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Abstract

We present a classical approximation algorithm for the MAX-2-Local Hamiltonian
Problem. This problem generalizes MAX-2-CSPs, and in fact is QMA-hard. It is an
optimization version of the QMA-complete Local Hamiltonian problem in quantum
computing, with the additional assumption that the local terms are complex posi-
tive semidefinite. We work in the product state space, and extend Goemans and
Williamson’s framework for approximating MAX-2-CSPs. The analysis for rounding
does not naturally extend because we round to a set of normalized vectors, not boolean
numbers, and we use Grothendieck inequalities for different special cases. For general
MAX-2-Local Hamiltonions, we achieve an approximation ratio of 0.564 relative to
the best product state. In general, the best product state might be worse than the
best entangled state by a factor of two, so our overall approximation ratio is 0.282.
This is the first example of an approximation algorithm beating the random quantum
assignment ratio of 0.25 by a constant factor.

1 Introduction

The k-Local Hamiltonian problem is the most studied QMA-complete problem in quantum
computing [KSV02] and generalizes classical constraint satisfaction problems (CSPs). It
is physically motivated, asking about the ground state energy of a system specified by its
Hamiltonian. There are many variations depending on the locality of the constraints, the
number of levels each particle has, and other assumptions that can be made on the Hamil-
tonian. The class QMA has been well-studied as well, and a large set of problems has been
shown to be QMA-complete [Boo14].

There has been much less progress in finding approximation algorithms for these prob-
lems. One difference arising in the quantum case is that classical algorithms cannot efficiently
represent arbitrary solutions, which in general are entangled quantum states. The approach
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to get around this problem is to only consider product state solutions. Bansal, Bravyi, and
Terhal [BBT07] proved that a PTAS (an algorithm that runs in polynomial time in problem
size) exists for Quantum Ising Spin Glass when assuming the graph is planar with bounded
degree. Brandão and Harrow [BH16] analyze the D-regular case and give an additive ap-
proximation algorithm.

Another issue with finding approximation algorithms is how to have well-defined approx-
imation problems. For general Hamiltonians, which are Hermitian, the spectrum can include
positive and negative numbers, so it is difficult to define a meaningful approximation ratio.
Gharibian and Kempe [GK11] defined the MAX-k-Local Hamiltonian problem where the
input terms to the Hamiltonian are positive semidefinite, so that meaningful approximations
can defined. This case is still QMA-hard and includes the classical problem MAX-2-CSP as a
special case. They show that when working with qudits, the optimal product state is at least
the optimal over all quantum states divided by dk−1. The then get a (1− ε)-approximation
algorithm for the optimal product state when the instance is dense.

In this paper we give an approximation algorithm for the MAX-2-Local Hamiltonian
(MAX-2-LH) problem on qubits. This case has the advantage that it generalizes MAX-2-
CSPs, the most general classical constraint satisfaction problems, and it also remains QMA-
hard. In this version of the problem a set of 4× 4 positive semidefinite Hermitian matrices
H1, . . . , Hm are given, and the goal is to compute the maximum eigenvalue of H =

∑m
i=1Hi.

The Hermitian matrix H acts on n qubits, and each term Hi acts on two qubits as specified
by the matrix and as the identity on the remaining n − 2 qubits. The input matrices Hi

therefore implicitly describe the 2n × 2n Hermitian matrix H =
∑

iHi, whose maximum
eigenvalue we wish to compute.

QMA-hardness can be seen by relating it to the decision (promise) k-Local Hamiltonian
problem. In this problem a set of Hermitian 2k×2k matrices H1, . . . , Hm are given, together
with real numbers a and b with b− a ≥ 1/poly(n). The promise on the input is that either
some eigenvalue of

∑
iHi is less than a, or all eigenvalues are greater than b. This QMA

witness for the yes case is an quantum state that is an eigenstate with eigenvalue less that a,
and a quantum algorithm can verify whether its eigenvalue is less than a or 1/poly(n) larger
efficiently. Min and max can be interchanged by changing H to −H.

In this paper we achieve an approximation ratio of 0.282 for MAX-2-LH. This is the first
example of an approximation algorithm for this problem that beats the random assignment
algorithm (i.e., the fully mixed quantum state), which achieves 0.25, by a constant. It is also
possible to achieve 0.25 + 1/Ω(log(n)) by taking the input instance, shifting each term Hi

so that it is traceless, and using the result in [BGKT19]. Our bound is obtained by showing
a ratio of 0.564 relative to the best product state, and then we lose a factor of two because
in general there could be an entangled state that does better by at most a factor of 2. The
upper bound on MAX-2-CSP of 0.874 implies an upper bound on MAX-2-LH.

Other generalizations of classical problems to physically motivated problems have been
studied, but the exact relationship to the classical problems such as MAX-2-SAT, MAX-
CUT, and MAX-2-AND depends on which variant of the Local Hamiltonian problem is being
used. Gharibian and Parekh [GP19] study a maximization problem on 2-Local Hamiltonians
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for the Heisenberg model, which is a physically motivated generalization of MAX-Cut. These
have the form H =

∑
(p,q)∈E wpqHpq for wpq ≥ 0, where Hpq = I − αXp ⊗Xq − βYp ⊗ Yq −

γZp ⊗ Zq, for α, β, γ ∈ {0, 1}. They get approximation ratios 2/(1 + α + β + γ) when
α + β + γ ≥ 2, and 0.878 otherwise. Furthermore, they show that their ratios are almost
tight in the product state space.

Bravyi, Gosset, König, and Temme [BGKT19] consider traceless 2-local Hamiltonians.
This generalizes the maximum quadratic programming problem MAX-QP where the di-
agonal entries are zero [CW04, ABH+05]. In addition to generalizing MAX-QP, it also has
connections to physics. They give an algorithm that outputs a separable state with expected
energy OPT /Ω(log n), where OPT is the maximum eigenvalue of input Hamiltonian.

In terms of techniques, we follow Goemans and Williamson. We first formulate the prob-
lem as an equivalent optimization problem in the real numbers in the Pauli basis. Then we
relax the optimization problem to an SDP. The optimal value of the SDP will be at least the
value of the original problem, because the solution space is bigger. Then we randomly round
the solution in the bigger space down to original solution space. Analyzing the randomized
rounding is considerably more complicated than in the classical cases, because we need to
round the solutions to continuous multi-dimensional space, whereas the solution space is
the boolean space in the classical cases. We show how to use rounding analyzed in a more
general setting in terms of Grothendieck inequality with a PSD matrix [BdOFV10]. Even
with the Grothendieck inequality on a PSD matrix, the multiplicative bound does not come
easily, because our objective function does not correspond to a PSD matrix. We decompose
our objective matrix into a PSD part, a “product” part which we analyze separately, and a
negative semidefinite part which we treat as a loss, and combine the three parts afterwards.

It is natural to consider using SDP for the problem, because every but few approxima-
tion algorithms for classical MAX-2-CSP use SDP solutions to round [GW95, Zwi00, MM01,
LLZ02]. Also [GP19] uses SDP to approximate the MAX-2-LH problems. The SDP for-
mulations of [GP19, BGKT19] and ours are different. An advantage of the formulation in
[GP19, BGKT19] is that the optimal value of the program is OPT itself, whereas the optimal
value of our program is OPTprod. An advantage of our formulation is that it is simpler to
round and analyze, which makes it possible to use for general MAX-2-LHs with positive
semidefinite local terms.

There are several open questions. One is whether or not the factor of two loss can be
improved when moving from product states to general quantum states. Is it possible to close
the gap between 0.282 that we achieve and the 0.874 upper bound? Is it possible to use
more general states than product states? For example, the simplest example of projecting
onto an entangled state on two qubits, which causes the factor of two loss, can be handled
by considering pairs of quantum states. Does the approximation algorithm shed any light
on the quantum PCP theorem?
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2 Background

2.1 Approximating quantum problems

We first define the problem of MAX-2-local Hamiltonian.

Definition 2.1 (MAX-2-LH). An instance is given as a set of Hamiltonians {Hpq : (p, q) ∈
E}, for some edge set E ⊆ [n] × [n], where Hpq is positive semi-definite and operates on
qubits p and q. Given such a list of Hamiltonians on 2 qubits, the goal of the problem is to
find the largest eigenvalue of H =

∑
(p,q)∈E Hpq, which we denote as OPT.

