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A Probabilistic Exclusion Principle for Tracking Multiple Objects
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Abstract. Tracking multiple targets is a challenging problem, especially when the targets are “identical”, in the
sense that the same model is used to describe each target. In this case, simply instantiating several independent 1-body
trackers is not an adequate solution, because the independent trackers tend to coalesce onto the best-fitting target.
This paper presents an observation density for tracking which solves this problem by exhibiting aprobabilistic
exclusion principle. Exclusion arises naturally from a systematic derivation of the observation density, without
relying on heuristics. Another important contribution of the paper is the presentation ofpartitioned sampling, a new
sampling method for multiple object tracking. Partitioned sampling avoids the high computational load associated
with fully coupled trackers, while retaining the desirable properties of coupling.
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1. Introduction

This paper proposes a mathematically rigorous metho-
dology for tracking multiple objects. The fundamental
problem to be addressed is demonstrated in Fig. 1. Two
instantiations of the same tracking algorithm, with dif-
ferent initial conditions, are used to track two targets
simultaneously. When one target passes close to the
other, both tracking algorithms are attracted to the sin-
gle target which best fits the head-and-shoulders model
being used. One might think of avoiding this prob-
lem in a number of ways: interpreting the targets as
“blobs” which merge and split again (Haritaoglu et al.,
1998; Intille et al., 1997), enforcing a minimum sepa-
ration between targets (Rasmussen and Hager, 1998),
or incorporating enough 3D geometrical information to
distinguish the targets (Koller et al., 1994). However,
each of these solutions can be unattractive.

A blob interpretation does not maintain the identity
of the targets, and is difficult to implement for moving
backgrounds and for targets which are not easily seg-
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mented. A minimum separation relies on heuristics and
fails if the targets overlap. Incorporating 3D informa-
tion is impossible without detailed scene modelling.

So it seems we must instead address the fundamen-
tal problem: that the observation model used to inter-
pret image measurements permits two targets to occupy
the same point in configuration space too easily. More
specifically, a single piece of image data (such as an
edgel, or a colour blob), must not simultaneously rein-
force mutually exclusive hypotheses. What is needed is
a “probabilistic exclusion principle”, and an observa-
tion model exhibiting this behaviour is described in this
paper. The formal model will initially be derived for
“wire frame” targets—objects which have detectable
boundaries but which do not occlude each other. We
then describe how occlusion reasoning about solid ob-
jects can be incorporated naturally into the same frame-
work. The most interesting feature of this approach is
that it works even when the targets areindistinguish-
able given the available information. This is of both
theoretical and practical interest.

Many visual tracking systems for multiple ob-
jects have been developed. One standard technique



58 MacCormick and Blake

Figure 1. With an observation model designed for one target, two trackers initialised in distinct configurations eventually lock on to the one
target which bests fits the model. The objective is to derive an observation model which does not permit the presence of two targets to be inferred
from measurements of only one.

is the probabilistic data association filter (PDAF)
(Bar-Shalom and Fortmann, 1988), and other success-
ful examples include (Haritaoglu et al., 1998; Intille
et al., 1997; Paragios and Deriche, 1998; Rasmussen
and Hager, 1998). These generally employ a combi-
nation of blob identification and background subtrac-
tion; both techniques are complementary to the method
proposed here. In particular, our exclusion principle
does not allow two targets to merge when their con-
figurations become similar; instead, the model con-
tinues to interpret the data in terms of two targets.
As will be seen, it is a natural consequence of the
methodology that the probability distribution for an
obscured target diffuses until it is reinforced by fur-
ther data. Furthermore, the method works for unknown
and constantly changing backgrounds. Rasmussen and
Hager (1998) proposed a promising method for com-
bining colour blob and edge information, and incor-
porated an exclusion principle by using a joint PDAF.
However, their algorithm for fusing edgel information
enforced an arbitrary minimum separation between tar-
gets. Gordon (1997) employs a similar multi-target
tracking methodology to this paper but with a rather
different observation model and no explicit exclusion
principle.

One of the difficulties with tracking multiple objects
is the high dimensionality of the joint configuration
space. Section 5 introduces a method known asparti-
tioned samplingwhich diminishes the computational
burden associated with the increased dimensionality of
multi-target spaces.

