Intro to Theory of Computation

Lecture 5

Last time:
• Closure properties.
• Equivalence of NFAs, DFAs and regular expressions

Today:
• Conversion from NFAs to regular expressions
• Proving that a language is not regular: pumping lemma

Sofya Raskhodnikova

Sofya Raskhodnikova; based on slides by Nick Hopper
Theorem. Every NFA has an equivalent regular expression.

Proof idea: Transform NFA to a regular expression by removing states and relabeling the arrows with regular expressions.
What is the regular expression that generates all strings that take this machine from q_s to q_a?

A. $ab^*c \cup d$
B. $ab^*c \cap d$
C. $abc \cup d$
D. $(ab^*cd)^*$
E. None of the above.
Generalized NFAs

- Each transition is labeled with a regular expression
- Unique and distinct start and accept states
- No transitions to the start state
- No transitions from the accept state
Generalized NFAs

G accepts w if it finds $q_0 q_1 \ldots q_k, \ w_1 \ldots w_k$:
- $R(q_s, q) = a^* b$
- $R(q_i, q) = \emptyset$
- $w = w_1 w_2 \ldots w_k$
- $R(q, q_k) \neq \emptyset$
- $q_0 = q_s, \ q_k = q_a$
NFA to GNFA

Add a new start state with no incoming arrows. Make a unique accept state with no outgoing arrows.
While machine has more than 2 states:

Pick an internal state, rip it out and relabel the arrows with regular expressions to account for the missing state.
$R(q_0, q_3) = (a^*b)(a \lor b)^*$
bb ∪ (abb ba)b*a = R(q₁,q₁)
\(bb \cup (a \cup ba)b^*a = R(q_1, q_1)\)

\(b \cup (a \cup ba)b^* = R(q_1, q_a)\)

\((bb \cup (a \cup ba)b^*a)^*(b \cup (a \cup ba)b^*)\)
Convert the NFA to a regular expression

\[\varepsilon \cup (a \cup b)b^*b(bb^*b)^* \]
Convert the NFA to a regular expression

\[\varepsilon \cup (a \cup b)b*b(bb*b)*a \]

\[(((a \cup b)b*b(bb*b)*a)\varepsilon \cup (a \cup b)b*b(bb*b)* \]
Add q_{start} and q_{accept} to create GNFA G.
Run CONVERT(G)

CONVERT(G):
If $\#\text{states} \geq 2$

return the expression on the arrow going from q_{start} to q_{accept}
NFA to regular expression

Add q_{start} and q_{accept} to create GNFA G.

Run CONVERT(G)

CONVERT(G):

If #states > 2

Build G' from G:

- select $q_{\text{rip}} \in Q$ different from q_{start} and q_{accept}
- define $Q' = Q - \{q_{\text{rip}}\}$
- define R' as:
 $$R'(q_i, q_j) = R(q_i, q_{\text{rip}})R(q_{\text{rip}}, q_{\text{rip}})^*R(q_{\text{rip}}, q_j) \cup R(q_i, q_j)$$

return CONVERT(G')
Conversion procedures

DFA ↔ NFA

definition

Regular Language

Regular Expression

Sofya Raskhodnikova; based on slides by Nick Hopper
Design an NFA for the language:

\[\{0^n1^n \mid 0 < n \leq 2\} \]

\[\{0^n1^n \mid 0 < n \leq k\} \]

\[\{0^n1^n \mid n > 0\}? \]

(For R a regexp, \(R^2 \) means \(RR \), and \(R^n \) means \(RR \ldots R \))
SOME LANGUAGES ARE NOT REGULAR!

\[B = \{0^n1^n \mid n \geq 0\} \] is NOT regular!
Proof (by contradiction)

Let M be a k-state DFA that recognizes B.

Consider the path M takes on 0^k1^k:

$q_0q_1q_2\ldots q_iq_{i+1}q_jq_k\ldots q_{2k} \in F$

0000\ldots00..0..011111\ldots11

There must be $i < j \leq k$ such that $q_i = q_j$

M accepts $0^{k-(j-i)}1^k \notin B!$

So M does not recognize the language B.
REGULAR OR NOT?