To simplify notation we will write H =
∑

pqHpq, where terms Hpq for (p, q) 6∈ E are the
zero matrix (so have rank 0). Also, let OPTprod denote the maximum energy achievable over
the set of product states, i.e., OPTprod = max|φ1〉···|φn〉〈φ1| · · · 〈φn|H|φ1〉 · · · |φn〉.

Since the 2-local Hamiltonian problem can be reduced to the MAX-2-local Hamiltonian
problem, this problem is QMA-hard. So instead, we turn to approximate OPT with a
multiplicative error. The goal of this paper is to beat the trivial approximation for the
maximum eigenvalue of 2-local Hamiltonians presented in the following theorem.

Theorem 2.2. Given a 2-local Hamiltonian H =
∑

pqHpq with rank r projector local terms
(r ∈ {1, 2, 3}) with the highest eigenvalue OPT, uniformly random product state achieves the
energy at least r/4 ·OPT .

Proof. Consider the contribution of the local term Hpq to the energy. Since we are assigning
the uniformly random product state, the qubit p, q is assigned

ρpq :=

(
1/2 0
0 1/2

)
⊗
(

1/2 0
0 1/2

)
= I/4

jointly. The energy contribution of Hpq is then Tr(Hpqρpq) = Tr(Hpq)/4 = r/4, because Hpq

is a rank r projector. Therefore if ρn is the uniformly random product state on n qubits,
the total energy is Tr(Hρn) = rm/4 where m is the number of local terms. We know that
m ≥ OPT. So Tr(Hρn) ≥ r/4 ·OPT .

Harrow and Montanaro [HM17] consider approximation of the lowest and highest eigen-
value of local Hamiltonian whose each qubit can appear in at most D terms. They give
an algorithm with approximation ratio c + Ω(1/

√
D), c is the ratio achieved by uniformly

random assignment.
More related to the problem we consider, [GK11] considers approximating the maximum

eigenvalue of k-local Hamiltonian with positive semidefinite local terms.

Theorem 2.3 ([GK11]). For a k-local Hamiltonian H on n qudits with positive semidef-
inite local terms with the maximum eigenvalue (energy) OPT, there exists a product state
assignment with energy of OPT/dk−1.
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We are interested in the case of (d, k) = (2, 2) in this paper. In this case, the above
theorem implies there exists a product state with energy OPT /2 and this means OPTprod ≥
OPT/2. Also, they give an approximation algorithm achieving a constant approximation
ratio for dense instances.

Theorem 2.4 ([GK11]). For any k-local Hamiltonian H on n qubits, there exists a deter-
ministic poly-time algorithm outputting a product state achieving 〈ψ|H|ψ〉 > OPTprod− εnk.
OPTprod is the highest energy that can be achieved by a product state.

In the case of k = 2, this implies a product state with energy OPTprod − εn2 can be
efficiently found. If the constraint graph is dense, combining the two gives (1/2 − ε′)-
approximation algorithm. With a dense constraint graph, we know that OPTprod = Θ(n2)
(by assigning a random product state). So OPTprod − εn2 = OPTprod − cεOPTprod =
(1 − cε)OPTprod, for some constant c. By theorem 2.1, we know that this value is at least
(1/2− cε/2)OPTprod.

Brandão’s result [BH16] also says product states do better when the constraint graph
has higher degrees.

Theorem 2.5. A 2-local Hamiltonian H on qudits has non-trivial terms on D-regular graph.
For all edge (p, q) on the graph, the local term Hpq satisfies ‖Hpq‖ ≤ 1. Then there exists

a product state |ψ〉 such that 〈ψ|H|ψ〉 ≥ OPT − 12nD
2

(d
2 ln d
D

)1/3, where OPT is the largest
eigenvalue of H.

The above theorems imply that there exists a product state that achieves approximation
ratio of 1− 12(d

2 ln d
D

)1/3 when the constraint graph is D-regular.
More recent and closely related is Gharibian and Parekh work [GP19] and Bravyi, Gosset,

König, and Temme [BGKT19]. [GP19]’s and our work both aim to optimize 2-local Hamil-
tonians in the product state space, and we both use SDP to do so. One of the differences is
that their target Hamiltonians are more restricted and physically motivated, namely to the
quantum Heisenberg model, whereas we consider general local Hamiltonians with positive
semidefinite local terms. On the other hand, their Hamiltonian not necessarily has PSD local
terms, so it is not a sub-case of our results. Another difference is the formulation of SDPs.
They use a Lasserre hierarchy formulation, whereas we use a simpler SDP . In particular,
they get the following results.

Theorem 2.6. Consider a local Hamiltonian H =
∑

(p,q)∈E wpqHpq for wpq ≥ 0, where

Hpq = I − αXp ⊗Xq − βYp ⊗ Yq − γZp ⊗ Zq, for α, β, γ ∈ {0, 1}. There exist a randomized
classical algorithm with approximation ratio 2/(1+α+β+γ) when α+β+γ ≥ 2, and 0.878
otherwise.

[BGKT19] uses similar techniques for a slightly different problem. They consider a prob-
lem of finding the maximum eigenvalue of traceless 2-local Hamiltonians on n qubits. They
give an algorithm that outputs a separable state with energy OPT/O(log n) where OPT is
the highest eigenvalue of the input Hamiltonian. They use a similar formulation of SDP as
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[GP19] for the highest eigenvalue but they use different rounding technique from [GP19] or
this work.

Another related work is by Bansal, Bravyi, and Terhal, where they proved that PTAS
(an algorithm that runs in polynomial time in problem size and 1/ε where ε is arbitrary
small approximation ratio) exists [BBT07] for Quantum Ising Spin Glass with planar graph
with bounded degree, where the goal is to find the minimum eigenvalue of Hamiltonians of
form

H =
∑

(u,v)∈E

cuvLuv +
∑
u

Lu

where Luv is quadratic in Pauli matrices and Lu is linear.
On the other hand, there are some results about the hardness of approximation of

quantum problems. Gharibian and Kempe introduced a quantum version of Σp
2 called cq-

Σ2 [GK12]. They proved that QSSC and QIRR which they define in the paper are cq-Σ2-
hard to approximate to ratio certain ratios. Moreover, they also show that it is QCMA-hard
approximate Quantum Monotone Minimum Satisfying Assignment, which they defined, to
approximation ratio N1−ε for all ε > 0 where N is the size of instance.

2.2 Reducing Max-2-CSP to Max-2-LH

MAX-2-CSP is reduced to MAX-2-Local Hamiltonian as follows: given a MAX-2-CSP in-
stance on n boolean variables x1, x2, . . . , xn ∈ {0, 1}, a set of edges E between xi’s, and
functions fij : {0, 1}2 → {0, 1} on xi, xj for (i, j) ∈ E. The question is to compute the
quantity OPTCSP = maxx1,...,xn

∑
(i,j)∈E f(xi, xj). We can reduce this instance to a MAX-

2-LH instance on n qubits q1, q2, . . . , qn with projectors Pij :=
∑

(xi,xj)∈Supp(fij) |xixj〉〈xixj|
on qubit i, j for (i, j) ∈ E, where Supp(fij) = {(xi, xj)|f(xi, xj) 6= 1}. To see that this is a
correct reduction, consider an optimizer |φ〉 =

∑
x∈{0,1}n cx|x〉 to the MAX-2-LH instance.

The energy of |φ〉 is 〈φ|
∑

(i,j)∈E Pij|φ〉 =
∑

x∈{0,1}n ‖cx‖2〈x|
∑

(i,j)∈E Pij|x〉. If we measure

|φ〉 in computational basis and use it as an assignment for the original instance, in expec-
tation we satisfy

∑
x∈{0,1}n ‖cx‖2

∑
(i,j)∈E fij(xi, xj), which coincides with the energy of |φ〉.

So MAX-2-Local Hamiltonian on qubits is NP-hard. Then MAX-k-local Hamiltonian with
k > 2 on qudits is also NP-hard because MAX-2-LH on qubits is a special case of MAX-kLH
on qudits, when each projector works non-trivially on 2 locations with 2 dimensional space
on qudit where the support can possibly be.