2. The Observation Model

The target objects in this paper are described by their
outlines, which are modelled as B-splines. We will call
any such outline acontour. The space of contours which
can correspond to a target or set of targets is called

the shape space(Blake and Isard, 1998), and is pa-
rameterised as a low-dimensional vector spaceX . The
spaceX generally has 5–50 dimensions. This frame-
work is based on standard concepts from the theory of
snakes and deformable templates (e.g. Kass et al., 1987;
Szeliski and Terzopoulos, 1991) and is summarised
concisely in Blake and Isard (1998).

A configurationx ∈ X is measured by the method
of Fig. 2, obtaining a list of image coordinatesZ =
(z(1), z(2), . . . , z(M)). A component ofZ is itself a vec-
tor z(m) consisting of the measurements made along
fixed measurement lines(see the figure) of the config-
urationx. An advantage of this measurement line ap-
proach is that we have reduced the problem of analysing
a 2D image to that of analysing several 1D measure-
ment lines. The statistical processes generating features
on different measurement lines are treated as indepen-
dent (the merits of this approximation are discussed in

Figure 2. Measurement methodology. The thick white line isx—
a mouse-shaped contour in some hypothesised configuration. The
thin lines aremeasurement lines, along which a one-dimensional
feature detector is applied. Black dots show the output of the feature
detector, which in this case responds to rapid changes in intensity—
one-dimensional edges. Note that many spurious edges are generated
by shadows, or more generally by clutter in the image.
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Section 2.2), so we need only specify this process on
1D subsets of the image.

So consider just one fixed measurement line, of
length L, positioned in an image known to contain
two target objects. A one-dimensional edge detector
is applied to this line, and some features are detected
at image coordinatesz= (z1, z2, . . . , zn). Some of the
zi might correspond to the target objects’ boundaries,
while the others are due to clutter in the image. So we
must develop agenerative modelfor both the target
and clutter features—this is analogous to the models
adopted in some pattern recognition tasks, such as the
generation of printed matter as “character+ ink spat-
ter” (Hinton et al., 1992). For a given target config-
urationx, there are three possibilities to consider: the
measurement line may intersectc = 0, 1 or 2 of the tar-
gets. The probability densities for each case are denoted
pc(n; z). To calculate thepc, several concrete assump-
tions about the generative model forz are adopted:

• c= 0 (“random background clutter”): The prob-
ability of obtaining n features is b(n), learnt
from randomly placed measurement lines in typ-
ical images. The positions of then featuresz =
(z1, z2, . . . , zn) are drawn from the uniform distri-
bution on the measurement line. These assumptions
are discussed in Section 2.1.
• c = 1 (“single target”): One of then features corre-

sponds to the target boundary, whose hypothesised
position on the measurement line is denotedν. If
the boundary feature iszi , thenzi is assumed to be
drawn from a fixed probability distributionG(zi | ν),
termed the “boundary feature distribution”. In this
paperG(zi | ν) is a Gaussian centred onν with vari-
anceσ 2 (we takeσ = 7 pixels in the examples later;
see Table 1 for the justification of this value). The
remainingn − 1 features are assumed to be drawn

Table 1. Parameter values and other choices used for experiments. Suitable non-detection
probabilities were determined by trial and error on simple examples. The discrete transition
probability corresponds to a time constant of 2.0 seconds for a given discrete state. The
standard deviation of the boundary feature distribution is estimated from the mean-square
mismatch of templates fitted to the targets. The measurement lines extend approximately 3
of these standard deviations in each direction.

Non-detection probabilities,c = 1 (q01,q11) (0.1, 0.9)

Non-detection probabilities,c = 2 (q02,q12,q22) (0.05, 0.2, 0.75)

Clutter feature probabilities b(n) MLE from first frame of sequence

Discrete transition probability δ 0.01

Boundary feature distribution G(z | ν) Gaussian with std dev of 7 pixels

Length of measurement lines L 40 pixels

from the random background clutter distribution de-
scribed above.
• c= 2 (“two targets”): Two of the n features,

say zi , zj , correspond to target boundaries at hy-
pothesised positionsν1, ν2. They are drawn from
G(zi | ν1),G(zj | ν2) respectively with, importantly,
i 6= j . In other words, any edge feature can cor-
respond to at most one target boundary. It is this
assumption which leads to the enforcement of a
probabilistic exclusion principle described later on.
(The same assumption is made in (Rasmussen and
Hager, 1998) to enforce exclusion in the context of
a joint PDAF). Again the remainingn− 2 features
are drawn from the background distribution.