C = \{ w \mid w \text{ has equal number of } 1\text{s and } 0\text{s}\}

NOT REGULAR

D = \{ w \mid w \text{ has equal number of occurrences of } 01 \text{ and } 10\} \\
(0\Sigma^*0) \cup (1\Sigma^*1) \cup 1 \cup 0 \cup \varepsilon
THE PUMPING LEMMA

Let L be a regular language with $|L| = \infty$

Then there exists a length p such that

if $w \in L$ and $|w| \geq p$ then

w can be split into three parts $w=xyz$ where:

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in L$ for all $i \geq 0$
THE PUMPING LEMMA

Example:

Let \(L = 0^*1^*; p = 1 \)
\(w = 011 \)
\(x = \varepsilon \)
\(y = 0 \)
\(z = 11 \)

if \(w \in L \) and \(|w| \geq p \) then \(w = xyz \), where:

1. \(|y| > 0 \)

Let \(L = (0 \cup 1)^2^*; p = 2 \)
\(w = 12 \)
\(x = 1 \)
\(y = 2 \)
\(z = \varepsilon \)

Sofya Raskhodnikova; based on slides by Nick Hopper
Let M be a DFA that recognizes L.
Let p be the number of states in M.
Assume $w \in L$ is such that $|w| \geq p$.

We show $w = xyz$

Proof of the pumping lemma

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in L$ for all $i \geq 0$

There must be $j > i$ such that $q_i = q_j$.
Use the pumping lemma to prove that $B = \{0^n1^n \mid n \geq 0\}$ is not regular

Hint: Assume B is regular, and try pumping $w = 0^p1^p$

If B is regular, w can be split into $w = xyz$, where

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in B$ for all $i \geq 0$

y is all 0s: $xzyz$ has more 0s than 1s

Contradiction!
Proof by contradiction: assume L is regular.

Then there is a pumping length p.

Find a string $w \in L$ with $|w| \geq p$.

Show that no matter how you choose xyz, w cannot be pumped!

Conclude that L is not regular.
PALINDROMES = \{ \text{ww}^R \mid w \in \{0,1\}^* \} \text{ is not regular.}

Proof: Assume ... pumping length \(p \)

Find a \(w \in \text{PALINDROMES} \) longer than \(p \)

\[0^p1^p1^p0^p \]

Show that \(w \) cannot be pumped:

\[
\begin{align*}
\text{w} &= \underbrace{00 \ldots 00}_{p} \underbrace{11 \ldots 11}_{2p} \underbrace{00 \ldots 00}_{p} \\
\text{xyyz} &= \underbrace{00 \ldots 00}_{> p} \underbrace{00011 \ldots 1100 \ldots 00}_{2p} \underbrace{00 \ldots 00}_{p}
\end{align*}
\]

\(y \) must be in this part
PALINDROMES = \{ ww^R \mid w \in \{0,1\}^* \} is not regular.

Proof: Assume ... pumping length p

Find a \(w \in \text{PALINDROMES} \) longer than \(p \)

\[0^p1^p1^p0^p \]

Show that \(w \) cannot be pumped:

If \(w = xyz \) with \(|xy| \leq p \) then
\(y = 0^J \) for some \(J > 0 \).

Then \(xyyz = 0^{p+J}1^{2p}0^p \notin \text{PALINDROMES} \)

Contradiction!
Prove $C = \{ 0^i1^j \mid i > j \geq 0 \}$ is not regular.

Proof: Assume ... pumping length p

Find a $w \in C$ longer than p

$0^{p+1}1^{p}$

Show that w cannot be pumped:

$w = 00...0011...11$

y must be in this part

$xyz = 00...00011...11$ $xz = 0...0011...11$

$> p+1$ $\leq p$
Prove $C = \{ 0^i1^j \mid i > j \geq 0 \}$ is not regular.

Proof: Assume ... pumping length p

Find a $w \in C$ longer than p

$0^{p+1}1^p$

If $w = xyz$ with $|xy| \geq p$ then $y = 0^J$ for some $J \geq 1$.

Then $xy^0z = xz = 0^{p+1-J}1^p \notin C$

Contradiction!
1. YOU pick the language L to be proved nonregular.

2. ADVERSARY picks p, but doesn't reveal to YOU what p is; YOU must devise a play for all possible p's.

3. YOU pick w, which should depend on p and which must be of length at least p.

4. ADVERSARY divides w into x, y, z, obeying conditions stipulated in the pumping lemma: $|y| > 0$ and $|xy| \leq n$. Again, ADVERSARY does not tell YOU what x, y, z are, although they must obey the constraints.

5. YOU win by picking i, which may be a function of p, x, y, z, such that xy^iz is not in L.

Sofya Raskhodnikova; based on slides by Nick Hopper