Intro to Theory of Computation

Lecture 16

Last time
• Designing deciders.
• Countable/uncountable sets.
• Diagonalization

Today
• Undecidable/unrecognizable languages
• A_{TM} is undecidable

Homework 6 due
Homework 7 out
How to compare sizes of infinite sets?

• Two sets are **the same size** if there is a bijection between them.

• A set is **countable** if it is
 – finite or
 – it has the same size as \(\mathbb{N} \), the set of natural numbers
Theorem. There is no bijection from the positive integers to the real interval (0,1).

Proof: Suppose f is such a function:

<table>
<thead>
<tr>
<th>n</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.28347279…</td>
</tr>
<tr>
<td>2</td>
<td>0.88388384…</td>
</tr>
<tr>
<td>3</td>
<td>0.77635284…</td>
</tr>
<tr>
<td>4</td>
<td>0.11111111…</td>
</tr>
<tr>
<td>5</td>
<td>0.12345678…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Construct b ∈ (0,1) that does not appear in the table.

\[b = 0.d_1d_2d_3 ... , \text{where } d_i \neq \text{digit } i \text{ of } f(i). \]
The process of constructing a counterexample by “contradicting the diagonal” is called **DIAGONALIZATION**
What if we try this argument on \mathbb{Q} instead of \mathbb{R}?

Proof: Suppose f is such a function:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.28347279…</td>
</tr>
<tr>
<td>2</td>
<td>0.88388384…</td>
</tr>
<tr>
<td>3</td>
<td>0.77635284…</td>
</tr>
<tr>
<td>4</td>
<td>0.11111111…</td>
</tr>
<tr>
<td>5</td>
<td>0.12345678…</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

Construct $b \in (0, 1)$ that does not appear in the table.

$b=0.d_1d_2d_3…$, where $d_i \neq \text{digit } i \text{ of } f(i)$.
What if we try Cantor’s diagonalization argument on \mathbb{Q} instead of \mathbb{R}?

A. It works.

B. It fails because there are some rational numbers that cannot be represented in decimal point notation.

C. It fails because the i-th number might have no digit in the i-th position after the decimal point.

D. It fails because the constructed number is not rational.

E. None of the above.
Let L be any set and $P(L)$ be the power set of L.

Theorem: There is no bijection from L to $P(L)$.

Proof: Assume, for a contradiction, that there is bijection $f : L \rightarrow P(L)$.

We construct a set S that cannot be the output, $f(y)$, for any $y \in L$.

Let $S = \{ x \in L \mid x \notin f(x) \}$

If $S = f(y)$ then $y \in S$ if and only if $y \notin S$.

3/4/2016

Sofya Raskhodnikova; based on slides by Nick Hopper
How is it diagonalization?

<table>
<thead>
<tr>
<th>x</th>
<th>$y_1 \in f(x)?$</th>
<th>$y_2 \in f(x)?$</th>
<th>$y_3 \in f(x)?$</th>
<th>$y_4 \in f(x)?$</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>y_2</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>y_3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>y_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

$(y_i \in S) = Y \text{ iff } (y_i \in f(y_i)) = N$
Let $L = \{0,1,2\}$. Then $P(L) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$

Let $f(0) = \{1\}$, $f(1) = \emptyset$, $f(2) = \{0,2\}$. Then:

$\begin{array}{|c|c|c|c|}
\hline
x & 0 \in f(x) ? & 1 \in f(x) ? & 2 \in f(x) ? \\
\hline
0 & N & Y & N \\
\hline
1 & N & N & N \\
\hline
2 & Y & N & Y \\
\hline
\end{array}$

$S = \{0,1\}$
For all sets L, $P(L)$ has more elements than L
Not all languages over \(\{0,1\} \) are decidable

TM Deciders
- Strings of 0s and 1s

Languages over \(\{0,1\} \)
- Sets of strings of 0s and 1s

\[L, P(L) \]
Not all languages over \{0,1\} are **recognizable**

Turing Machines

- Strings of 0s and 1s

Languages over \{0,1\}

- Sets of strings of 0s and 1s

\[L \]

\[P(L) \]
A specific undecidable language

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM, } w \text{ is a string, and } M \text{ accepts } w \}$$
Theorem. A_{TM} is undecidable.

Proof: For contradiction, suppose a TM H decides A_{TM}.

$$H(<M, w>) = \begin{cases}
 \text{accept} & \text{if } M \text{ accepts } w \\
 \text{reject} & \text{if } M \text{ doesn't accept } w
\end{cases}$$

Idea: Use H to check what TM M does on its own description (and do the opposite).

TM $D = \``\text{ On input } <M> \text{ where } M \text{ is a TM: }$

1. Run H on input $<M, <M>>$.
2. Accept if it rejects. O.w. reject.”

D is a decider. What does it do on $<D>$?
Is it diagonalization again? Does M accept $\langle M \rangle$?

<table>
<thead>
<tr>
<th>TMs</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>M_2</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>M_3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>M_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>:</td>
</tr>
</tbody>
</table>

D accepts $\langle M_i \rangle$ iff entry (i, j) is N.

3/4/2016

Sofya Raskhodnikova; based on slides by Nick Hopper
Is it diagonalization again? Does M accept $\langle M \rangle$?

TMs	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$...	$\langle D \rangle$...
M_1	Y	N	Y	Y			
M_2	N	Y	N	Y			
M_3	N	N	N	N			
M_4	Y	N	N	Y			
...							
D						?	
...							

3/4/2016

Sofya Raskhodnikova; based on slides by Nick Hopper
Classes of languages

- \(L = \{0^n1^n0^n \mid n \geq 0\} \)
- \(L = \{0^n1^n \mid n \geq 0\} \)
- \(L = 1^* \)

\(A_{\text{TM}} \)