The model can be generalised to higher values ofc,
but for clarity only the casesc = 0, 1, 2 are consid-
ered here. The assumption forc = 2 that any one edge
feature corresponds to at most one target is crucial,
and requires further explanation. While it is true that
wherever two targets cross, thereisa single edge corre-
sponding to two targets, such points form a very sparse
set in the image. The possibility that such a point lies on
one of the measurement lines is therefore disregarded.
For an example, look ahead to Fig. 8.

The mathematical consequences of these assump-
tions are collected in the next proposition, which is
proved in the appendix. Note thatp(n; z) is a prob-
ability distribution over bothn and z—this notation
is explained in the appendix. Also note the density
p follows the generative model in assuming that the
measurements(z1, . . . , zn) might come in any order
with equal likelihood; if it is assumed instead that
the measurements are made in a prescribed order (e.g.
z1 ≤ z2, . . . ,≤ zn) then each density should be multi-
plied byn!.
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Proposition 1. The probability density functions re-
sulting from the assumptions above are

p0(n; z)= b(n)/Ln

p1(n; z | ν)= b(n− 1)
n∑

k=1

G(zk | ν)/nLn−1 (1)

p2(n; z | ν1, ν2)= b(n− 2)
∑
i 6= j

G(zi | ν1)G(zj | ν2)

Ln−2n(n− 1)

As described so far, the generative model assumes
that if a target boundary is present, then the edge detec-
tor will detect it. This is unrealistic: occasionally the
target object’s boundary is not detected, because the
background and target happen to have similar grey-
scale values. Hence a final step is added to the gener-
ative model. It is assumed that whenc = 1 there is a
small fixed probabilityq01 of the edge detector failing
to detect the target boundary, andq11 = 1− q01 that it
will succeed. This is precisely analogous to the non-
detection probabilities used in PDAFs (Bar-Shalom
and Fortmann, 1988). Similarly, whenc = 2, there
are fixed probabilitiesq02,q12,q22 that 0, 1, 2 target
boundaries are detected successfully. Thus we can de-
fine pdfs p̃ for the final generative model as follows,
for the casesc = 0, 1, 2:

p̃0(·)= p0(·)
p̃1(· | ν)=q01p0(·)+ q11p1(· | ν) (2)

p̃2(· | ν1, ν2)=q02p0(·)+ q12(p1(· | ν1)

+ p1(· | ν2))/2+ q22p2(· | ν1, ν2)

Typical graphs of the last two functions are shown in
Figs. 3 and 4.

The above discussion was framed in terms of a sin-
gle measurement line, but for any given hypothesised

Figure 3. 1-target likelihood function for a single measurement
line. Left: The boundary feature distributionG(z = 0 | ν). Right:
The 1-target likelihood functioñp1(n; z | ν) graphed with respect to
ν. The likelihood is a linear combination of shifted copies ofG(z | ·)
and of the constantp0. It peaks near the 4 measurementszi (shown
as shaded circles).

Figure 4. 2-target likelihood functions for a single measurement
line. Top: A na¨ıve 2-target likelihoodp̃1(n; z | ν1) p̃1(n; z | ν2) for-
med by taking the product of two 1-target densities (Fig. 3). The
likelihood peaks near pairs of measurementszi , zj (shaded circles
and dotted lines). Bottom: The 2-target likelihoodp̃2(n; z | ν1, ν2)

derived from the generative model. Again, the likelihood peaks near
pairs of measurementszi , zj (shaded circles and dotted lines), but
now a probabilistic exclusion principle operates: because the sum in
the definition ofp2 excludesi = j , the probability peaks are much
smaller on the lineν1 = ν2.

configurationx, the measurementsZ will arise from say
M distinct measurement lines. Letc(i ) be the number
of target boundaries intersecting thei th measurement
line for a given configurationx, and letν(i ) be the
coordinates of these intersections. By making the as-
sumption that outputs on distinct measurement lines
are statistically independent (Section 2.2), we define
theexclusive likelihood functionas

P(Z | x) =
M∏

i=1

p̃c(i )
(
z(i )

∣∣ν(i )). (3)

We call c(i ) the intersection numberof the i th mea-
surement line.