2.3 2CSP approximation using SDP

SDP has been a major tool for approximating 2CSP problems since Goemans and Williamson
used semidefinite programming to obtain a 0.878-approximation of MAX-CUT and MAX-
2SAT, and a 0.796-approximation for a MAX-DI-CUT [GW95].

There have been gradual improvements in the approximation ratio [Zwi00, MM01] and
finally [LLZ02] obtained the best approximation ratios up to date, 0.94016 for MAX-2SAT
and 0.87401 for MAX-DI-CUT. All of the papers mentioned above used SDP.
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On the other hand, [KKMO04] showed that approximation ratio 0.878 for MAX-CUT
is tight and approximation ratio for MAX-DICUT is upper bounded by 0.878, assuming
that the Unique Game Conjecture (UGC) is true. Austin proved that approximation ratio
0.94016 is tight for MAX-2SAT is tight and approximation ratio for MAX-2AND is upper
bounded by 0.87435, assuming the UGC [Aus10].

More details about CSP approximation can be found in a recent survey by Makarychev
and Makarychev [MM17].

2.4 Lemmas on randomized rounding

We use the following lemmas without proof. The inequalities are special cases of more general
“Grothendieck inequalities”. Grothendieck inequalities have a variety of applications in the
area of theoretic computer science. For more detail, see a survey by Naor and Khot [KN12].

The first two lemmas are given by Goemans and Williamson with which they prove
approximation ratios for their MAX-CUT and MAX-2SAT algorithms respectively, namely,
Theorem 3.3 and Lemma 7.3.2 in [GW95].

Lemma 2.7 ([GW95]). Let u, v ∈ SN be unit vectors in RN+1 for N ≥ 2, and let x =
sgn(u · r), y = sgn(v · r) for a uniformly random vector r ∈ SN . Then

Er[1± xy] ≥ α1(1± u · v),

where

α1 =
2

π
min

0<θ<π

θ

1− cos θ
= 0.878 · · · .

Lemma 2.8 ([GW95]). Let u, v, w ∈ SN be unit vectors in RN+1 for N ≥ 2, and let
x = sgn(u · r), y = sgn(v · r), z = sgn(w · r), for a uniformly random vector r ∈ SN . Then

Er[1± xy ± xz + yz] ≥ α2(1± u · v ± u · w + v · w),

where

α2 = min
0<θ<arccos (−1/3)

2

π

2π − 3θ

1 + 3 cos θ
= 0.796 · · · .

We will also use the following lemma to bound randomized rounding for positive semidef-
inite matrices.

Lemma 2.9. Let A be a m ×m real-valued positive semidefinite matrix and u1, . . . , um be
unit vectors in SN for an integer N ≥ m. For all 1 ≤ i ≤ m, let xi = sgn(r · ui) for a
uniformly random vector r ∈ SN . Then

E

[ ∑
1≤i,j≤m

Aijxixj

]
≥ m

π

(
Γ(m/2)

Γ((m+ 1)/2)

)2 ∑
1≤i,j≤m

Aijui · uj.
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The coefficient m
π

( Γ(m/2)
Γ((m+1)/2)

)2
is asymptotically 2/π + Θ(1/m). We will use the lemma

for m = 6, which has associated constant α3 := 6
π

(
Γ(3)

Γ(3.5)

)2

= 6
π

(
2

15
√
π/8

)2

= 0.691 · · · .
This lemma follows from the analysis in [BdOFV10] where they give an approximation

algorithm for the Grothendieck problem. In particular, Lemma 1 and the argument sur-
rounding Equation (3) are used as follows. Using their notation, let E1(t) = 2

π
arcsin t and

let Ẽ1(t) = 2
π

arcsin t − 2
π

t
γ(m)

. It turns out that the functions only depend on the inner

product between two vectors, so E1(ui, uj) means E1(t), where t = ui · uj. Lemma 1 states
that Ẽ1(t) is of positive type for Sm−1. This means that for any vectors u1, . . . , um ∈ Sm−1,

the matrix
(
Ẽ1(ui, uj)

)
1≤i,j≤m

is positive semidefinite. Since A is also positive semidefi-

nite, it holds that
∑m

i,j=1Aij

(
2
π

arcsinui · uj − 2
π

ui·uj
γ(m)

)
=
∑m

i,j=1 AijẼ1(ui, uj) ≥ 0. Therefore∑
ij Aij

2
π

arcsinui · uj ≥
∑

ij Aij
2
π

ui·uj
γ(m)

. Finally, use the fact that E [sgn(r · ui)sgn(r · uj)] =
2
π

arcsinui · uj, and the fact that 2
π

1
γ(m)

is equal to the factor given in the lemma above, as

in Theorem 2 in [BdOFV10].

3 Setup and Main Theorem

A 2-local Hamiltonian is given as a set of Hamiltonians {Hpq : (p, q) ∈ E}, for some edge set
E ⊆ [n]× [n], where Hpq operates on qubits p and q. Given such a list of Hamiltonians on 2
qubits, the goal is to approximate the largest eigenvalue of H =

∑
(p,q)∈E Hpq. In this paper

we assume each term Hpq is a PSD matrix. To simplify notation we will write H =
∑

pqHpq,
where terms for (p, q) 6∈ E are Hpq are the zero matrix (so have rank 0).

Let OPT denote the maximum eigenvalue of H over quantum states. Stated in terms
of energy, OPT = max|φ〉〈φ|H|φ〉. Let OPTprod denote the maximum energy achievable
over the set of product states, i.e., OPTprod = max|φ1〉···|φn〉〈φ1| · · · 〈φn|H|φ1〉 · · · |φn〉. Our
approach is to find a product state vector that has energy at least 0.564 ·OPTprod, and then
use the fact that OPTprod ≥ OPT /2 to achieve an approximation of 0.282 ·OPT.

We will use a semidefinite program to compute the product state achieving the above
bound. In the next two sections we analyze separate cases depending on the rank of the Hpq’s.
To understand the energy 〈φ1| · · · 〈φn|H|φ1〉 · · · |φn〉, the main quantity that we need to un-
derstand in order to set up the constraints in the program is the energy from each term, where
if Hpq operates on qubits p and q, then 〈φ1| · · · 〈φn|Hpq|φ1〉 · · · |φn〉 = 〈φp|〈φq|Hpq|φp〉|φq〉.

The three cases are when Hpq has rank 1, so Hpq = |γpq〉〈γpq|; when Hpq has rank two,
which means Hpq = Hpq1+Hpq2, where Hpq1, Hpq2 are rank 1; and when Hpq has rank three, so
Hpq = I−|γpq〉〈γpq|. In the rank 1 and 3 cases the same type of term 〈φp|〈φq|γpq〉〈γpq|φp〉|φq〉
must be analyzed (since in the rank 3 case the energy is 1 minus this term).

Next we derive the constraints and objective function on the states for a quadratic pro-
gram whose answer is OPTprod. This program will be relaxed into an SDP and we will show
that rounding the solution gives the desired approximation.

The constraints will restrict to the set of quantum states that are product states. We
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use the Pauli basis so that all numbers we solve for are real valued. Representing the qubits
as their density matrices, let Φp = |φp〉〈φp| and Φq = |φq〉〈φq|, and let Γpq = |γpq〉〈γpq| be
the projector appearing in the Hamiltonian. The energy contribution from Ppq becomes
1− |〈γpq|φp〉|φq〉|2 = 1− Tr(Γpq(Φp ⊗ Φq)).

For any density matrix, there exists unique decomposition into Pauli matrices. So we can
write Φp =

∑3
i=0 xpiWi, Φq =

∑3
j=0 xqjWj, and Γpq =

∑3
i,j=0CpqijWi ⊗Wj, where W0 = I,

W1 = X, W2 = Y , and W3 = Z. Moreover, we know that Tr Φp = Tr Φq = Tr Γpq = 1
because the states are norm 1, and also Tr Φ2

p = Tr Φ2
q = Tr Γ2

pq = 1 if we assume that the
states are pure. This implies that 1) xp0 = xq0 = 1

2
, 2)

∑
i x

2
pi =

∑
j x

2
qj = 1

2
, 3) Cpq00 = 1

4
,

and 4)
∑

ij C
2
pqij = 1

4
.

