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Abstract. Tracking multiple targets is a challenging problem, especially when the targets are “identical”, in the
sense thatthe same model is used to describe each target. In this case, simply instantiating several independent 1-body
trackers is not an adequate solution, because the independent trackers tend to coalesce onto the best-fitting target.
This paper presents an observation density for tracking which solves this problem by exhilptiolggailistic

exclusion principle Exclusion arises naturally from a systematic derivation of the observation density, without
relying on heuristics. Another important contribution of the paper is the presentapantdfoned samplinga new

sampling method for multiple object tracking. Partitioned sampling avoids the high computational load associated
with fully coupled trackers, while retaining the desirable properties of coupling.
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1. Introduction mented. A minimum separation relies on heuristics and

fails if the targets overlap. Incorporating 3D informa-
This paper proposes a mathematically rigorous metho- tion is impossible without detailed scene modelling.
dology for tracking multiple objects. The fundamental So it seems we must instead address the fundamen-
problem to be addressed is demonstrated in Fig. 1. Two tal problem: that the observation model used to inter-
instantiations of the same tracking algorithm, with dif- pretimage measurements permits two targets to occupy
ferent initial conditions, are used to track two targets the same point in configuration space too easily. More
simultaneously. When one target passes close to thespecifically, a single piece of image data (such as an
other, both tracking algorithms are attracted to the sin- edgel, or a colour blob), must not simultaneously rein-
gle target which best fits the head-and-shoulders modelforce mutually exclusive hypotheses. What is needed is
being used. One might think of avoiding this prob- a “probabilistic exclusion principle”, and an observa-
lem in a number of ways: interpreting the targets as tion model exhibiting this behaviour is described in this
“blobs” which merge and split again (Haritaoglu et al., paper. The formal model will initially be derived for
1998; Intille et al., 1997), enforcing a minimum sepa- “wire frame” targets—objects which have detectable
ration between targets (Rasmussen and Hager, 1998) boundaries but which do not occlude each other. We
orincorporating enough 3D geometrical informationto then describe how occlusion reasoning about solid ob-
distinguish the targets (Koller et al., 1994). However, jects can be incorporated naturally into the same frame-
each of these solutions can be unattractive. work. The most interesting feature of this approach is

A blob interpretation does not maintain the identity that it works even when the targets andistinguish-
of the targets, and is difficult to implement for moving able given the available informatiohis is of both
backgrounds and for targets which are not easily seg- theoretical and practical interest.
Many visual tracking systems for multiple ob-

*http://www.robots.ox.ac.uk/vdg jects have been developed. One standard technique
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Figure 1L With an observation model designed for one target, two trackers initialised in distinct configurations eventually lock on to the one
target which bests fits the model. The objective is to derive an observation model which does not permit the presence of two targets to be inferred
from measurements of only one.

is the probabilistic data association filter (PDAF) the shape spacéBlake and Isard, 1998), and is pa-
(Bar-Shalom and Fortmann, 1988), and other success-rameterised as a low-dimensional vector sp&cdhe

ful examples include (Haritaoglu et al., 1998; Intille spaceX’ generally has 5-50 dimensions. This frame-
et al., 1997; Paragios and Deriche, 1998; Rasmussenwork is based on standard concepts from the theory of
and Hager, 1998). These generally employ a combi- snakes and deformable templates (e.g. Kassetal., 1987;
nation of blob identification and background subtrac- Szeliski and Terzopoulos, 1991) and is summarised
tion; both techniques are complementary to the method concisely in Blake and Isard (1998).

proposed here. In particular, our exclusion principle A configurationx € X is measured by the method
does not allow two targets to merge when their con- of Fig. 2, obtaining a list of image coordinatés—=
figurations become similar; instead, the model con- (z®,z®?, ..., z™). A component of is itself a vec-
tinues to interpret the data in terms of two targets. tor z™ consisting of the measurements made along
As will be seen, it is a natural consequence of the fixed measurement lingsee the figure) of the config-
methodology that the probability distribution for an urationx. An advantage of this measurement line ap-
obscured target diffuses until it is reinforced by fur- proachisthatwe have reduced the problem of analysing
ther data. Furthermore, the method works for unknown a 2D image to that of analysing several 1D measure-
and constantly changing backgrounds. Rasmussen andnentlines. The statistical processes generating features
Hager (1998) proposed a promising method for com- on different measurement lines are treated as indepen-
bining colour blob and edge information, and incor- dent (the merits of this approximation are discussed in
porated an exclusion principle by using a joint PDAF.
However, their algorithm for fusing edgel information
enforced an arbitrary minimum separation between tar-
gets. Gordon (1997) employs a similar multi-target
tracking methodology to this paper but with a rather
different observation model and no explicit exclusion
principle.

One of the difficulties with tracking multiple objects
is the high dimensionality of the joint configuration
space. Section 5 introduces a method knowpaas-
tioned samplingvhich diminishes the computational
burden associated with the increased dimensionality of
multi-target spaces.

2. The Observation Model Figure 2 Measurement methodology. The thick white linexds-
a mouse-shaped contour in some hypothesised configuration. The
The target objects in this paper are described by their thin lines aremeasurement lingglong which a one-dimensional
. . . . feature detector is applied. Black dots show the output of the feature
outlines, Whl(_:h are modelled as B'SPImeS' We WI”_Ca” detector, which in this case responds to rapid changes in intensity—
any such outline eontour. The space of contourswhich  gne-dimensional edges. Note that many spurious edges are generated

can correspond to a target or set of targets is called by shadows, or more generally by clutter in the image.



Section 2.2), so we need only specify this process on
1D subsets of the image.