2.1. Discussion of the Background Model

Recall that the numbersb(n), n∈N specify the prob-
ability of obtaining n features on a measurement
line positioned randomly on the background, and that
these probabilities are learnt from typical training im-
ages. Of course this innocuous statement conceals
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a perennial problem in computer vision: how does
one characterise a “typical” image, and even worse,
how does one specify a prior for such images? Even
when an image is reduced to the simple level of
one-dimensional features, there is no straightforward
answer to this question. However, it turns out the
tracking system described later is extremely robust
to the choices ofb(n). Indeed, we routinely set
b(0)= b(1)= · · · = b(nmax)= 1/(1+ nmax) for some
nmax, with b(n) = 0 whenn > nmax. For measurement
lines of 40 pixels, and an edge convolution operator
with weights(−0.375,−0.625, 0, 0.625, 0.375), one
can takenmax≈ 10 and obtain results indistinguishable
from when theb(n) are learnt from the entire sequence
to be tracked. Another simple approach which gives
equally good results in all our experiments is to learn
theb(n) from the first image of the sequence.

An alternative approach to modelling the occurrence
of background features is the careful use of a Kalman
filter framework to disregard spurious features (e.g.
Peterfreund, 1998), but in order for this to work in
cluttered backgrounds, one needs much more accurate
dynamical models than those available in the type of
problems considered here. Other researchers explicitly
adopt a uniform distribution on theb(n) (e.g. Lowe,
1992), as suggested above.

Our second assumption about random background
clutter features is that theirpositionsare drawn from
a uniform distribution. What is the corresponding
assumption about 2D image features that would make
this true? It would certainly hold provided the positions
of all edgels of a given orientation were also distributed
uniformly. We find this is sufficiently true over the
small regions (scale around 40 pixels) occupied by the
measurement lines, but it is clear that this approxima-
tion is unsatisfactory for larger regions. Further work
is needed here: perhaps the recent ideas on filters and
scale-invariance (Mumford and Gidas, 1999; Zhu et al.,
1998) can be applied to obtain a more coherent theory.

2.2. Independence of Measurement Lines

The exclusive likelihood function (3) was derived as-
suming that feature occurrences on distinct measure-
ment lines are statistically independent. Of course this
is an approximation, since there are generally continu-
ous edges in the background as well as on the boundary
of the target object. There have been some attempts to
allow explicitly for this type of dependence—for ex-
ample, the Markov discriminant of (MacCormick and

Figure 5. Feature autocorrelation is low for displacements of more
than 30 pixels. This is our justification for treating distinct mea-
surement lines as statistically independent. The random process
x(d) whose autocorrelation is graphed here is described in the text
and Fig. 6, and the autocorrelation function is defined as usual by
R(d) = (E[x(d)x(0)] − E[x(0)]2)/(E[x(0)2] − E[x(0)]2).

Blake, 1998b), or MRFs in general (Chellappa and Jain,
1993; Kent et al., 1996; Winkler, 1995). However, these
are too computationally expensive for tracking tasks, so
instead we adopt the assumption of independence be-
tween measurement lines. One might hope this approx-
imation is acceptable if the measurement lines used for
inferences are sufficiently far apart. Figure 5 investi-
gates the meaning of “sufficiently far” in this context.
This figure shows the autocorrelation of a random pro-
cessx(d) defined as follows (see also Fig. 6). First,
randomly position a measurement line, uniformly in
position and orientation, on a typical background im-
age (in this case the first frame of the leaf sequence—
see Fig. 16). Apply a feature detector, select the closest
feature to the centre of the measurement line, and define
x(0) to be the offset of this feature. The value ofx(d)
is defined by first displacing the original measurement
line a distance ofd pixels in the direction of its normal,
then applying the feature detector and settingx(d) to be
the offset of the most central feature. Of course Fig. 5
does not establish the joint independence of the feature
occurrences on all measurement lines which are suffi-
ciently far apart. The autocorrelation function involves
only 2nd-order moments, whereas independence re-
quires that moments of all orders vanish. In addition,
even if pairwise independence of the measurement lines
was established, it would still not follow that they were
jointly independent. Nevertheless, Fig. 5 does imply
that the outputs of measurement lines separated by less
than 10–20 pixels are rather strongly correlated, but that
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Figure 6. Investigating feature correlation. The top solid black line
is a measurement line positioned randomly on a typical background
image. The value of the random processx(d) is the offset of the most
central detected feature after the initial measurement line has been
displaced byd pixels in the direction of its normal.

this correlation is much weaker for separations of 30
or more pixels. The likelihoods in this paper employed
a separation between measurement lines of approxi-
mately 30 pixels.

