Computation history method
Proving undecidability and unrecognizability

Mapping Reductions
Given languages A and B,

$A \leq_m B$

if there is a computable function f,
such that for all strings w,

$w \in A$ iff $f(w) \in B$.

Diagram:

```
A ----> f ----> B
```
Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let M be a decider for B and f be a mapping reduction from A to B. Construct a decider for A:
```
``On input $w$:
1. Compute $f(w)$.
2. Run $M$ on $f(w)$.
3. If it accepts, accept. O.w. reject."
```
Using mapping reductions to prove *undecidability*

Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Corollary. If $A \leq_m B$ and A is *undecidable*, then B is *undecidable*.

Example: If $A_{TM} \leq_m B$, then B is *undecidable*.
Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be a TM that recognizes B and f be a mapping reduction from A to B. Construct a TM that recognizes A:
``On input w:
1. Compute $f(w)$.
2. Run M on $f(w)$.
3. If it accepts, accept. O.w. reject.""
Using mapping reductions to prove unrecognizability

Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary. If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable.

Example: If $A_{TM} \leq_m B$, then B is unrecognizable.
If $\bar{A} \leq_m \bar{B}$, we can conclude that

A. $A \leq_m B$
B. $B \leq_m A$
C. $\bar{A} \leq_m \bar{B}$
D. $\bar{B} \leq_m A$
E. None of the above.
Old proof that EQ_{TM} is undecidable

$\text{EQ}_{TM} = \{(M_1, M_2) \mid M_1, M_2 \text{ are TMs}, L(M_1) = L(M_2)\}$

Proof: Suppose to the contrary that EQ_{TM} is decidable, and let R be a TM that decides it. We construct TM S that decides A_{TM}.

$S = \text{``On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}"

 - $M' = \text{``On input } x, \text{ ignoring the input.}"
 - $M'' = \text{``Accept.}"

2. Run TM R on input $\langle M', M'' \rangle$.

3. If it accepts, accept. O.w. reject."

E_{TM} is undecidable.
Proof: The following TM computes the reduction:

\[F = \text{``On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:} \]

1. Construct TMs \(M', M'' \).

 \(M' = \text{``On input } x, \)

 1. Ignore the input.
 2. Run TM \(M \) on input \(w \).
 3. If it accepts, accept.”

2. Output \(<M', M''> \).”
Conclusions from $A_{TM} \leq_m EQ_{TM}$

1. Since A_{TM} is undecidable, so is EQ_{TM}

2. $A_{TM} \leq m EQ_{TM}$
 Since A_{TM} is unrecognizable, so is EQ_{TM}
Prove that EQ_{TM} is unrecognizable

Proof: We give a mapping reduction $\overline{\text{A}_{\text{TM}}} \leq_m \text{EQ}_{\text{TM}}$

The following TM computes the reduction:

$F = \text{``On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}'}$

 $M' = \text{``On input } x,$

 1. Ignore the input.
 2. Run TM M on input w.
 3. If it accepts, accept.”

 $M'' = \text{``Reject.”}$

2. Output $\langle M', M'' \rangle$.”
Problems in language theory

<table>
<thead>
<tr>
<th>A_{DFA}</th>
<th>A_{CFG}</th>
<th>A_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_{DFA}</th>
<th>E_{CFG}</th>
<th>E_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQ_{DFA}</th>
<th>EQ_{CFG}</th>
<th>EQ_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>?</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
Proving undecidability for languages that do not involve TM descriptions

Computation history method
A linear bounded automaton (LBA) is a TM variant that has bounded tape, with the number of tape squares equal to the size of the input.

![Diagram of finite state control and tape]

```
1 1 0 1 0 0
```
A configuration of an LBA is a setting of state, head position and tape contents.

Configurations

q_7

110$q_7$1000110
How many distinct configurations does an LBA have if it has q states, g symbols in tape alphabet, and the tape of length n?

A. qgn
B. $q + g + n$
C. qg^n
D. qng^n
E. None of the above.
Prove that A_{LBA} is decidable

$$A_{\text{LBA}} = \{ \langle B, w \rangle \mid B \text{ is an LBA that accepts string } w \}$$

Idea: Given $\langle B, w \rangle$, simulate B on w.
If it halts, we know the answer.
If it loops, we can detect because B repeats a configuration.

S = ``On input $\langle B, w \rangle$, where B is an LBA and w is a string:

1. Simulate B on w for qng^n steps.
2. If it accepts, accept.
3. If it rejects or does not halt, reject.”"
An accepting computation history for a TM M on input w is a sequence of configurations entered by M on input w:

\[C_0 \# C_1 \# \ldots \# C_\ell \]

starting configuration

accepting configuration
Starting configuration

\[C_0 = \langle q_0 \rangle w \]
Accepting configuration

\[C_\ell = \ldots \langle q_{\text{acc}} \rangle \ldots \]
Each C_{i+1} legally follows from C_i

\[C_i = 1000 \langle q_7 \rangle 0110 \]

\[C_{i+1} = 1000 2 \langle q_5 \rangle 110 \]
LBAs can check computation histories of TMs

Given a TM M and a string w, we can construct an LBA that checks whether its input is the accepting computation history of M on w.
Prove that E_{LBA} is undecidable

$E_{\text{LBA}} = \{ \langle B \rangle \mid B \text{ is a LBA and } L(B) = \emptyset \}$

Proof: Suppose to the contrary that TM R decides E_{LBA}. We construct TM S that decides A_{TM}.

$S = \text{``On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}$$

1. Construct an LBA B from M and w:

 $B = \text{``On input } x, \text{ Accept if } x = C_0 \# \ldots \# C_\ell \text{ is the accepting computation history of } M \text{ on } w:$

 1. C_0 is the starting configuration of M on w
 2. Each C_{i+1} legally follows from C_i
 3. C_ℓ is an accepting configuration for M ”

2. Run TM R on input $\langle B \rangle$.

3. If it rejects, accept. O.w. reject.”