The quadratic program for OPTprod is:
Quadratic program for MAX-2-local Hamiltonian over product states:

Maximize 4
∑
pq

3∑
i,j=0

Cpqijxpixqj (Q)

subject to:

∀p, xp0 =
1

2
,

∀p,
3∑
i=0

x2
pi =

1

2
.

∀p, i, xpi ∈ R.

The reverse process also works: given real numbers (xp0, xp1, xp2, xp3) as a part of a
feasible solution to (Q), one can construct a state |φp〉 such that |φp〉〈φp| =

∑3
i=0 xpiWi.

This is because of the properties of the Pauli basis:

Φ2
p =

3∑
i,j=0

xpixpjWiWj = x2
p0W

2
0 + 2

3∑
i=0

xpixp0Wi +
3∑

i,j=1

xpixpjWiWj

=
1

4
W0 +

3∑
i=0

xpiWi +
3∑
i=1

x2
piW

2
i +

3∑
1≤i,j≤3,i 6=j

xpixpjWiWj

=
1

4
W0 +

3∑
i=0

xpiWi +
3∑
i=1

x2
piW0 +

3∑
1≤i<j≤3

xpixpj(WiWj +WjWi)

=
1

4
W0 +

3∑
i=0

xpiWi +
1

4
W0 + 0 = Φp.

The fact that Φ2
p = Φp implies that Φp is a projector, and Tr Φp=1implies that it is a rank

1 projector. So there exists a vector |φp〉 such that |φp〉〈φp| = Φp =
∑3

i=0 xpiWi.
Exactly solving this program is NP-hard, because MAX-2SAT can be encoded into a

quantum 2SAT instance, and the solution to the quantum 2SAT instance will be a solution
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for the MAX-2SAT instance. We can, however, solve this approximately by first relaxing
the program to an SDP, solving the SDP in polynomial time, and performing randomized
rounding to the SDP solution we get to obtain a valid solution to the original program.
Below is the SDP to which we relax. The coefficients Cpqij’s are given as constants.

SDP-MAX-2-local Hamiltonian over product states:

Maximize 4
∑
pq

3∑
i,j=0

Cpqijvpi · vqj (S)

subject to:

‖v0‖ =
1

2
,

∀p, ‖vp0‖ =
1

2
,

∀p, v0 · vp0 =
1

4
,

∀p,
3∑
i=0

‖vpi‖2 =
1

2
,

v0 ∈ RN ,

∀p, i, vpi ∈ RN .

The first three conditions simply force that for all p, vp0 = v0. The SDP is in fact a
relaxation of the quadratic program, in the sense that given a solution to the first program
(xpi)pi, the vector (v0 = v, (vpi = xpiv)pi), with v := (1, 0, . . . , 0), is a feasible solution to the
SDP that achieves the same objective value. Therefore the the value of the SDP is at least
the value of the first program.

We can solve the SDP to arbitrary quality using existing SDP solvers and get OPTSDP,
the optimal value of the SDP. With the optimal SDP solution we have, we will find a feasible
solution the the first program with constant approximation ratio. We do this via following
rounding algorithm from [GW95]:

1. Pick a random unit vector r ∈ RN .

2. For all p and i, assign xpi = ‖vpi‖sgn(v0 · r)sgn(vpi · r).

The resulting vector (xpi) is a feasible solution to the original program because xp0 =
‖vp0‖sgn(v0 · r)sgn(vp0 · r) = 1

2
sgn(v0 · r)2 = 1

2
, and

3∑
i=0

x2
pi =

3∑
i=0

‖vpi‖2sgn(v0 · r)2sgn(vpi · r)2 =
3∑
i=0

‖vpi‖2 =
1

2
.

10



Algorithm 1 MAX-2-local Hamiltonian with PSD local terms

1: Input: {Hpq : (p, q) ∈ E}, E ⊆ [n]× [n].
2: Calculate (Cpqij = Tr(Hpq(Wi ⊗Wj))/4)pqij.
3: Solve the SDP SDP-MAX-local Hamiltonian (S) , and get (v0, (vpi)).
4: Pick a random unit vector r ∈ RN .
5: For all p ∈ [n] and i ∈ {0, 1, 2, 3}, assign xpi = ‖vpi‖sgn(v0 · r)sgn(vpi · r).
6: Output (Φp =

∑
i xpiWi)p as the resulting product state assignment.

Theorem 3.1. Given a local Hamiltonian on n qubits H =
∑

pqHpq, where each of Hpq is
positive semidefinite Hamiltonian on 2 qubits p, q, Algorithm 1 outputs a product state that
has energy at least α4 OPTprod, where α4 = 0.564 · · · , and OPTprod =
max|φ1〉,...,|φn〉〈φ1| . . . 〈φn|H|φ1〉 . . . |φn〉.

Proof. A 2-local Hamiltonian with positive semidefinite local terms can be expressed as a
non-negative weighted summation of rank 1 projectors. To see this, let’s say the spectrum
of Hpq is 0 ≤ λpq,1 ≤ λpq,2 ≤ λpq,3 ≤ λpq,4 with eigenstates |φpq,1〉, |φpq,2〉, |φpq,3〉, |φpq,4〉. Then
Hpq =

∑4
r=1 λpq,r|φpq,r〉〈φpq,r|. Let Hpq =

∑3
i,j=0CpqijWi ⊗Wj, then the value of the SDP

(S) is at least OPTprod.
We can decompose the matrix Cpq =

∑4
r=1 λpq,rCpq,r, where each projector |φpq,r〉〈φpq,r| =∑3

i,j=0Cpq,r,ijWi⊗Wj. After solving the SDP, we get the solution vectors (v0, (vpi)). We pick
a random unit vector r to round the solutions to xpi = ‖vpi‖sgn(v0 · r)sgn(vpi · r). Then,

E

[
4
∑
pq

3∑
i,j=0

Cpqijxpixqj

]
= 4

∑
pq

4∑
r=1

λpq,rE

[
3∑

i,j=0

Cpq,r,ijxpixqj

]

≥4
∑
pq

4∑
r=1

λpq,r

[
α3

3∑
i,j=0

Cpq,r,ijvpi · vqj − (1− α3)

√
2− 1

16

]

=4α3

∑
pq

4∑
r=1

3∑
i,j=0

Cpq,r,ijvpi · vqj −
∑
pq

4∑
r=1

λpq,r(1− α3)

√
2− 1

4

≥α3 OPTprod−
∑
pq

4∑
r=1

λpq,r(1− α3)

√
2− 1

4
,

where the first inequality is from Lemma 4.5. By applying Theorem 2.2 to |φpq,r〉〈φpq,r|
for each p, q, r and adding up with the weight λpq,r, we know that the energy of uniformly
random product state is

∑
pq

∑4
r=1 λpq,r/4. So OPTprod ≥

∑
pq

∑4
r=1 λpq,r/4. Therefore the

expected energy of the output state is

E

[
4
∑
pq

3∑
i,j=0

Cpqijxpixqj

]
≥ α3 OPTprod−(1− α3)(

√
2− 1) OPTprod = α4 OPTprod .

11



Corollary 3.2. Algorithm 1 outputs a product state achieving 0.282 ·OPT.

Proof. By Theorem 3.1 the algorithm outputs a state achieving 0.564 ·OPTprod, which is at
least 0.564 ·OPT /2 by Theorem 2.3.

This is better than the trivial algorithm which gives the completely mixed assignment
and achieves 0.25 ·OPT in expectation.

3.1 Better bound when the rank of Hpq is 3

In this section we give a better bound for the special case when the rank of Hpq is 3. In
this case each term Hpq is the identity minus a rank one term, and therefore the objective
function for the quadratic program is to maximize

∑
pq(1 − 4

∑3
i,j=0C

′
pqijxpixqj) with the

same constraints, and the objective function for the SDP is
∑

pq(1 − 4
∑3

i,j=0C
′
pqijvpi · vqj)

with the same constraints.

Theorem 3.3. Given a local Hamiltonian H =
∑

pq Ppq on n qubits, where Ppq is a projector
of rank 3 on qubits p and q, Algorithm 1 outputs a product state that has energy at least
α1 OPTprod, where α1 = 0.878 · · · , and OPTprod = max|φ1〉,...,|φn〉〈φ1| . . . 〈φn|H|φ1〉 . . . |φn〉.