2.3. A Separate Interior Model

Features detected in theinterior of an opaque target ob-
ject are not generated by random background clutter.
This contradicts the simple generative model above,
and it was shown in (MacCormick and Blake, 1998a)
that a more complex model explicitly accounting for
the interior of the target can improve the resulting infer-
ences. However, even simple interior models lead to in-
tractable pdfs involving numerical integration. Hence,
for simplicity, the results in this paper assume that fea-
tures detected in the interior of an opaque target are
drawn from the same distribution as the background.

2.4. Selection of Measurement Lines

Often we need to perform Bayesian inference on the im-
age, based on the measurementsZ of several hypothe-

(4)

sised configurationsx1, . . . , xn. For Bayes’ Theorem
to be valid, the set of measurement lines must be fixed
in advance. However, it is sometimes convenient to
allow the precise choice of measurement lines to de-
pend on the configurationx, as in Fig. 2. When the
xi are tightly clustered, this is a minor approximation
which was adopted in this paper for ease of implemen-
tation. Our experiments on other tracking tasks with
measurement lines fixed in advance produce indistin-
guishable results.

3. Tracking Multiple Wire Frames

Tracking is performed in this paper by the Conden-
sation algorithm (Isard and Blake, 1998a), which is
capable of dealing with complex likelihood functions
such as (3). Condensation is a filtering algorithm which
performs a Bayesian estimation of the posterior for the
state of a system at each time step. Because of the
complex likelihood function, there is no closed form
of the Bayesian update at each time step. Condensation
circumvents this problem byapproximatingthe distri-
bution to be estimated using “weighted particle sets”.
To be specific, a Condensation tracker represents the
state of a system at timet by a weighted set ofsamples
or particles st1, . . . , s

t
N whose weights areπ t

1, . . . , π
t
N .

This set is intended to be an approximate representa-
tion of some probability distribution functionp(x), in
the sense that selecting one of thesi with probability
proportional toπi is approximately the same as making
a random draw fromp(x). This concept is formalised
in Section 5.1.

Given a particle set(st
i , π

t
i )

n
i=1 which represents the

posterior at timet , the Condensation algorithm gen-
erates a particle set representing the posterior at time
t + 1 in three steps: (i) resampling: sampleN times
with replacement from the set of particlesst

i , according
to the weightsπ t

i —this produces a setst ′
1 , . . . , s

t ′
N ; (ii)

dynamical propagation: sample fromp(xt+1 | xt = st
i
′
)

to choose eachst+1
i ; and (iii) measurement: examine

the image to obtain the featuresZt+1, then assign each
of the new particles a weightπ t+1

i ∝ p(Zt+1 | xt+1 =
st+1
i ). The three transformations of the particle set in

any time step can be conveniently summarised dia-
grammatically:
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The∼ symbol represents resampling as described
above, the∗ is application of a stochastic dynami-
cal step, and the× represents multiplication (i.e. re-
weighting) by the measurement density. The labels
(a)–(c) refer to an example given later (Fig. 12), and can
be disregarded for the moment. Of course, to demon-
strate the exclusion principle we use the exclusive like-
lihood functionP(Z | x) as the measurement density.
Note thatP as defined in (3) is not valid for opaque
objects, since the model expects to observe all bound-
aries, even those which are occluded. However, itis
valid for wire frame objects, so an experiment on wire
frames was performed. As a control for the experiment,
we need a likelihoodP ′, similar toP, but which does
not incorporate an exclusion principle. Naming the two
targetsA and B, and writingcA(i ) for the number of
intersections ofA with line i , letν(i )A be the coordinates
of these intersections and define the1-body likelihood

PA(Z | x) =
M∏

i=1

p̃cA(i )
(
z(i )

∣∣ν(i )A

)
, (5)

and similarly forPB. We takeP ′ = PAPB, so the pos-
teriors forA andB givenZ are treated as independent.
A typical graph ofP ′ for just one measurement line is
shown at the top of Fig. 4—note that in contrast to the
graph ofP below it,P ′ has four additional peaks down
the lineν1 = ν2. Figure 7 shows the results of the wire
frame experiment: as expected,P successfully main-
tains exclusion between the targets whereasP ′ does
not.