So consider just one fixed measurement line, of
length L, positioned in an image known to contain
two target objects. A one-dimensional edge detector
is applied to this line, and some features are detected
atimage coordinates= (z3, 2, . . ., Z,). Some of the
z; might correspond to the target objects’ boundaries,
while the others are due to clutter in the image. So we
must develop ayenerative modelor both the target
and clutter features—this is analogous to the models

adopted in some pattern recognition tasks, such as the

generation of printed matter as “charactenk spat-
ter” (Hinton et al., 1992). For a given target config-
urationx, there are three possibilities to consider: the
measurement line may intersect 0, 1 or 2 of the tar-
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from the random background clutter distribution de-
scribed above.

c=2 (“two targets”): Two of then features,
say z, zj, correspond to target boundaries at hy-
pothesised positions,, v,. They are drawn from
G(z |v1), G(z; | vo) respectively with, importantly,

i #j. In other words, any edge feature can cor-
respond to at most one target boundary. It is this
assumption which leads to the enforcement of a
probabilistic exclusion principle described later on.
(The same assumption is made in (Rasmussen and
Hager, 1998) to enforce exclusion in the context of
a joint PDAF). Again the remaining — 2 features
are drawn from the background distribution.

gets. The probability densities for each case are denoted | "€ model can be generalised to higher values of

pc(n; 2). To calculate they, several concrete assump-
tions about the generative model foare adopted:

e c=0 (“random background clutter”): The prob-
ability of obtaining n features isb(n), learnt
from randomly placed measurement lines in typ-
ical images. The positions of the featuresz
(z1, 2o, ..., Zy) are drawn from the uniform distri-

but for clarity only the cases = 0, 1, 2 are consid-
ered here. The assumption foe= 2 that any one edge
feature corresponds to at most one target is crucial,
and requires further explanation. While it is true that
wherever two targets cross, thésa single edge corre-
sponding to two targets, such points form a very sparse
setinthe image. The possibility that such a pointlies on
one of the measurement lines is therefore disregarded.

bution on the measurement line. These assumptionsFor an example, look ahead to Fig. 8.

are discussed in Section 2.1.
e c = 1 (“single target”): One of tha features corre-

The mathematical consequences of these assump-
tions are collected in the next proposition, which is

sponds to the target boundary, whose hypothesisedproved in the appendix. Note thatn; z) is a prob-

position on the measurement line is denotedf
the boundary feature g, thenz is assumed to be
drawn from a fixed probability distributio@i(z | v),
termed the “boundary feature distribution”. In this
paperG(z | v) is a Gaussian centred onwith vari-
ances? (we takes = 7 pixels in the examples later;
see Table 1 for the justification of this value). The
remainingn — 1 features are assumed to be drawn

ability distribution over bothn and z—this notation

is explained in the appendix. Also note the density
p follows the generative model in assuming that the
measurementéz,, . .., z,) might come in any order
with equal likelihood; if it is assumed instead that
the measurements are made in a prescribed order (e.g.
21 < 2o, ..., < z,) then each density should be multi-
plied byn!.

Table 1 Parameter values and other choices used for experiments. Suitable non-detection
probabilities were determined by trial and error on simple examples. The discrete transition

probability corresponds to a time constant of 2.0 seconds for a given discrete state. The
standard deviation of the boundary feature distribution is estimated from the mean-square
mismatch of templates fitted to the targets. The measurement lines extend approximately 3
of these standard deviations in each direction.

Non-detection probabilite€ =1  (qo1, 011)

Non-detection probabilitieg, = 2

Clutter feature probabilities b(n)
Discrete transition probability 8
Boundary feature distribution G(z|v)
Length of measurement lines L

(Qo2, G12, d22)

(0.1,09

(0.05,0.2,0.75)

MLE from first frame of sequence
0.01

Gaussian with std dev of 7 pixels
40 pixels
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Proposition 1. The probability density functions re-
sulting from the assumptions above are
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Po(n: 2) =b(n)/L"
pi(M; z|v)=b(h — 1) Y " G(zc|v)/nL"" (1)
k=1

(zi 1v)G(zZj | v2)
L"2n(n — 1)

P2(n: Z| vy, ) =b(n —2) Y g
i#]
) ) Ba(r; elva, vg)
As described so far, the generative model assumes
that if a target boundary is present, then the edge detec-
tor will detect it. This is unrealistic: occasionally the
target object’s boundary is not detected, because the
background and target happen to have similar grey-
scale values. Hence a final step is added to the gener-
ative model. It is assumed that whenr= 1 there is a
small fixed probabilitygy; of the edge detector failing
to detect the target boundary, amd = 1 — o1 that it Figure 4 2-target likelihood functions for a single measurement
will succeed. This is precisely analogous to the non- line. Top: A nave 2-target likelihoodd1(n; z| v1) p1(n; z| v2) for-
detection probabilities used in PDAFs (Bar-Shalom med by taking the product of two 1-target densities (Fig. 3). The
and Fortmann, 1968). Simiarly, whan— 2, there /100 peks e s o messueria (e crcs
are fixed probabilitiesioz, G12, 022 that Q 1, 2 target derived from the generative model. Again, the likelihood peaks near
boundaries are detected successfully. Thus we can de-airs of measurements, z; (shaded circles and dotted lines), but

fine pdfs p for the final generative model as follows, now a probabilistic exclusion principle operates: because the sum in
for the cases = 0. 1. 2: the definition ofp, excludes = j, the probability peaks are much
smaller on the liney = vy.

Po(-) = po(-)
51 (- | 1) = )+ v 2 configuratiorx, the measurementswill arise from say
_ P 1v) =G0t Po() + QuaPa(-|v) @ M distinct measurement lines. Leti ) be the number
P2(- [ v1, v2) = Coz2Po() + Gua(Pa(- [ va) of target boundaries intersecting tit measurement
+ P1(- | v2))/2 + Oo2pP2(- | v1, v2) line for a given configuratiorx, and letv® be the

coordinates of these intersections. By making the as-

Typical graphs of the last two functions are shown in sumption that outputs on distinct measurement lines

Figs. 3 and 4. are statistically independent (Section 2.2), we define
The above discussion was framed in terms of a sin- theexclusive likelihood functioas

gle measurement line, but for any given hypothesised

Glz— 0]»)

M
PZ|x) = ]_[ Pei) (2 [ D). ()
i=1

finzrld

We callc(i) theintersection numbeof theith mea-
surement line.

quib(4)
T.

