LECTURE 18

Last time
• A_{TM} is unrecognizable
• Reductions

Today
• Reductions
• Mapping reductions

Homework 7 due
Homework 8 out

Sofya Raskhodnikova
Problems in language theory

<table>
<thead>
<tr>
<th>A_{DFA} decidable</th>
<th>A_{CFG} decidable</th>
<th>A_{TM} undecidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{DFA} decidable</td>
<td>E_{CFG} decidable</td>
<td>E_{TM} undecidable</td>
</tr>
<tr>
<td>EQ_{DFA} decidable</td>
<td>EQ_{CFG} ?</td>
<td>EQ_{TM} ?</td>
</tr>
</tbody>
</table>
We want to prove that language L is undecidable.

Idea: Use a proof by contradiction.

1. Suppose to the contrary that L is decidable.
2. Use a decider for L as a subroutine to construct a decider for A_{TM}.
3. But A_{TM} is undecidable. Contradiction!
To prove that E_{TM} is undecidable

A. we assumed E_{TM} had a decider and used it to construct a decider for A_{TM}

B. we assumed A_{TM} had a decider and used it to construct a decider for E_{TM}

C. we constructed a TM S that on input $<M,w>$ decides whether M accepts w, assuming the existence of a TM R that decides on input $<M'>$ whether the language of $<M'>$ is empty

D. There is more than one correct answer.

E. None of the above.
Prove that CFL_{TM} is undecidable

$\text{CFL}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is context-free} \}$

Proof: Suppose to the contrary that CFL_{TM} is decidable, and let R be a TM that decides it.

We construct TM S that decides A_{TM}.

$S = \langle \text{On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:} \rangle$

1. Construct TM M'.

 $M' = \langle \text{On input } x, \text{ reject.} \rangle$
 1. If x is not of the form $0^n1^n2^n$, reject.
 2. Run TM M on input w.
 3. If it accepts, accept."

2. Run TM R on input $\langle M' \rangle$.

3. If it rejects, accept. O.w. reject."
Prove that EQ_{TM} is undecidable

$\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs, } L(M_1) = L(M_2) \}$

Proof: Suppose to the contrary that EQ_{TM} is decidable, and let R be a TM that decides it.

We construct TM S that decides A_{TM}.

$S = \text{``On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}''$

 $M' = \text{``On input } x, \text{ ignore the input.}''$
 1. Ignore the input.
 2. Run TM M on input w.
 3. If it accepts, accept."

 $M'' = \text{``Accept.''}$

2. Run TM R on input $\langle M', M'' \rangle$.

3. If it accepts, accept. O.w. reject."
Proof 2 that EQ_{TM} is undecidable

$\text{EQ}_{\text{TM}} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs, } L(M_1) = L(M_2)\}$

Proof: Suppose to the contrary that EQ_{TM} is decidable, and let R be a TM that decides it.

We construct TM S that decides E_{TM}. What do we change?

$S = $``On input $\langle M \rangle$, where M is a TM and w is a string:

1. Construct TM M'.

 $M' = $``Reject.''
 1. Ignore the input.
 2. Run TM M on input w.
 3. If it accepts, accept.''

2. Run TM R on input $\langle M, M' \rangle$.

3. If it accepts, accept. O.w. reject.'’
Problems in language theory

<table>
<thead>
<tr>
<th>A_{DFA}</th>
<th>A_{CFG}</th>
<th>A_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_{DFA}</th>
<th>E_{CFG}</th>
<th>E_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQ_{DFA}</th>
<th>EQ_{CFG}</th>
<th>EQ_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>?</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
Proving undecidability and unrecognizability

Mapping Reductions
A function $f: \Sigma^* \rightarrow \Sigma^*$ is **computable** if some TM M, on every input w, halts with only $f(w)$ on its tape.

Example 1: $f(\langle x, y \rangle) = x + y$.

Example 2: $f(\langle M, w \rangle) = \langle M' \rangle$, where M is a TM and w is a string, and M' is a TM that ignore its input and runs M on w.
Given languages A and B, \(A \leq_m B \) if there is a computable function \(f \), such that for all strings \(w \), \(w \in A \) iff \(f(w) \in B \).
Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let M be a decider for B and f be a mapping reduction from A to B. Construct a decider for A:
``On input w:
1. Compute $f(w)$.
2. Run M on $f(w)$.
3. If it accepts, accept. O.w. reject.”

Using mapping reductions to prove **undecidability**

Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Corollary. If $A \leq_m B$ and A is **undecidable**, then B is **undecidable**.

Example: If $A_{TM} \leq_m B$, then B is **undecidable**.
Using mapping reductions to prove recognizability

Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be a TM that recognizes B and f be a mapping reduction from A to B. Construct a TM that recognizes A:
```
On input $w$:
1. Compute $f(w)$.
2. Run $M$ on $f(w)$.
3. If it accepts, accept. O.w. reject.
```

3/17/2016
Using mapping reductions to prove unrecognizability

Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary. If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable.

Example: If $A_{TM} \leq_m B$, then B is unrecognizable.