Lecture 12

Last time:
• Jeopardy!

Today:
• Turing Machines
• Turing Machine Variants

Sofya Raskhodnikova
TM versus PDA

TM can both write to and read from the tape

The head can move left and right

The input does not have to be read entirely

Accept and Reject take immediate effect

Infinite tape on the right, stick on the left

TM is deterministic (will consider NTMs later)
MUL = \{1^i # 1^j # 1^k \mid ij = k \text{ and } i, j, k \geq 1\}
LUP = \{1^i#x_1#...#x_n \mid n \geq i \text{ and } x_i = x_1\}

111101111101
X1110111101
XX110111101
XXX10111101
A **TM** is a 7-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- Q is a finite set of states
- Σ is the input alphabet, where $\square \notin \Sigma$
- Γ is the stack alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$ is the transition function
- $q_0, q_{\text{accept}}, q_{\text{reject}} \in Q$ are the start, accept and reject states
Accepting and rejecting

A TM on input string \(w \) may

either halt (enter \(q_{\text{accept}} \) or \(q_{\text{reject}} \))
or never halt (loop)

A TM is a **decider** if it halts on every input.
A TM **recognizes** a language L if it accepts all strings in L and no other strings.

- A language is called **recognizable** (or enumerable) if some TM recognizes it.

A TM **decides** a language L if it accepts all strings in L and rejects all strings not in L.

- A language is called **decidable** (or recursive) if some TM decides it.
A language L is **recognizable (enumerable)** if some TM
1. accepts strings in L and
2. rejects strings not in L by entering q_{reject} or looping.

A language L is **decidable (recursive)** if some TM
1. accepts strings in L and
2. rejects strings not in L by entering q_{reject}.

2/18/2016

Sofya Raskhodnikova; based on slides by Nick Hopper
TM variant: multitape TM

$\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R,S\}^k$
Theorem: Every Multitape Turing Machine can be transformed into a single-tape Turing Machine.
1. “Format” tape.

2. For each move of the k-tape TM:
 Scan left-to-right, finding current symbols
 Scan left-to-right, writing new symbols
 Scan left-to-right, moving each tape head.

3. If a tape head goes off right end, insert blank.
 If tape head goes off left end, move back right.
TM are equivalent to multitape TMs. (proof on the board)

TM are equivalent to nondeterministic TMs. (proof on the board)

TM are equivalent to double unbounded TMs. (proof on the board)

TM are equivalent to FIFO automata. (HW problem)

TM are equivalent to primitive recursive functions.

TM are equivalent to cellular automata.