! ool 2.1. Discussion of the Background Model
Figure 3 1-target likelihood function for a single measurement  Recall that the numbets(n), n € N specify the prob-
line. Left: The boundary feature distributiagfiz = 0| v). Right: ability of obtaining n features on a measurement

The 1-target likelihood functiof (n; z| v) graphed with respect to . L
v. The likelihood is a linear combination of shifted copiesioz | -) line positioned randomly on the background, and that

and of the constanpy. It peaks near the 4 measurementéshown these probabilities are |_eamt from typical training im-
as shaded circles). ages. Of course this innocuous statement conceals
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a perennial problem in computer vision: how does ]
one characterise a “typical” image, and even worse, | !0
how does one specify a prior for such images? Even
when an image is reduced to the simple level of
one-dimensional features, there is no straightforward
answer to this question. However, it turns out the
tracking system described later is extremely robust |, |
to the choices ofb(n). Indeed, we routinely set
b(0)=b(1) = -+ =b(Nmax) = 1/(1 4+ Nax) for some 02 |
Nmax, With b(n) = 0 whenn > npa FOr measurement
lines of 40 pixels, and an edge convolution operator LA = -
with weights (—0.375 —0.625, 0, 0.625, 0.375), one 10 20 30 40 50
can takenmax ~ 10 and obtain results indistinguishable displacement 4 (pixels)
from when theb(n) are learnt from the entire sequence
to be tracked. Another simple approach which gives Figure5 Feature autocorrelation is low for displacements of more
equally good results in all our experiments is to learn than 30 pixels. This is our justification for treating distinct mea-
thebm fom he fistimageof hesequence. _ ssmer res s Sy T, T S o
An alternative approagh to modelling the occurrence ar(wd)Fig. 6, and the autocorrelgtior; function is defined as usual by
o_f background featurgs is the careful use of a Kalman g4y = (E[x(d)x(0)] — E[x(0)]?)/(E[x(0)?] — E[x(0)]?).
filter framework to disregard spurious features (e.g.

Peterfreund, 1998), but in order for this to work in

cluttered backgrounds, one needs much more accurateBlake_* 1998b), or MRF_S in general (Chellappa and Jain,
dynamical models than those available in the type of 1993; Kent et al., 1996; Winkler, 1995). However, these

problems considered here. Other researchers explicitly € t00 computationally expensive for tracking tasks, so

‘ autocorrelation
R(d)

adopt a uniform distribution on thie(n) (e.g. Lowe, instead we adopt the assumption of independence be-

1992), as suggested above. tween measurement lines. One might hope this approx-
Our second assumption about random background imation is acceptable if the measurement lines used for

clutter features is that thepositionsare drawn from  inferences are sufficiently far apart. Figure 5 investi-

a uniform distribution. What is the corresponding 9ates the meaning of “sufficiently far” in this context.
assumption about 2D image features that would make This figure shpws the autocorrelation of alrandom_pro-
this true? ltwould certainly hold provided the positions €€Ssx(d) defined as follows (see also Fig. 6). First,
of all edgels of a given orientation were also distributed r@ndomly position a measurement line, uniformly in
uniformly. We find this is sufficiently true over the ~POSition and orientation, on a typical background im-
small regions (scale around 40 pixels) occupied by the 29€ (|_n this case the first frame of the leaf sequence—
measurement lines, but it is clear that this approxima- S€€ Fig. 16). Apply a feature detector, select the closest
tion is unsatisfactory for larger regions. Further work feature to the centre of the measurementline, and define

is needed here: perhaps the recent ideas on filters andk(0) 10 be the offset of this feature. The valuexati)
scale-invariance (Mumford and Gidas, 1999; Zhu etal., 'S defined by first displacing the original measurement

1998) can be applied to obtain a more coherent theory. linea dista_nce ofl pixels in the direction of i_ts normal,
then applying the feature detector and settifa) to be

the offset of the most central feature. Of course Fig. 5
2.2. Independence of Measurement Lines does not establish the joint independence of the feature

occurrences on all measurement lines which are suffi-
The exclusive likelihood function (3) was derived as- ciently far apart. The autocorrelation function involves
suming that feature occurrences on distinct measure-only 2nd-order moments, whereas independence re-
ment lines are statistically independent. Of course this quires that moments of all orders vanish. In addition,
is an approximation, since there are generally continu- evenif pairwise independence ofthe measurementlines
ous edges in the background as well as on the boundarywas established, it would still not follow that they were
of the target object. There have been some attempts tojointly independent. Nevertheless, Fig. 5 does imply
allow explicitly for this type of dependence—for ex- that the outputs of measurement lines separated by less
ample, the Markov discriminant of (MacCormick and than 10-20 pixels are rather strongly correlated, but that
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sised configurationgy, ..., X,. For Bayes’ Theorem

to be valid, the set of measurement lines must be fixed
in advance. However, it is sometimes convenient to
allow the precise choice of measurement lines to de-
pend on the configuratior, as in Fig. 2. When the

X;j are tightly clustered, this is a minor approximation

which was adopted in this paper for ease of implemen-
tation. Our experiments on other tracking tasks with
measurement lines fixed in advance produce indistin-
guishable results.