Proof. Because each Ppq is a rank 3 projector, we can write Ppq = I−|γpq〉〈γpq|, and this can
be uniquely decomposed into

∑3
i,j=0CpqijWi⊗Wj, where Cpqij will be in Step 2 of Algorithm

1. Set |γpq〉〈γpq| =
∑3

i,j=0C
′
pqijWi ⊗ Wj. Then we get Ppq = I −

∑3
i,j=0C

′
pqijWi ⊗ Wj

with C ′pq satisfying C ′pq00 = 1
4
, and

∑3
i,j=0 C

′2
pqij = 1

4
for each p, q. For each p, we assign

|φp〉〈φp| =
∑3

i=0 xpiWi. Then OPTprod is the value of the program (Q). We relax the
program to the SDP (S) and get (vpi)pi as a solution to the SDP. To get real-valued xpi, we
perform the randomized rounding: xpi = ‖vpi‖sgn(v0 · r)sgn(vpi · r). Then we analyze the

12



performance of the rounding term by term. For all p, q,

E

[
4

3∑
i,j=0

Cpqijxpixqj

]
= E

[
1− 4

3∑
i,j=0

C ′pqijxpixqj

]

= 1− E

[
4

3∑
i,j=0

C ′pqij‖vpi‖‖vqj‖sgn(vpi · r)sgn(vqj · r)

]
(1)

= (1− 4
3∑

i,j=0

|C ′pqij|‖vpi‖‖vqj‖)

+ 4
3∑

i,j=0

|C ′pqij|‖vpi‖‖vqj‖ − E

[
4

3∑
i,j=0

C ′pqij‖vpi‖‖vqj‖sgn(vpi · r)sgn(vqj · r)

]
(2)

= (1− 4
3∑

i,j=0

|C ′pqij|‖vpi‖‖vqj‖)

+ 4
3∑

i,j=0

|C ′pqij|‖vpi‖‖vqj‖E
[
(1− sgn(C ′pqij)sgn(vpi · r)sgn(vqj · r)

]
(3)

≥ α1(1− 4
3∑

i,j=0

|C ′pqij|‖vpi‖‖vqj‖) + 4α1

3∑
i,j=0

|C ′pqij|‖vpi‖‖vqj‖(1− sgn(C ′pqij)
vpi · vqj
‖vpi‖‖vqj‖

)
(4)

= α1

(
1− 4

3∑
i,j=0

C ′pqijvpi · vqj
)
. (5)

From line (3) to (4), we used the fact that 1−4
∑3

i,j=0 |C ′pqij|‖vpi‖‖vqj‖ ≥ 0, and this is from
the Cauchy-Schwarz inequality:

3∑
i,j=0

|C ′pqij|‖vpi‖‖vqj‖ ≤

√√√√ 3∑
i,j=0

C ′2pqij

√√√√ 3∑
i=0

‖vpi‖2

3∑
j=0

‖vqj‖2

=

√
1

4

√
1

2
· 1

2
=

1

4
.

The second part of line (4) is from Lemma 2.7.
Finally adding all terms in the Hamiltonian,

E

[
4

3∑
i,j=0

Cpqijxpixqj

]
= E

[∑
pq

(1− 4
3∑

i,j=0

C ′pqijxpixqj)

]

≥
∑
pq

α1

[
1− 4

3∑
i,j=0

C ′pqijvpi · vqj

]
= α1OPTSDP ≥ α1OPTprod.
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By Theorem 2.3, since OPTprod ≥ OPT/2, the output is guaranteed to have energy at
least (0.878/2) ·OPT = 0.439 ·OPT. Note that the trivial algorithm that assigns a uniformly
random state will always achieve energy 0.75m, where m is the number of local terms.
However, we can’t conclude that the trivial algorithm performs better, since 0.878 ·OPTprod

can be larger than 0.75 ·OPT.

4 Analysis of the case when rank of Hpq is 1

When the rank of Hpq is 1, the program maximizes the objective function 4
∑3

i,j=0Cpqijxpixqj.
Although the objective function looks similar to that of the rank 3 case, analyzing the
approximation ratio is considerably harder. We first consider the case where the terms
project onto product states. In this case we get a better approximation ratio of 0.40 ·OPT.
We then analyze the general case and give an algorithm achieving 0.28 ·OPT.

4.1 When the projector Hpq projects onto a product state |γpq〉
When |γpq〉 is a product state, the Pauli coefficients are Cpqij = Tr(|γpq〉〈γpq|Wi ⊗ Wj)/4
= Tr((|γp〉〈γp| ⊗ |γq〉〈γq|)(Wi ⊗Wj))/4 = Tr(|γp〉〈γp|Wi) Tr(|γp〉〈γp|Wi)/4 = CpiCqj. So for
all i, j, Cpqij = CpiCqj. Note that since |γp〉 is a 1 qubit state, C2

p0 = (1
2
)2 =

∑3
i=1C

2
pi.

Lemma 4.1. Let u0, . . . , u3, v0, . . . , v3 ∈ RN be vectors such that u0 = v0, ‖u0‖ = ‖v0‖ = 1/2,
and

∑3
i=0 ‖ui‖2 =

∑3
i=0 ‖vi‖2 = 1/2. Let xi = ‖ui‖sgn(u0 · r)sgn(ui · r), yj = ‖vj‖sgn(v0 ·

r)sgn(vj ·r) be the rounding of the vectors with respect to a uniformly random vector r ∈ SN−1.
Let Cij = CiDj where Ci, Dj ∈ R such that C2

0 =
∑3

i=1C
2
i = D2

0 =
∑3

i=1D
2
i . Then

α2

3∑
i,j=0

Cijui · vj ≤ E

[
3∑

i,j=0

Cijxiyj

]
,

where

α2 = min
0<θ<arccos−1/3

2

π

2π − 3θ

1 + 3 cos θ
= 0.796 · · · .

Proof. The proof is by applying Lemma 2.7, Lemma 2.8, and the Cauchy-Schwarz inequality.
Let Ui = sgn(ui · r) and Vi = sgn(vi · r) and note that U0 = V0. Also for convenience, set

A0 := C0‖u0‖ −
3∑
i=1

|Ci|‖ui‖, A1 :=
3∑
i=1

|Ci|‖ui‖(1 + sgn(Ci)U0Ui),

B0 := D0‖v0‖ −
3∑
j=1

|Dj|‖vj‖, B1 :=
3∑
i=1

|Ci|‖ui‖(1 + sgn(Ci)U0Ui)
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E

[
3∑

i,j=0

Cijxiyj

]

= E

[
3∑

i,j=0

CiDj‖ui‖U0Ui‖vj‖V0Vj

]

= E

[
3∑
i=0

Ci‖ui‖U0Ui

3∑
j=0

Dj‖vj‖V0Vj

]

= E

[(
C0‖u0‖+

3∑
i=1

Ci‖ui‖U0Ui

)(
D0‖v0‖+

3∑
j=1

Dj‖vj‖V0Vj

)]
= E [(A0 + A1)(B0 +B1)] .

= A0B0 + E [A1B0] + E [A0B1] + E [A1B1] .

For convenience, set

A′0 := A0, A′1 :=
3∑
i=1

|Ci|‖ui‖(1 + sgn(Ci)
u0 · ui
‖u0‖‖ui‖

),

B0 := B′0, B′1 :=
3∑
i=1

|Di|‖vi‖(1 + sgn(Di)
u0 · vi
‖u0‖‖vi‖

)

From Lemma 2.7,

E [1 + sgn(Ci)sgn(u0 · r)sgn(ui · r)] ≥ α1

(
1 + sgn(Ci)

u0 · ui
‖u0‖‖ui‖

)
for all i. Therefore E [A1] ≥ α1A

′
1 and E [B1] ≥ α1B

′
1.

Using the fact that either exactly one of sgn(Ci), sgn(Dj), or sgn(Ci)sgn(Dj) is positive,
or all three are, Lemma 2.8 implies

E [(1 + sgn(Ci)sgn(u0 · r)sgn(ui · r))(1 + sgn(Dj)sgn(v0 · r)sgn(vj · r))]

≥α2

(
1 + sgn(Ci)

u0 · ui
‖u0‖‖ui‖

+ sgn(Dj)
v0 · vj
‖v0‖‖vj‖

+ sgn(CiDj)
ui · vj
‖ui‖‖vj‖

)
for all i, j. Therefore E [A1B1] ≥ α2A

′
1B
′
1.
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From Cauchy-Schwarz we have A0, B0 ≥ 0, and using this inequality we can bound

E

[
3∑

i,j=0

Cijxiyj

]
= A0B0 + E [A1B0] + E [A0B1] + E [A1B1] .

