LECTURE 14

Last time
• Turing Machine Variants
• Church-Turing Thesis

Today
• Universal TM
• Decidable languages
• Designing deciders

Homework 5 due
Homework 6 out
The Church-Turing Thesis (1936)

L is recognized by a program for some computer*

\[\uparrow \]

L is recognized by a TM

History

- 23 Hilbert’s problems (1900)
 - stated at International Congress of Mathematicians
 - 10th problem: Give a procedure for determining if a polynomial in \(k \) variables has an integral root.

* The computer must be “reasonable”
I-clicker problem (frequency: AC)

The language corresponding to Hilbert’s 10th problem is

A. not Turing-recongnizable
B. Turing-recongnizable, but not decidable
C. decidable
D. regular
E. More than one choice above works.
• Since TMs and programming languages are equivalent, we can think of TMs as programs.
• Since programs are strings, we can consider languages whose elements are programs.
Can we encode a Turing Machine as a string of 0s and 1s?

- $\langle O \rangle$ denotes an encoding of object O as a string

states $Q = \{0, 1, \ldots, n-1\}$

tape symbols $\Gamma = \{0, 1, \ldots, m-1\}$
(first k are input symbols)

$0^n10^m10^k10^s10^t10^r10^u1\ldots \langle \delta \rangle$

$\delta : \langle (p, a), (q, b, L) \rangle = 0^p10^a10^q10^b10$
Since TMs and programming languages are equivalent, we can think of TMs as programs.

Since programs are strings, we can consider languages whose elements are programs.

\(\langle M \rangle \) denotes an encoding of a TM M as a string

Theorem. We can make a Universal TM, a TM that takes any TM description \(\langle M \rangle \) and any string \(w \) as input and simulates the computation of \(M \) on \(w \).

\[
\langle w \rangle = \langle w_1, \ldots, w_n \rangle = \langle w_1 \rangle 10 \langle w_2 \rangle 1 \ldots 0 \langle w_n \rangle
\]
Similarly, we can encode DFAs, NFAs, regular expressions, PDAs, CFGs, etc into strings of 0s and 1s.

We can define the following languages:

$$A_{DFA} = \{ \langle D,w \rangle \mid D \text{ is a DFA that accepts string } w \}$$

$$A_{NFA} = \{ \langle N,w \rangle \mid N \text{ is an NFA that accepts string } w \}$$

$$A_{CFG} = \{ \langle G,w \rangle \mid G \text{ is a CFG that generates string } w \}$$
Theorem. A_{DFA} is decidable.

Proof: The following TM M decides A_{DFA}.

$M = \text{`` On input } \langle D, w \rangle, \text{ where } D \text{ is a DFA and } w \text{ is a string:} \quad$

1. Check if input (to M) is legal, reject if not.
 (This step is assumed to be the first step of every algorithm.)

2. Simulate D on w.

3. **Accept** if D ends in an accept state. O.w. reject.”

Corollary. A_{NFA} is decidable.

(1. Convert input NFA N to an equivalent DFA D.)

Sofya Raskhodnikova; based on slides by Nick Hopper
Theorem. A_{CFG} is decidable.

$A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$
Chomsky Normal Form for CFGs

- Can have a rule $S \rightarrow \varepsilon$.
- All remaining rules are of the form $A \rightarrow BC \quad A, B, C \in V$
 $A \rightarrow a \quad a \in \Sigma$
- Cannot have S on the RHS of any rule.

Lemma. Any CFG can be converted into an equivalent CFG in Chomsky normal form. *(Proof in Sipser.)*

Lemma. If G is in Chomsky normal form, any derivation of string w of length n in G has $2n - 1$ steps.
Lemma. If G is in Chomsky normal form, any derivation of string w of length n in G has $2n - 1$ steps.

Proof idea:

• Only rules of the form $A \rightarrow BC$ increase the number of symbols: need to apply rules of this form $n - 1$ times.

• Only rules of the form $A \rightarrow a$ replace variables with terminals: need to apply rules of this form n times.
Theorem. A_{CFG} is decidable.

$A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

Proof: The following TM M decides A_{CFG}.

$M =$ "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

1. Convert G to Chomsky normal form.
2. Let $n = |w|$.
3. Test all derivations with $2n - 1$ steps.
4. Accept if any derived w. O.w. reject.”"
Examples of decidable languages

$$A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \}$$

$$A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts string } w \}$$

$$A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$$
More decidable languages

\[E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA that recognizes the empty language} \} \]

\[EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

\[E_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates the empty language} \} \]
Theorem. \(E_{\text{DFA}} \) is decidable.

\[E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA that recognizes } \emptyset \}. \]

Proof: The following TM \(M \) decides \(E_{\text{DFA}} \).

\(M = \)`` On input \(\langle D \rangle \), where \(D \) is a DFA:

1. Use BFS to determine if an accepting state of \(D \) is reachable from from its start state.
2. Accept if not. O.w. reject.””
Theorem. EQ_{DFA} is decidable.

$\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs } \& \ L(D_1) = L(D_2) \}$

Proof: The following TM M decides EQ_{DFA}.

$M = \text{``On input } \langle D_1, D_2 \rangle, \text{ where } D_1, D_2 \text{ are DFAs:}$$

1. Construct a DFA D that recognizes the set difference of $L(D_1)$ and $L(D_2)$.
2. Run the decider for E_{DFA} on $<D>$.
3. If it accepts, accept. O.w. reject.”
Theorem. E_{CFG} is decidable.

$E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG that recognizes } \emptyset. \}$

Proof: The following TM M decides E_{CFG}.

$M = \text{``On input } \langle G \rangle, \text{ where } G \text{ is a CFG:}$$
1. Mark all terminals in G.
2. Repeat until no new variable is marked:
3. Mark any variable A where G has a rule $A \rightarrow \cdots$ and each variable/terminal on the RHS is already marked.
4. Accept if the start variable is unmarked. O.w. reject."
Exercises

• Prove that the following language is decidable:

\[R_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that rejects string } w \} \]

• Formulate the following problem as a language and prove that it is decidable:

Given a PDA and a string, determine if the PDA accepts the string.

\[A_{PDA} = \{ \langle P, w \rangle \mid P \text{ is a PDA that accepts string } w \} \]

Can a TM just simulate \(P \) on \(w \), accept if it accepts and reject o.w.?
A decider for A_{PDA} can, on input $<P, w>$

A. simulate P on w, accept if it accepts and reject o.w.

B. convert P to an equivalent CFG G and then run a decider for A_{CFG}, accept if it accepts and reject o.w.

C. convert P to an equivalent CFG G and then run a decider for A_{CFG}, accept if it rejects and accept o.w.

D. None of the above.

E. More than one choice above works.