R
B 2 e il

B

3. Tracking Multiple Wire Frames

Tracking is performed in this paper by the Conden-
sation algorithm (Isard and Blake, 1998a), which is

capable of dealing with complex likelihood functions
Figure 6 Investigating feature correlation. The top solid black line  such as (3). Condensation is a filtering algorithm which
?s a measurement line positioned randomly on a typical background performs a Bayesian estimation of the posterior for the
image. The value of the random process) is the offsetofthemost  giata of 5 system at each time step. Because of the
central detected feature after the initial measurement line has been | likelihood f i th . | df
displaced byd pixels in the direction of its normal. complex l e.' 0od tuncton, e_re IS no close Orm_
of the Bayesian update at each time step. Condensation

this correlation is much weaker for separations of 30 circumvents this problem bgpproximatingthe distri-
or more pixels. The likelihoods in this paper employed bution to be estimated using “weighted particle sets”.

a Separation between measurement lines of approxi_TO be SpeCifiC, a Condensation tracker represents the
mately 30 pixels. state of a system at timieby a weighted set cfamples
orparticles 4, ..., sy whose weights are!, ..., =},.

This set is intended to be an approximate representa-
tion of some probability distribution functiop(x), in

the sense that selecting one of tevith probability
proportional tar; is approximately the same as making

a random draw fronp(x). This concept is formalised

in Section 5.1.

Given a particle sets', =})_; which represents the
posterior at timet, the Condensation algorithm gen-
erates a particle set representing the posterior at time
t+1 in three steps: (i) resampling: sampletimes
with replacement from the set of particigsaccording
to the weightsr!—this produces a set , . . ., sk; (ii)
dynamical propagation: sample fropix' ™! | x' =)
to choose eaclsf“; and (iii) measurement: examine
the image to obtain the featurgs+?, then assign each
of the new particles a weight' ™ oc p(Zt*+* |x**+ =
s'*1). The three transformations of the particle set in
any time step can be conveniently summarised dia-
grammatically:

2.3. A Separate Interior Model

Features detected in th@erior of an opaque target ob-
ject are not generated by random background clutter.
This contradicts the simple generative model above,
and it was shown in (MacCormick and Blake, 1998a)
that a more complex model explicitly accounting for
the interior of the target can improve the resulting infer-
ences. However, even simple interior models lead to in-
tractable pdfs involving numerical integration. Hence,
for simplicity, the results in this paper assume that fea-
tures detected in the interior of an opaque target are
drawn from the same distribution as the background.

2.4. Selection of Measurement Lines

Oftenwe need to perform Bayesian inference onthe im-
age, based on the measuremehts several hypothe-

(080) — 51— <G> — AT — oseror) (4)

(a) (b) (¢)



The ~ symbol represents resampling as described
above, thex is application of a stochastic dynami-
cal step, and thex represents multiplication (i.e. re-
weighting) by the measurement density. The labels
(a)—(c) referto an example given later (Fig. 12), and can
be disregarded for the moment. Of course, to demon-
strate the exclusion principle we use the exclusive like-
lihood functionP(Z | x) as the measurement density.
Note thatP as defined in (3) is not valid for opaque
objects, since the model expects to observe all bound-
aries, even those which are occluded. Howeveis it
valid for wire frame objects, so an experiment on wire
frames was performed. As a control for the experiment,
we need a likelihoo’, similar toP, but which does
not incorporate an exclusion principle. Naming the two
targetsA and B, and writingca(i) for the number of
intersections oA with linei, letv’y be the coordinates
of these intersections and define thibody likelihood

M
PAZ1%) =[] Peair (2" | ¥R, 5)
i=1
and similarly forPg. We takeP’ = PaPg, so the pos-
teriors forA andB givenZ are treated as independent.
A typical graph ofP’ for just one measurement line is
shown at the top of Fig. 4—note that in contrast to the
graph ofP below it,?” has four additional peaks down
the linev; = v,. Figure 7 shows the results of the wire
frame experiment: as expecteéd,successfully main-
tains exclusion between the targets wherPasloes
not.

4. Tracking Multiple Opaque Objects

The wire-frame model can be adapted for use with solid

objects. The method uses the mixed state Condensation

tracker of (Isard and Blake, 1998c), combined with a
“2.1D” (Mumford and Nitzberg, 1990) or “layered”
(frani and Anandan, 1998) model of the targets. The
basic idea of a mixed state Condensation tracker is
that each particle carries a discrete label in addition
to the continuous parameters describing its configura-
tion. Lety be a discrete variable labelling the current
model, and lek be a shape space vector of continuous
parameters specifying the configuration of the targets.
The extended state is defined to be
X=xy),xeR%ye{l...,Ns}. (6)
In the two-object casex = (x*, xB) andy can take
one of two valuesy = 1if Ais nearer the camera than
B, andy = 2 if B is nearer tharA. This is what we
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Figure 7. The exclusion principle operating on a wire-frame ex-
ample. (a) Three stills from a sequence of two pieces of wire with
similar shapes. Note that for several frames in the middle of the se-
guence, the two wires have very similar configurations. (b) Results
using the likelihoodP’, which does not incorporate an exclusion
principle. When the configurations become similar, both targets set-
tle on the best-fitting wire. (c) Successful tracking using the exclusion
principle likelihoodP.

mean by a 2.1D model: the only 3D geometric aspect
to be inferred is whether targétcan occlude targe®
or vice versa.

We assume the dynamics of the continuous pa-
rameters do not depend on the discrete state, so that
p(X; | Xt—1) = pX¢ | X—1). Then the process density
can be decomposed as follows:

PXt [ Xi—1) = Pt [ X, Xi—1) P(Xt | Xe—1),

and if y;_, = j andy; = i this can be written more
explicitly as

PXt | Xi—1) = Tij (Xt, Xt—1) P(Xt | Xt—1),

whereT;; is a transition matrix ang is a density spec-
ifying the continuous dynamics for a particle. Here it
is appropriate forT;; (X, X;—1) to be independent of
Xi—1. If x* andx? overlap then the occlusion relation-
ship cannot change in the the current time-step and so
we takeT;; (x;) to be the identity matrix. Ik{* andx?

do not overlap then we assume there is a small, fixed
probability thaty will change, represented by taking
Tijx) = (159,98 5H)with0 <8 <« 1.
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0.73 seconds 0.8 seconds

Figure 9. Successful tracking with a density incorporating occlu-
sion reasoning (c.f. Fig. 1). 20 of the 2000 particles are shown in
each frame, with widths proportional to their probabilities. Recall
that a single “particle” in this context is jaint hypothesis for the
configuration of both targets. Initially, each particle consists of two
white contours: one initialised on each of the two targets. A contour
Figure 8 Intersection numbers calculated from 2.1D geometry. In  is drawn in black if its value of, as defined in (6), implies that it is
this diagramy = 1, meaning the shaded area is occluded by target Partially occluded.