≥ A0B0 + α1A
′
1B
′
0 + α1A

′
0B
′
1 + α2A

′
1B
′
1

≥ α2A0B0 + α2A
′
1B
′
0 + α2A

′
0B
′
1 + α2A

′
1B
′
1

= α2(A′0 + A′1)(B′0 +B′1)

= α2

3∑
i,j=0

CiDjui · vj = α2

3∑
i,j=0

Cijui · vj.

Theorem 4.2. Given a local Hamiltonian on n qubits H =
∑

pq Ppq, where Ppq is a product
of a rank 1 projector on qubit p and a rank 1 projector on qubit q, Algorithm 1 outputs a
product state that has energy of at least α2 ·OPTprod, where α2 = 0.796 · · · , and OPTprod =
max|φ1〉,...,|φn〉〈φ1| . . . 〈φn|H|φ1〉 . . . |φn〉.

Proof. Because Ppq is a rank 1 projector, we can write Ppq =
∑3

i,j=0CpqijWi ⊗ Wj. We

can write the assignment to qubit p as |φp〉〈φp| =
∑3

i=0 xpiWi, OPTprod is the value of the
program (Q). We relax the program Q to the SDP S and get (vpi)pi as a solution to the SDP.
To get real-valued xpi, we perform the randomized rounding: xpi = ‖vpi‖sgn(v0 ·r)sgn(vpi ·r).
Then we apply Lemma 4.1 to analyze the performance of the rounding term by term.

E

[
4
∑
pq

3∑
i,j=0

Cpqijxpixqj

]
≥ α24

∑
pq

3∑
i,j=0

Cpqijvpi · vqj = α2 OPTSDP ≥ α2 OPTprod .

Corollary 4.3. Algorithm 1 outputs a product state achieving 0.40 ·OPT.

Proof. By Theorem 4.2 the algorithm outputs a state achieving 0.796 · OPTprod, which is
at least 0.40 ·OPT /2 by Theorem 2.3.

The trivial algorithm which gives the completely mixed assignment achieves 0.25 · OPT
in expectation.

4.2 The projector Hpq projects onto an arbitrary 2 qubit state |γpq〉
The goal of this subsection is to bound the approximation ratio when |γpq〉 is a general 2 qubit
state, that is, a Hamiltonian term in qubits p and q has the form |γpq〉〈γpq| =

∑
ij CpqijWi⊗Wj

16



for some 2 qubit state |γpq〉. Dropping the p and q from the notation, we want to show that
for every pair of qubits p and q,

α4

3∑
i,j=0

Cijvi · vj ≤
3∑

i,j=0

E [Cijxixj] ,

where α4 = 0.28 · · · . By linearity of expectation this applied to the whole Hamiltonian.
To bound the performance of the rounding, we use Lemma 2.9.
A direct application of Lemma 2.9 to the input PSD Hamiltonians would be preferable,

however, this lemma only applies to real-valued matrices. Our SDP works in the Pauli
basis which has real-valued coefficients, but those matrices of Pauli coefficients are not PSD.
Instead we will show that it is possible to apply the lemma to a special decomposed part of
each term. The following lemma gives a necessary property of the matrix Cpq towards this
goal.

Lemma 4.4. For a projector |γ〉〈γ| =
∑3

i,j=0CijWi ⊗Wj onto an arbitrary two qubit state,
the matrix of coefficients C = (Cij)ij can be expressed in the form

C = O′
T
1


a 0 0 b
0 c 0 0
0 0 −c 0
b 0 0 a

O′2

for some 4 × 4 orthogonal matrices O′1, O
′
2 of the form O′1 = (1) ⊕ O1, O′2 = (1) ⊕ O2

with 3 × 3 orthogonal matrix O1, O2, and nonnegative real numbers a, b, c. Also, there exist
1 ≥ s ≥ t ≥ 0 such that s2 + t2 = 1 and a = 1

4
, b = s2−t2

4
, c = st

2
.

Proof. The main tool of the proof is the Schmidt decomposition. By the Schmidt decomposi-
tion, there exists two sets of orthogonal bases of the 1 qubit space {|α1〉, |α2〉}, {|β1〉, |β2〉} and
real numbers 1 ≥ s ≥ t ≥ 0 such that |γ〉 = s|α1〉|β1〉+ t|α2〉|β2〉. There exist unitary opera-
tors U1, U2 on the 1 qubit space such that s|α1〉|β1〉+ t|α2〉|β2〉 = (U1⊗U2)(s|0〉|0〉+ t|1〉|1〉).
Let’s define

ρ := (s|0〉|0〉+ t|1〉|1〉)(s〈0|〈0|+ t〈1|〈1|) =


s2 0 0 st
0 0 0 0
0 0 0 0
st 0 0 t2

 .

Then |γ〉〈γ| = (U1⊗U2)ρ(U1⊗U2)†. Define the 4×4 matrix C ′ such that ρ =
∑3

i,j=0C
′
ijWi⊗

Wj. Now we claim that there exist 3 × 3 orthogonal matrices O1, O2 such that C = ((1) ⊕
O1)C ′((1)⊕O2)). We want to compare Cij = Tr(|γ〉〈γ|(Wi ⊗Wj)/4) = Tr((U1 ⊗ U2)ρ(U1 ⊗
U2)†(Wi ⊗Wj)/4) = Tr(ρ(U1WiU

†
1 ⊗ U2WjU

†
2))/4 with C ′ij = Tr(ρ(Wi ⊗Wj))/4. The key

observation is that UWiU
† is Hermitian for all unitary U and i, and hence can be expressed

as a linear combination of Pauli matrices with real coefficients. Let’s write U1WiU
†
1 =
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∑3
k=0AikWk, and U2WjU

†
2 =

∑3
l=0BjlWl, where Aik, Bjl ∈ R for all i, j, k, l. Therefore Cij =

Tr(ρ(U1WiU
†
1 ⊗ U2WjU

†
2))/4 = Tr(ρ(

∑3
k,l=0AikBjlWk ⊗Wl))/4 =

∑3
k,l=0AikBjl Tr(ρ(Wk ⊗

Wl))/4 =
∑3

k,l=0AikBjlC
′
kl. In other words, C = AC ′BT .

Moreover, the matrix A is orthogonal. The rows are orthonormal:

Ai · Aj = Tr

(
1

2

3∑
k=0

AikWkAjkWk

)
= Tr

(
1

2

3∑
k=0

AikWk

3∑
l=0

AjlWl

)
= Tr((U1WiU

†
1)(U1WjU

†
1))/2 = Tr(WiWj)/2 = δij,

where δij = 0 if i 6= j and δij = 1 if i = j. Since A is square, it is invertible: AAT =
I = ATA, so the set of columns of A is also orthonormal. Specifically, A = (1) ⊕ OT

1 for
a 3 × 3 orthogonal matrix O1 because A00 = Tr(U1W0U

†
1W0)/2 = Tr(U1IU

†
1I)/2 = 1. For

similar reasons, we can write B = (1) ⊕ OT
2 for a 3 × 3 orthogonal matrix O2. Therefore

C = ((1)⊕O1)TC ′((1)⊕O2).
Now by calculating C ′ij = Tr(|ρ〉〈ρ|(Wi ⊗Wj))/4 for each i, j, we get

C ′ =


a 0 0 b
0 c 0 0
0 0 −c 0
b 0 0 a

 ,

where a = 1/4, b = s2−t2
4
, c = st

2
. This concludes the proof.

Note that in Lemma 4.4, if the 2 qubit state |γ〉 is maximally entangled, then s = t, and
a = c = 1/4, b = 0. If the state |γ〉 is product as in Section 4.1, t = 0 and a = b = 1/4,
c = 0.

The following lemma bounds the quality of rounded solution with an unwanted additive
error. Later, we will derive a multiplicative bound using the following lemma.

