Lecture 6

Last time:
• NFAs to regular expressions
• Pumping lemma

Today:
• Proving a language is not regular
• Pushdown automata (PDAs)

Homework 2 due
Homework 3 out
THE PUMPING LEMMA

Let \(L \) be a regular language with \(|L| = \infty\)

Then there exists a length \(p \) such that

if \(w \in L \) and \(|w| \geq p\) then

\(w \) can be split into three parts \(w=xyz \) where:

1. \(|y| > 0\)
2. \(|xy| \leq p\)
3. \(xy^iz \in L\) for all \(i \geq 0\)
GENERAL STRATEGY

Proof by contradiction: assume L is regular.

Then there is a pumping length p.

Find a string $w \in L$ with $|w| \geq p$.

Show that no matter how you choose xyz, w cannot be pumped!

Conclude that L is not regular.
1. YOU pick the language L to be proved nonregular.

2. ADVERSARY picks p, but doesn't reveal to YOU what p is; YOU must devise a play for all possible p's.

3. YOU pick $w \in L$, which should depend on p and which must be of length at least p.

4. ADVERSARY divides w into x, y, z, obeying PL conditions: y is not empty and falls within the first p characters of w. Again, ADVERSARY does not tell YOU what x, y, z are.

5. YOU win by picking i, which may be a function of p, x, y, z, such that $xy^i z$ is not in L.
I-clicker problem (frequency: AC)

Prove \(C = \{0^i1^j \mid i > j \geq 0\} \) is not regular.
Proof: Assume \(\ldots \) pumping length \(p \)

What string can you choose in your next move?

A. 00011
B. \(0^p 1^p \)
C. \(0^{p/2} 1^{p/2-1} \)
D. \(0^{p+1} 1^p \)
E. More than one choice above works.
Using the Pumping Lemma: Pumping Down

Prove $C = \{ 0^i1^j \mid i > j \geq 0 \}$ is not regular.

Proof: Assume ... pumping length p

Find a $w \in C$ of length at least p

$w = 0^{p+1}1^p$

Show that w cannot be pumped:

$\{p+1 \quad \text{p} \}$

$w = 00...0011...11$

y must be in this part

$xyyz = 00...00011...11$

$xz = 0...0011...11$

$> p+1$

$\leq p$

1/28/2016

Sofya Raskhodnikova; based on slides by Nick Hopper

L5.6
Prove $C = \{0^i1^j \mid i > j \geq 0\}$ is not regular.

Proof: Assume ... pumping length p

Find a $w \in C$ of length at least p

If $w = xyz$ with $|xy| \geq p$ then

$y = 0^J$ for some $J \geq 1$.

Then $xy^0z = xz = 0^{p+1-J}1^p \notin C$

Contradiction!
For every p, $w \in L$ with $|w| \geq p$

there exist $xyz=w$, where

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in L$ for all $i \geq 0$

Let $L = 1\Sigma^*$. L is regular.

The string 10 cannot be pumped with $p=1$.

You need to show that no matter what p is chosen, L has a string w, $|w| \geq p$, that cannot be pumped.
WHAT THE PUMPING LEMMA DOESN’T SAY - II

For every $xyz = w$, where:

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in L$ for all $i \geq 0$

Example: Let $L = 10^*1^*$. Picking $w = 10^p1^p; x = \varepsilon; y = 10; z = 0^{p-1}1^p$

does not contradict pumping lemma!

(You *can* pick $x = 1, y = 0, z = 0^{p-1}1^p$.)
Let \(\text{BALANCED} = \{ w \mid w \text{ has an equal } \# \text{ of } 1\text{s and } 0\text{s} \} \)

Assume … there is an \(p \)

Find a \(w \in \text{BALANCED} \) of length at least \(p \)

\((01)^p \quad 0^p1^p \)

Show that \(w \) cannot be pumped:

If \(w = xyz \) with \(|xy| \leq p \) then

\(y = 0^J \) for some \(J > 0 \).

Then \(xyyz = 0^{p+J}1^p \notin \text{BALANCED} \)
Pumping a language can be lots of work…
Let’s try to reuse that work!

\[\{0^n1^n \mid n \geq 0\} = \text{BALANCED} \cap 0^*1^* \]

If BALANCED is regular then so is \(\{0^n1^n \mid n \geq 0\} \)
Prove: A is not regular

If A is regular, then $A \cap C (= B)$ is regular.