A. Visible intersections of measurement lines and target boundaries

are shown as solid circles. The solid lines have intersection number

¢ = 2, dashed have = 1 and dot-dashed= 0. These are-values The derivation of (7) is otherwise identical to (3). A
usedin (7). detailed example is given in Fig. 8.
The likelihood Py performs well in experiments.

The mixed state Condensation tracker presented hereF19ure 9 shows a typical sequence involving occlu-
incorporates a significant difference to that of (Isard and Sion- The configuration space has 16 dimensions: 8
Blake, 1998c)—the observation densjifZ; | X;) de- key-frames from principal components analysis of tem-
pends notonly or; but also on the discrete state The plates (Baumberg and Hogg, 1994; Cootes and Taylor,
multi-target exclusive likelihood function (3) is used, 1992), foreachof 2 targets. Tracking is performed with
but now the intersection countsi) are calculated us- N = 2000 particles, and predictive dynamics in the
ing the discrete variablg and the 2.1D geometry to form of Brownian mo_uon with an amplitude matched
determine if a given boundary feature should be visi- {0 thespeed ofawalking person. Note how the occluded
ble or not, as in Fig. 8. To emphasise this we can write contours diffuse at 0.7 seconds. Because of the exclu-
c(i, y) for the number of/isible target boundaries in-  Sion principle they coalesce again only when some ev-
tersecting théth measurement line of a configuration 'dence from the correct target is observed. The unde-
(x, y): the coordinates of the visible boundaries on the sirable trackmg behaw_our of Fig. 1 has been correc_ted.
ith line are writtenw(-Y). Then the likelihood in the As a canonical tracking challenge, the same multiple
occluded case is target methodology was applied to the “leaf sequence”

" used in (Isard and Blake, 1998a). Two leaves were
_ - - tracked, using an affine shape space dhd= 4000
Pocal(Z | X) = l_[ Peiy) (2 [ ). () samples with learnt dynamics. (The need for 4000
=t samples is reduced to 750 by the partitioned sampling
To understand this, compare with Eq. (3). The functions method described in the next section.) Tracking is suc-
Pe, ¢ = 0,1, 2 are still as defined in (2). The only cessful despite occlusions; some stills are shown in
change is that the intersection numberand target Fig. 10.
boundary positions now depend on the discrete state ~ Table 1 gives details of the parameter values used
y which specifies which target is in front of the other. for all the experiments.
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Figure 11 Weighted resampling. A uniform priopo(X), repre-
sented as a particle set (top), is resampled via an importance resam-
pling functiong to give a new, re-weighted particle set representation
of po. Note that these are one-dimensional distributions; the particles
are spread in thg-direction only so they can be seen more easily.

Figure 1Q Tracking multiple leaves, in moving clutter and with
occlusions. Three stills from a tracked sequence are shown. The
black contour shows a correctly inferred occlusion.

5. Partitioned Sampling for Condensation

A potential limitation of the Condensation algorithm

is that if the state space has many dimensions, then theregions so that subsequent operations on the particle
number of particles required to model a distribution set will produce accurate representations of the de-
can be very large indeed. This is of particular con- sired probability distributions. Figure 11 shows a sim-
cern when tracking multiple objects, since the number ple one-dimensional example of weighted resampling
of dimensions in the state space is proportional to the with respect to an importance function. A more formal
number of objects. Fortunately, “partitioned sampling” discussion follows.

significantly mitigates this curse of dimensionality. It

is the statistical analogue of a hierarchical search: the pefinjtion(Weighted resampling). Lst, ..., s,bea

mtumon is that it should_be more efficient to search particle setwith weights, . .., 7n, and letor, . . . , pn

firstfor whichever target is unoccluded, and only then e any Jist of strictly positive weights with pi =1.

to search for another target which may lie behind. The operation ofweighted resamplingvith respect
to the p; produces a new particle ssf, ..., s, with

5.1. Weighted Resampling weightszy, .. ., 7, by the following algorithm:

The partitioned sampling algorithm requires an addi- 1- Fori =1,....n

tional operation on particle sets, termed weighted re-  (3) Randomly select an indéxe {1, ..., n} with

sampling. This operatiodoes not alter the distribu- probability p.

tion represented by the particle s¢dowever, it can (b) Sets =s.

be used to reposition the locations of the particles  (¢) Setr’ = 7/ px.
so that the representation is more efficient for future '

operations. 2. Normalise ther/ so that) " =/ = 1.

Weighted resampling is usually carried out with re- ) ) N
spect to a strictly positivémportance function (). Often, thep; are determined from a strictly positive
Givenaparticle s, . . ., s, with weightsry, . . . , 7n, functiong(x), in the sense that o g(s). In this case,
the basic idea is to produce a new particle set by re- 9(X) is called themportance functiomnd we refer to
sampling, with replacement, from tise using prob- ~ Weighted resampling with respectgox).
abilities proportional tog(s )—this has the effect of Before stating the key property of importance re-
selecting many particles in regions wheres peaked. sampling, we must define precisely what it means for

The weights of the resampled particles are calculated @ Particle set to represent a distribution.