Lemma 4.5. Let |γ〉〈γ| =
∑3

i,j=0CijWi ⊗ Wj be a projector onto an arbitrary two qubit

state. Let u0, . . . , u3, v0, . . . , v3 ∈ RN be vectors such that u0 = v0, ‖u0‖ = ‖v0‖ = 1/2, and∑3
i=0 ‖ui‖2 =

∑3
i=0 ‖vi‖2 = 1/2. Let xi = ‖ui‖sgn(u0 ·r)sgn(ui ·r), yj = ‖vj‖sgn(u0 ·r)sgn(vj ·

r) be the rounding of the vectors with respect to a uniformly random vector r ∈ SN−1 for all
0 ≤ i, j ≤ 3. Then

α3

3∑
i,j=0

Cijui · vj − (1− α3)

√
2− 1

16
≤ E

[
3∑

i,j=0

Cijxiyj

]
,

where

α3 =
6

π

(
Γ(3)

Γ(3.5)

)2

= 0.691 · · · .
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Proof. By Lemma 4.4, there exist nonnegative real numbers a, b, c, s, t and orthogonal 3× 3
matrices O1 and O2 such that

C =

(
1 ~0T

~0 OT
1

)(
a ~bT

~b Cs

)(
1 ~0T

~0 O2

)
=

(
a ~bTO2

OT
1
~b OT

1 CsO2

)
where ~0 = (0, 0, 0)T , 1 ≥ s ≥ t ≥ 0, s2 +t2 = 1 and a = 1

4
, b = s2−t2

4
, c = st

2
with notations

Cs =

c 0 0
0 −c 0
0 0 a

 ,

and ~bT =
(
0 0 b

)
.

Note that we are using the block notation for matrices. To leverage Lemma 2.9, we want
to massage the matrix C and the vectors u’s and v’s into the desired form of input of the
lemma (PSD, and therefore symmetric). An obvious attempt to symmetrize C would be to

consider

(
0 C
CT 0

)
. The problem with this construction is that it is far from being PSD.

In fact, this matrix will never be PSD unless C = 0. So we consider a more complicated
construction.

Let

Du =

||u1||
||u2||

||u3||

 , Dv =

||v1||
||v2||

||v3||

 ,

N = ((1)⊕O1 ⊕O2)((‖u0‖)⊕Du ⊕Dv),

M =
1

2
NT



0 0 0 b 0 0 b
0 a 0 0 c 0 0
0 0 a 0 0 −c 0
b 0 0 a 0 0 a
0 c 0 0 a 0 0
0 0 −c 0 0 a 0
b 0 0 a 0 0 a


N,

and

(w0, w1, . . . , w6) =

(
u0

‖u0‖
,
u1

‖u1‖
,
u2

‖u2‖
,
u3

‖u3‖
,
v1

‖v1‖
,
v2

‖v2‖
,
v3

‖v3‖

)
.

We will show that M is a symmetrized version of C, and w is a normalized version of
the input vectors u0(= v0), u1, u2, u3, v1, v2, v3, all satisfying

3∑
i,j=0

Cijui · vj =
6∑

i,j=0

Mijwi · wj. (6)
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To compare the two sides of Equation 6 we start by mulitplying out M .

M =
1

2
NT

0 ~bT ~bT

~b aI3 Cs
~b CT

s aI3

N

=
1

2

||u0|| ~0T ~0T

~0 Du

~0 Dv


 0 ~bTO1

~bTO2

OT
1
~b aI3 OT

1 CsO2

OT
2
~b OT

2 C
T
s O1 aI3


||u0|| ~0T ~0T

~0 Du

~0 Dv



=
1

2

 0 ||u0||~bTO1Du ||u0||~bTO2Dv

||u0||DuO
T
1
~b aD2

u DuO
T
1 CsO2Dv

||u0||DvO
T
2
~b DvO

T
2 C

T
s O1Du aD2

v


=

1

2

 0 ||u0||CT
[1,3]×[0]Du ||u0||C[0]×[1,3]Dv

||u0||DuC[1,3]×[0] aD2
u DuC[1,3]×[1,3]Dv

||u0||DvC
T
[0]×[1,3] DvC

T
[1,3]×[1,3]Du aD2

v

 .

Let A[i,j]×[l,m] denote the submatrix of A with rows i, i+1, . . . , j and columns l, l+1, . . . ,m.
To see that the equation (6) holds, observe that

DuC[1,3]×[1,3]Dv = 2M[1,3]×[4,6] = 2(M[4,6]×[1,3])
T ,

‖u0‖C[0]×[1,3]Dv = 2M[0]×[4,6] = 2(M[4,6]×[0])
T ,

DuC[1,3]×[0]‖v0‖ = 2M[1,3]×[0] = 2(M[0]×[1,3])
T ,

‖u0‖2C00 = ‖u0‖2a =
3∑
i=1

(‖ui‖2 + ‖vi‖2)a/2 =
6∑
i=1

Mii,

Mij = 0 if i 6= j and i, j ∈ [1, 3] or i, j ∈ [4, 6].
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Therefore

6∑
i,j=0

Mijwi · wj =
∑

(i,j)∈[1,3]×[4,6]

(Mij +MT
ij )wi · wj +

∑
(i,j)∈{0}×[4,6]

(Mij +MT
ij )wi · wj

+
∑

(i,j)∈{0}×[1,3]

(Mij +MT
ij )wi · wj +

6∑
i=1

Mii

=
3∑

i,j=1

Cij‖ui‖‖vj‖
ui · vj
‖ui‖‖vj‖

+
3∑
j=1

C0j‖u0‖‖vj‖
u0 · vj
‖u0‖‖vj‖

+
3∑
i=1

Ci0‖ui‖‖v0‖
ui · v0

‖ui‖‖v0‖
+ C00‖u0‖2

=
3∑

i,j=1

Cijui · vj +
3∑
j=1

C0ju0 · vj +
3∑
i=1

Ci0ui · v0 + C00u0 · v0

=
3∑

i,j=0

Cijui · vj.

A similar relationship holds for numbers. Let z = (sgn(x0), sgn(x1), sgn(x2), sgn(x3),
sgn(y1), sgn(y2), sgn(y3)). Then
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6∑
i,j=0

Mijzi · zj =
∑

(i,j)∈[1,3]×[4,6]

(Mij +MT
ij )zi · zj +

∑
(i,j)∈{0}×[4,6]

(Mij +MT
ij )zi · zj

+
∑

(i,j)∈{0}×[1,3]

(Mij +MT
ij )zi · zj +

6∑
i=1

Mii

=
3∑

i,j=1

Cij‖ui‖‖vj‖sgn(xi)sgn(yj) +
3∑
j=1

C0j‖u0‖‖vj‖sgn(x0)sgn(yj)

+
3∑
i=1

Ci0‖ui‖‖v0‖sgn(xi)sgn(x0) + C00‖u0‖2sgn(x0)sgn(x0)

=
3∑

i,j=1

Cij‖ui‖‖vj‖
xi
|xi|

yj
|yj|

+
3∑
j=1

C0j‖u0‖‖vj‖
x0

|x0|
yj
|yj|

+
3∑
i=1

Ci0‖ui‖‖v0‖
xi
|xi|

x0

|x0|
+ C00‖u0‖2 x2

i

|xi|2

=
3∑

i,j=1

Cij‖ui‖‖vj‖
xi
‖ui‖

yj
‖vj‖

+
3∑
j=1

C0j‖u0‖‖vj‖
x0

‖u0‖
yj
‖vj‖

+
3∑
i=1

Ci0‖ui‖‖v0‖
xi
‖ui‖

x0

‖u0‖
+ C00‖u0‖2 x2

0

‖u0‖2

=
3∑

i,j=0

Cijxiyj.