But B is not regular so neither is A.
Prove $A = \{0^i1^j \mid i \neq j\}$ is not regular using $B = \{0^n1^n \mid n \geq 0\}$

$\neg A = B \cup \{ \text{strings that mix 0s and 1s} \}$

$\neg A \cap 0^*1^* = B$
Let \(F = \{a^i b^j c^k \mid i, j, k \geq 0 \text{ and } i=1 \Rightarrow j=k\} \)

\(F \) has pumping length 2!

- \(i = 0 \)
- \(i = 1 \)
- \(i = 2 \)
- \(i > 2 \)

HW3: prove that \(F \) is not regular.

A non-regular language may still satisfy the pumping lemma.
MODEL OF A PROBLEM: LANGUAGE
MODEL OF A PROGRAM: DFA
EQUIVALENT MODELS: NFA, REGEXP
PROBLEMS THAT A DFA CAN’T SOLVE

ARE WE DONE?
NONE OF THESE ARE REGULAR

• $\Sigma = \{0, 1\}, \ L = \{ \ 0^n1^n \mid n \geq 0 \ \}$

• $\Sigma = \{a, b, c, \ldots, z\}, \ L = \{ \ w \mid w = w^R \}$

• $\Sigma = \{ (,) \}, \ L = \{ \text{balanced strings of parens} \}$

We can write a C or JAVA program for any of them!
PUSHDOWN AUTOMATA (PDA)

FINITE STATE CONTROL

STACK (Last in, first out)

INPUT
PDA to recognize \(L = \{ 0^n1^n \mid n \geq 0 \} \)
A **PDA** is a 6-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$

- Q is a finite set of states
- Σ is the alphabet
- Γ is the stack alphabet
- $\delta : Q \times \Sigma \epsilon \times \Gamma \epsilon \rightarrow P(Q \times \Gamma \epsilon)$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

$P(Q \times \Gamma \epsilon)$ is the set of subsets of $Q \times \Gamma \epsilon$ and $\Sigma \epsilon = \Sigma \cup \{\epsilon\}$

Note: A PDA is defined to be nondeterministic.
A PDA is a 6-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$

Q is a finite set of states
Σ is the alphabet
Γ is the stack alphabet
$\delta : Q \times \Sigma \times \Gamma \rightarrow P(Q \times \Gamma)$ is the transition function
$q_0 \in Q$ is the start state
$F \subseteq Q$ is the set of accept states

A PDA starts with an empty stack.
It accepts a string if at least one of its computational branches reads all the input and gets into an accept state at the end of it.
An example PDA

\[Q = \{ q_0, q_1, q_2, q_3 \} \]
\[\Sigma = \{ 0, 1 \} \]
\[\Gamma = \{ $, 0 \} \]

\[\delta : Q \times \Sigma \times \Gamma \rightarrow P(Q \times \Gamma) \]

\[\delta(q_1, 1, 0) = \{ (q_2, \epsilon) \} \]
\[\delta(q_2, 1, 1) = \emptyset \]
1. Place the marker symbol $ onto the stack.
2. Nondeterministically keep reading a 0 and pushing it onto the stack or read a 1, pop a 0 and go to the next step.
3. Nondeterministically keep reading a 1 and popping a 0 or go to the next step.
4. If the top of the stack is $, enter the accept state. (Then PDA accepts if the input has been read).
What strings are accepted by this PDA?

A. Only ε
B. Palindromes
C. Even-length palindromes
D. All strings that start and end with the same letter
E. None of the above

Σ = {a, b, c, ..., z}
Give an **ALGORITHMIC** description

\[\Sigma = \{a, b, c, \ldots, z\} \]

1. **Place the marker symbol** $ onto the stack.
2. **Nondeterministically** keep reading a character and pushing it onto the stack or go to the next step.
3. **Nondeterministically** keep reading and popping a matching character or go to the next step.
4. If the top of the stack is $, enter the accept state.
Build a PDA to recognize
\[L = \{ a^i b^j c^k \mid i, j, k \geq 0 \text{ and } (i = j \text{ or } i = k) \} \]