in such a way that the overall distribution represented

by the new particle set is the same as the old one. In- Definition(Representation of a probability distribution
tuitively, g(x) is a function with high values in regions by a particle set) Suppose we have a (possibly sto-
where we would like to have many particles. The ob- chastic) algorithm which takes a positive integer
jective of the weighted resampling is to populate such as input, and outputs a particle s&t ..., s, with
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weightsry, ..., mn. This particle setcan be regarded as gorithms for the two types of resampling are com-
a probability distributionpn(x) = >\, 7 8(X — §)— pletely different. Importance resampling draws parti-
a weighted sum of Diraé-functions centred on the cles randomly from the importance distribution, then
5. The particle set is said teepresenta probability attaches weights to these particles by calculating tran-
distribution p(x) if p, — p, weakly, an — oc. sition probabilities from each of the old particles to
each of the new ones. A crucial advantage of weighted
Remark (i). One LetP(X) be the space of all prob- resampling is that its number of operationsQgn),
ability distributions on the configuration spage and whereas the calculation of transition probabilities in
let P(P(X)) be the space of all probability distribu-  importance resampling (n?). Weighted resampling
tions onP(X). Although we are used to considering is ageneralisation of both tempered weights (Carpenter
weak convergence in the spa@éY), the convergence et al., 1999) and the auxiliary particle filter (Pitt and
referred to above is in the weak topologyB(P (X)). Shepherd, 1997).
Nevertheless, the definition of weak convergence re-
mains the same (Billingsley, 1995). Specifically, we
require that for all continuous, bounded, real-valued
functions f onP(X), the expectation of (p,) tends
to f (p) asn — oo. The expectation is over all possible
random choices of thg andzr;. Interested readers are
referred to (MacCormick, 2000; Del Moral, 1998).

5.2. Basic Partitioned Sampling

Let us return to the problem of tracking two targess,
andB. If each target deforms and moves in a space of
M dimensions, there aré\ dimensions to be inferred
at each time step. By employing partitioned sampling,
this problem will be reduced to the more feasible task
of performing 2 inferences d¥1 dimensions each. To
be more concrete, suppose itis known that tafgear-
tially occludes targeB. Then we can localise the two
targets efficiently by first inferring the configuration of
targetA, and then using this knowledge to localiBe
To infer the configuration of, we will use the 1-body
likelihood P defined by (5).

The basic algorithm is as follows. Suppose we can
Proposition 2. Supposes., 7i){_, is a particle set decompose the joint dynamics as
representing a probability distribution (g), and
(8, m)_, is the result of weighted resampling with re-
spect to an importance functior()9. Suppose further
that

Remark (ii). Strictly speaking, it is thealgorithm
for producing a patrticle set of arbitrary size which rep-
resents a given distribution. Nevertheless, it is conve-
nient to speak of the set itself as representing a distri-
bution when no confusion can arise.

Now it is possible to state accurately the fact that
weighted resampling does not affect the distribution
represented.

p(X" |X) = / Pe(X” | X)) pa(X' | X) dX’
y

where pa are the dynamics for targét and similarly
for B. (This assumption would hold if, as is often the
case, the dynamics of the targets were independent of
each other.) One time step of the partitioned sampling
algorithm consists of five steps: given a particle set
f(x) (s', 7H_; which represents the posterior at tirhe
= m 0] resamp!lng: just asin stan(_:iard Condt_an;aﬂon, sam-
ple thes with replacement, using probabilities propor-
e g is continuous and strivtly positive on the support tional to ther;, and set all weights in the new particle

e the support of p is a closed and bounded subset of
Rd

e the w; in the particle set are proportional to some
continuous function fi.e.

of p setto ¥ n; (ii) first partition of the dynamics: apply dy-
namics for targefA only to all particles; (iii) weighted
Then(s/, 7)), represents [x). resampling: perform weighted resampling with respect
to the importance functio®,; (iv) second partition of
A sketch of the proof is given in the appendix. dynamics: apply dynamics for tardebnly to all parti-

Note that weighted resampling has a similar objec- cles; (v) multiply by likelihood: multiply the weight

tive and effect to the “importance resampling” intro- niH'l of each particle by the likelihoog(Z | q‘“).

duced in (Isard and Blake, 1998b), but that the al- These steps are summarised by the following diagram:
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(a) (0)

The symbol~ P, means “perform weighted resam-
pling with respect to the importance functi®i”, and
the labels (a)-(d) refer to the example given later in
Fig. 13. The validity of this algorithm is guaranteed by
the following

Proposition 3. If p(X’|X) = fx, pPs(X” | X)) paX’|
X), the posterior generated by diagraf®) is the same
as that generated by diagraM).

Proof: It is easy to check the conditions of
Proposition 2 are satisfied here: in tracking problems
we can always restrict the configuration space to be
closed and bounded; the weights before the weighted
resampling operation are all equal so are certainly de-
rived from a continuous function; and the importance
function P, is positive and continuous. So by Propo-
sition 2, the reweighting operationP has no effect
(asymptotically, as the number of particds— oo) on

the distribution represented. Hence we may delete this
step from the diagram without affecting the posterior.
The stepx pa(X’' | X) is now followed immediately by

* pg(X” | X) and by assumption the consecutive appli-
cation of these steps is equivalentt@(x” | x). Mak-

ing this substitution on the diagram, we obtain (4), as
desired.

Remark. Itis clear from the proof that instead &¥a

in diagram (8), one could use any strictly positive func-
tion without affecting the posterior. However the ob-
jective of partitioned sampling is to obtain an accurate
representation of the posterior with a moderate number
of particles. Hence we would like the weighted resam-
pling step to position as many particles as possible near
peaks in the posterior. Because we assumed takget
partially occludes targeB, the one-body densit{pa

is a good choice as importance reweighting function.
Particles surviving the weighted resampling step lie in
peaks ofP,, and this function has peaks in the “right”
place because targétis completely visible.