Note that M is symmetric because MT = (NTSN)T/2 = NTSTN/2 = NTSN/2 = M
where S is the matrix between NT and N in the definition. M is still not a PSD matrix
because S is not a PSD matrix, conjugating with an orthogonal matrix does not change the
spectrum, and conjugating with diagonal matrix leave the sign of each eigenvalue unchanged.
So we cannot use Lemma 2.9 directly to M . To apply Lemma 2.9 to a part of M , we
decompose M into a sum of a product part, a PSD part, and the rest. Let’s define

Mprod :=
1

2
NT



0 0 0 b 0 0 b
0 b 0 0 0 0 0
0 0 b 0 0 0 0
b 0 0 b 0 0 b
0 0 0 0 b 0 0
0 0 0 0 0 b 0
b 0 0 b 0 0 b


N,
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MPSD :=
1

2
NT



0 0 0 0 0 0 0
0 c 0 0 c 0 0
0 0 c 0 0 −c 0
0 0 0 a− b 0 0 a− b
0 c 0 0 c 0 0
0 0 −c 0 0 c 0
0 0 0 a− b 0 0 a− b


N,

and

Mneg := −1

2
NT diag(0, b+ c− a, b+ c− a, 0, b+ c− a, b+ c− a, 0)N.

Then M = Mprod+MPSD+Mneg. We will bound each part separately and combine them
together. To bound

∑6
i,j=0Mprod,ijwi · wj, consider the matrix

Cprod := O′
T
1


b 0 0 b
0 0 0 0
0 0 0 0
b 0 0 b

O′2.

The argument above relating C to its symmetrized version M applies here, with a = b
and c = 0, to get

∑3
i,j=0 Cprod,ijui · vj =

∑6
i,j=0 Mprod,ijwi · wj and

∑3
i,j=0Cprod,ijxi · yj =∑6

i,j=0Mprod,ijzi · zj. The next observation is that Cprod is an instance of Lemma 4.1. To

see that, set C0 =
√
b, Ci =

√
b (O′1)3,i , D0 =

√
b,Di =

√
b (O′2)3,i for 1 ≤ i ≤ 3. Then

Cprod,ij = CiDj for all 0 ≤ i, j ≤ 3 and C2
0 =

∑3
i=1C

2
i = D2

0 =
∑3

i=1 D
2
i . So we can use

Lemma 4.1 on the matrix Cprod:

α2

6∑
i,j=0

Mprod,ijwi · wj = α2

3∑
i,j=0

Cprod,ijui · vj ≤ E

[
3∑

i,j=0

Cprod,ijxiyj

]
= E

[
6∑

i,j=0

Mprod,ijzizj

]
.

(7)

Let SPSD be the matrix between NT and N in the definition of MPSD. The matrix
MPSD is PSD. To see this, it is enough to observe that SPSD is PSD, since conjugating
by N does not change the sign of each eigenvalue. The matrix SPSD is a direct sum of
small PSD matrices: SPSD = (0) ⊕ SPSD,{1,4}×{1,4} ⊕ SPSD,{2,5}×{2,5} ⊕ SPSD,{3,6}×{3,6}. The
eigenvalues of the 2 × 2 blocks can be seen to be 0, 2c, and 2(a − b). Since c = st/2 ≥ 0,
a− b = 1/4− (s2 − t2)/4 = t2/2 ≥ 0 and MPSD is symmetric, it is PSD. Now we can apply
Lemma 2.9 to the matrix MPSD:

α3

6∑
i,j=0

MPSD,ijwi · wj = α3

6∑
i,j=1

MPSD,ijwi · wj ≤ E

[
6∑

i,j=1

MPSD,ijzizj

]
= E

[
6∑

i,j=0

MPSD,ijzizj

]
,

(8)

where α3 = 6
π
(Γ(3)/Γ(3.5))2. The first and last equalities use the fact that the first row and

column are 0, and so the dimension of the matrix used is m = 6.
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Mneg is the rest of the decomposition and has non-positive eigenvalues. The matrix N is
a product of an orthogonal matrix and a diagonal matrix. Conjugating with an orthogonal
matrix does not change the spectrum, and conjugating with diagonal matrix leave the sign of
each eigenvalue unchanged. So conjugating with the matrix N leaves the sign of eigenvalues
unchanged. To use Lemma 2.9, we consider a PSD matrix Mneg +D, where

D =
b+ c− a

2
NT diag(0, 1, 1, 1, 1, 1, 1)N

=
b+ c− a

2
diag(0, ‖u1‖2, ‖u2‖2, ‖u3‖2, ‖v1‖2, ‖v2‖2, ‖v3‖2).

Matrix Mneg +D is PSD because Mneg +D = b+c−a
2

NT diag(0, 0, 0, 1, 0, 0, 1)N
and diag(0, 0, 0, 1, 0, 0, 1) � 0. By Lemma 2.9,

α3

6∑
i,j=0

(Mneg,ij +Dij)wi · wj ≤ E

[
6∑

i,j=0

(Mneg,ij +Dij)zizj

]
. (9)

Also,

6∑
i,j=0

Dijwi · wj =
b+ c− a

2

3∑
i=1

(‖ui‖2 + ‖vi‖2) =
b+ c− a

4

=
b+ c− a

2
E

[
3∑
i=1

(x2
i + y2

i )

]
= E

[
6∑

i,j=0

Dijzizj

]
. (10)

Now we apply the four inequalities (7), (8), (9), and (10) to get the final inequalities.
Note that 1/α2 < 1/α3.

3∑
i,j=0

Cijui · vj =
6∑

i,j=0

Mijwi · wj =
6∑

i,j=0

(Mprod,ij +MPSD,ij + (Mneg,ij +Dij)−Dij)wi · wj

≤ E

[
6∑

i,j=0

(
1

α2

Mprod,ij +
1

α3

MPSD,ij +
1

α3

(Mneg,ij +Dij)

)
zizj

]
− E

[
6∑

i,j=0

Dijzizj

]

≤ 1

α3

E

[
6∑

i,j=0

(Mprod,ij +MPSD,ij +Mneg,ij)zizj

]
+

(
1

α3

− 1

)
E

[
6∑

i,j=0

Dijzizj

]

=
1

α3

E

[
6∑

i,j=0

Mijzizj

]
+

(
1

α3

− 1

)
b+ c− a

4

=
1

α3

E

[
3∑

i,j=0

Cijxiyj

]
+

(
1

α3

− 1

)
b+ c− a

4

≤ 1

α3

E

[
3∑

i,j=0

Cijxiyj

]
+

(
1

α3

− 1

)
(
√

2− 1)/16.
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The last line is by the Cauchy-Schwarz inequality, which implies b+c ≤
√

(12 + 12)(b2 + c2) =√
2((s2 − t2)2/16 + (st)2/4) =

√
2(s2 + t2)2/16 =

√
2/4. As a constant, a = 1/4.

Theorem 4.6. Given a local Hamiltonian on n qubits H =
∑

pq Ppq, where Ppq is a rank
1 projector on 2 qubits p, q supporting a general 2 qubit state, Algorithm 1 outputs a prod-
uct state that has energy of at least α4 OPTprod, where α4 = 0.564 · · · , and OPTprod =
max|φ1〉,...,|φn〉〈φ1| . . . 〈φn|H|φ1〉 . . . |φn〉.

Proof. Let’s say we get (vpi)pi as the solution to the SDP (S). We round vpi and get real
number solution xpi for all p, i. The maximum energy is upper bounded by OPTSDP, the
value of (S). We can apply Lemma 4.5 for each pair of qubits on which a local term is
non-trivial. By adding inequalities for all qubits p, q, we get

4α3

∑
pq

3∑
i,j=0

Cpqijvpi · vqj −m(1− α3)

√
2− 1

4
≤ E

[
4
∑
pq

3∑
i,j=0

Cpqijxpixqj

]
,

where m is the number of non-zero local terms. Because a random assignment of product
state can achieve 0.25 ·OPTSDP, we know that OPTSDP ≥ 0.25m. Combining this with the
equality OPTSDP = 4

∑
pq

∑3
i,j=0Cpqijvpi · vqj, we get

E

[
4
∑
pq

3∑
i,j=0

Cpqijxpixqj

]
≥ α3 ·OPTSDP −m(1− α3)

√
2− 1

4

≥ α3 ·OPTSDP − 4(1− α3)

√
2− 1

4
OPTSDP

=
(
α3 − (1− α3)(

√
2− 1)

)
OPTSDP

≥ 0.564 ·OPTSDP

≥ 0.564 ·OPTprod.

5 Open Questions

• Can we bound the rounded SDP solution by uniformly random solution (ratio 0.75)
for the rank 3 case?

• How to approximate MAX-2-LH on qutrits? We heavily use the properties of Pauli
matrices to show that any feasible solution to (Q) yields a physical state. So approx-
imation of LH on a space with Pauli basis, for example the qutrit space, is not likely
an obvious extension of our algorithm.
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