Example. Considerasimple example with a 2-dimen-
sional configuration space; then each particle in a par-
ticle set can be schematically represented on a plane
with area proportional to its weight. Figure 12 uses this
convention to illustrate one iteration of the conventional
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(8)

() (d)

(non-partitioned) Condensation algorithm. Box (a)
shows the prior—a Gaussian centred on the centre of
the image. The black cross shows the actual position
of the target, which of course is not known to the algo-
rithm at this stage. Box (b) shows the distribution after
the prior has been resampled and the dynamics (which
in this case are isotropic additive Gaussian) have been
applied. Note that at this point each particle has equal
weight. In (c), the particles have the same configura-
tions as in (b), but their weights are now proportional
to the observation density. This is the particle represen-
tation of the posterior distribution.

Figure 13 shows the application of partitioned sam-
pling in the same scenario. The dynamics and observa-
tions are partitioned intm andy components. Box (a)
shows the same prior as in Fig. 12. In (b), the prior has
been resampled and thé-component of the dynam-
ics has been applied. To produce (c), we first perform
weighted resampling on these particles, with respect to
an importance function centred on an observation of
thex”-coordinate of the target. Recall that this has no
effect on the distribution represented, but of course it
selects many particles whogé-coordinate is close to
the target's—this will be beneficial later. Next tRE-
component of the dynamics is applied, producing the
particle set shown in (c). Finally, this set is multiplied

e a

xA xt

() (b) (e}

Figure 12 Conventional (i.e. non-partitioned) Condensation. The
true position of the target in this 2-dimensional configuration space is
shown as a cross; particles representing a probability distribution are
shown as circles whose areas are proportional to their weights. Each
step shown is one stage in the condensation diagram (4). (a) The prior.
(b) After the dynamics have been applied. (c) After reweighting by
the posterior. The posterior is centred at approximately the correct
position, but this representation of the posterior is not very accurate

'because relatively few particles have significant weights. In technical

terms, the estimated effective sample size (10) is low. Superior results
are achieved using partitioned sampling (Figs. 13 and 14).
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(a) (®) () @ () ] {c) (d)

Figure 13 Partitioned sampling. A simple example implementing Figure 14 Branched partitioned sampling. Each step shows a stage
the condensation diagram (8). The 2-dimensional configuration space from the Condensation diagram (9). The 2-dimensional configura-
is partitioned as the cross product of #tfeandx® dimensions, and tion has been augmented with a binary variaplshown as black
the true position of the target is shown as a cross. (a) The prior. (b) The (y = 1) or grey { = 2), and the value of this variable determines
particles in (a) have been resampled, and dynamics have been appliedvhich branch is taken in (9). (a) The prior. (b) Dynamics have been
in thex”-direction. (c) The weighted resampling operation has been applied in thex”-direction for black particles and thé®-direction
performed, and the remaining dynamics (i.e. in fedirection) for grey particles. (c) The weighted resampling operation has been
applied. (d) The particles in (c) are re-weighted by the posterior. performed, and the remaining dynamics applied. (d) The particles
Note how fine-grained the sample set for the posterior is, compared from (c) are re-weighted by the posterior. The estimated effective
with the final set from conventional sampling in Fig. 12. In other sample size of the posterior is greater than for the unpartitioned
words, this representation of the posterior has a higher estimated method (Fig. 12) butin this simple example is no better than the non-
effective sample size (10) than that in Fig. 12. branched, partitioned method (Fig. 13). However, that is because this
example is symmetric ifA and B: the branched methodould be

o . . superior if the 2 importance functiorfa, Pg used to produce (c)

by the joint observation density for* andx® coor- were not equally good predictors of particle position.

dinates. The result is shown in (d). Notice how dense
this representation is, compared to the final outcome of

non-partitioned sampling in Fig. 12. for which y = 2 follow the bottom path, since they be-

lieve B is unoccluded. The final result is that many
more particles survive the resampling process, com-
5.3. Branched Partitioned Sampling pared to the non-partitioned process, and the posterior
is represented more accurately.
Branching is a refinement of partitioned sampling One technical point: the sum of weights in any
which is needed in our application to a mixed state one branch need not be unity. Hence when performing
Condensation tracker. In the discussion above, it was weighted resampling, the new weights must be nor-
assumed targeh partially occluded targeB. This en- malised to have the same sum as before the resampling.
abled us to select the one-body dendity as a suit-
able importance function for the reweighting step in Example. In Fig. 14, the 2-dimensional example has
(8). However at any given time step, there are some been augmented to include a binary discrete label, indi-
particles for whichy = 1 (i.e. A is unoccluded) and  cated by the colour of each particle (grey or black). The
some for whichy = 2 (i.e. B is unoccluded). It would prior, (a), gives an equal weighting to the two discrete
be preferable to selectdifferentimportance function  states. Box (b) shows the particle set one step after the
for eachy value. branching: black particles have had ttfecomponent
This is achieved by theranchedpartitioned sam-  of the dynamics applied to them, whereas grey particles
pling algorithm summarised on the following diagram:

T G TR - G
H'%‘ 4'_' 9)
— o <> — [Pl —

(a) (&) () (d)

Particles for whichy = 1 follow the top path, which
positions thexA-components first (near peaksy), have received th&B-component. Box (c) shows the
since these particles belieyeis unoccluded. Particles  particle set after the branches merge again. The black



particles receive weighted resampling with respect to
an observation of the target€-coordinate, while the

grey particles receive weighted resampling with respect g’_ E )

to an observation of the target$-coordinate. Then
the remaining dynamics are applied: #tfecomponent

to the grey particles, and tix€ component to the black
particles. This results in (c). Finally, the weights are
multiplied by the joint observation density faf* and
xB, producing the posterior shown in (d).

5.4. Performance of Partitioned Sampling
Evaluating the performance of particle filters such as

Condensation is a difficult problem (Carpenter et al.,
1999; Doucet, 1998; Kong et al., 1994; Liu and Chen,
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patitioned, & = 754

unpartitioned, N — 3000

Figure 16 Unpartitioned sampling can fail when partitioned sam-
pling does not, even if more particles are used. The final frame from
atracked sequence is shown: with unpartitioned sampling, the track-
ing fails despite using 4 times as many particles as the partitioned
method.

and that we can therefore expect much better tracking
performance for the same computational expense. We

1995, 1998). To compare the two schemes (9) and (4) can show this is indeed the case in a practical example:

we use Doucet's (Doucet, 1998ptimated effective
sample siz&\ defined for a set of particles with weights

T1,...,7TN @S
N -1
i=1

Intuitively, this corresponds to the number of “useful”
particles: if all have the same weightN thenN = N,
whereas if all but one of the weights are negligible we
haveN = 1. Any other distribution of the weights falls
between these two extremes. Figure 15 comp#tes
for the conventional (“unpartitioned”) and partitioned
methods. It is clear that partitioned sampling achieves
much higher values ofl than unpartitioned sampling

(10

N 30

—— partitioned
--=-= conventional

Figure 15 Estimated effective sample si# for partitioned and
conventional (unpartitioned) sampling methods. The graph shows
the average value ot following a 10-frame sequence tracking two
leaves. Note the superior performance of the partitioned sampling
method.

Fig. 16 shows stills from a certain sequence tracked by
each method. With partitioned sampling, a¥d= 750
particles, the tracking succeeds. However, despite using
4 times as many particles, unpartitioned sampling fails
to track on the same sequence.

6. Conclusion

An exclusion principle for tracking multiple, indistin-
guishable targets has been introduced, which prevents
a single piece of image data independently contribut-
ing to similar hypotheses for different targets. In its
raw form, the model is valid only for wire-frame ob-
jects. However, by extending the tracking methodology
to permit discrete states for describing the world in 2.1
dimensions, the same type of model can be used to track
solid objects. Moreover, the approach requires only a
simple model of the targets and no knowledge what-
soever of the background, which may itself be mov-
ing non-rigidly. A second contribution of the paper is
to introduce partitioned sampling: a method of using
particle filters with multiple objects, without incurring
excessive additional computational cost for the extra
dimensions.

The exclusion principle and the partitioned sampling
algorithm were described and demonstrated for 2 tar-
gets. In principle, there are obvious generalisations to
an arbitrary number of targets, but it remains to be seen
whether these suffer from implementation difficulties.

So far the probabilistic exclusion principle has been
developed for only the specific type of edge-based mea-
surements described here. However, the fundamental
idea is that any single measurement should reinforce
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multiple hypotheses coherently; it is hoped this can be  After stage (iii), the pdfp(m; a, by, ..., by |v) of

used to guide the implementation of exclusion princi- the unpermuted vector is justm)G(a|v)/L™, and

ples for more general observation processes. since each of tha! permutations has an equal proba-
bility we calculate

Acknowledgments g(z | v) 1
o PN 21, za|v) = b(m) Y L =
We are grateful for financial support from the EU (JM) 0eS: L n
and the Royal Society (AB). "Gz | v)
k=1

Appendix A: Proof of Proposition 1

where the last line follows by collecting together the
Remarks. Because of the discrete parameaterhich (n — 1)! permutations which leava fixed.

indicates how many arguments follow, the func- The same type of reasoning leads to the stated for-
tions pc are not quite probability density functions muyla for p,.

. L - O

in the standard sense. However, this is a technical

detail which can be avoided by explaining the nota-

tion more clearly. For exampley(n; z1,...,21) IS Appendix B: Sketch Proof of Proposition 2

just shorthand fopg(zy, ..., z, | n, v)Prok(n), so that

Po(N; 21, ..., Z0)dz, ..., dz, isjustthe probability of A rigorous proof of Proposition 2 is given in

obtainingn featuresand that these features lie in the  (\MacCormick, 2000), and related results can be found

volumedz,, ..., dz, centred o1z = (z, .. ., Zn). in (Doucet, 1998; Kong et al., 1994; Liu and Chen,
Another subtle point is that eachis a pointinthe  1995). However, the following informal proof is more

image, which would normally be described by»aand intuitive and illuminating.

y coordinate. However in this context the features are
constrained to lie on the measurement line, which is
a one-dimensional subset of the image. So the nota-
tiondz refers to a small one-dimensional subset of the
image.

Sketch of proof. Seto; = g(s)/ >_; 9(sj). Runstep 1
of the weighted resampling algorithm, obtaining ghe
and the unnormalised. SetK = Y[ | =/. We need
the following lemma.

Proof: The formula forpg follows almost immedi- ~ Lemmal. Asn— oo, K/n — 1weakly.
ately from the assumptions. By definition there is a
probability b(n) of obtainingn features, and these are Informal proof oflemma. Whennislarge, each index

distributed uniformly on the length of the measure-  k € {1, ..., n}is selected approximatehpy times. By
ment line. Hencgyo(n; z3, ..., zn) = b(n)/L". collecting these together we can write

The formula forp; relies on a simple combinatoric
argument. First note the generative model described o LI n
above is equivalent to the following: (i) The number of K=Y =~ Znp=n) m=n
background features, say is selected with probability i=1 P k=1 Pk k=1

b(m). (ii) The positions of the background features are

drawn from the uniform distribution on the measure- which completes the informal proof of the lemma.
ment line, obtaining sak, . . ., by. (iii) The position Define indicesky, ko, ..., so thats = s;. Then

a of the boundary feature is selected by a random draw by the lemma we know thaormalisedweight =] is
fromG(a|v). (iv) The total number of featuresis set approximately ry, /noy, . To complete the proof of
tom + 1, and the vectota, by, . . ., by) is randomly Proposition 2 it will be enough to show that the total
permuted and reported &3, ..., z,). In mathemati- weight assigned to a valig is the same (aB — )
cal terms, we can say that a permutatiois selected in the initial and final particle sets. But this is now im-
uniformly at random from the symmetric gro&p, and mediate: there are approximately,, values equal to
applied to the vectofa, by, ..., by). 5, and each has final weight, /npy . Thus the total



weight assigned tg is npx, x my /Npx, = 7, just as
in the initial particle sets, m)L_;. a
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