4. Tracking Multiple Opaque Objects

The wire-frame model can be adapted for use with solid
objects. The method uses the mixed state Condensation
tracker of (Isard and Blake, 1998c), combined with a
“2.1D” (Mumford and Nitzberg, 1990) or “layered”
(Irani and Anandan, 1998) model of the targets. The
basic idea of a mixed state Condensation tracker is
that each particle carries a discrete label in addition
to the continuous parameters describing its configura-
tion. Let y be a discrete variable labelling the current
model, and letx be a shape space vector of continuous
parameters specifying the configuration of the targets.
The extended state is defined to be

X = (x, y), x ∈ Rd, y ∈ {1, . . . , Ns}. (6)

In the two-object case,x = (xA, xB) and y can take
one of two values:y = 1 if A is nearer the camera than
B, andy = 2 if B is nearer thanA. This is what we

Figure 7. The exclusion principle operating on a wire-frame ex-
ample. (a) Three stills from a sequence of two pieces of wire with
similar shapes. Note that for several frames in the middle of the se-
quence, the two wires have very similar configurations. (b) Results
using the likelihoodP′, which does not incorporate an exclusion
principle. When the configurations become similar, both targets set-
tle on the best-fitting wire. (c) Successful tracking using the exclusion
principle likelihoodP.

mean by a 2.1D model: the only 3D geometric aspect
to be inferred is whether targetA can occlude targetB
or vice versa.

We assume the dynamics of the continuous pa-
rameters do not depend on the discrete state, so that
p(xt |Xt−1) = p(xt | xt−1). Then the process density
can be decomposed as follows:

p(Xt |Xt−1) = P(yt | xt ,Xt−1) p(xt | xt−1),

and if yt−1 = j and yt = i this can be written more
explicitly as

p(Xt |Xt−1) = Ti j (xt , xt−1)p(xt | xt−1),

whereTi j is a transition matrix andp is a density spec-
ifying the continuous dynamics for a particle. Here it
is appropriate forTi j (xt , xt−1) to be independent of
xt−1. If xA

t andxB
t overlap then the occlusion relation-

ship cannot change in the the current time-step and so
we takeTi j (xt ) to be the identity matrix. IfxA

t andxB
t

do not overlap then we assume there is a small, fixed
probability thaty will change, represented by taking
Ti j (xt ) = ( 1− δ δ

δ 1− δ ) with 0< δ ¿ 1.
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Figure 8. Intersection numbers calculated from 2.1D geometry. In
this diagram,y = 1, meaning the shaded area is occluded by target
A. Visible intersections of measurement lines and target boundaries
are shown as solid circles. The solid lines have intersection number
c = 2, dashed havec = 1 and dot-dashedc = 0. These arec-values
used in (7).

The mixed state Condensation tracker presented here
incorporates a significant difference to that of (Isard and
Blake, 1998c)—the observation densityp(Zt |Xt ) de-
pends not only onxt but also on the discrete stateyt . The
multi-target exclusive likelihood function (3) is used,
but now the intersection countsc(i ) are calculated us-
ing the discrete variabley and the 2.1D geometry to
determine if a given boundary feature should be visi-
ble or not, as in Fig. 8. To emphasise this we can write
c(i, y) for the number ofvisible target boundaries in-
tersecting thei th measurement line of a configuration
(x, y); the coordinates of the visible boundaries on the
i th line are writtenν(i,y). Then the likelihood in the
occluded case is

Poccl(Z | x) =
M∏

i=1

p̃c(i,y)
(
z(i )

∣∣ν(i,y)). (7)

To understand this, compare with Eq. (3). The functions
p̃c, c = 0, 1, 2 are still as defined in (2). The only
change is that the intersection numbersc and target
boundary positionsν now depend on the discrete state
y which specifies which target is in front of the other.

Figure 9. Successful tracking with a density incorporating occlu-
sion reasoning (c.f. Fig. 1). 20 of the 2000 particles are shown in
each frame, with widths proportional to their probabilities. Recall
that a single “particle” in this context is ajoint hypothesis for the
configuration of both targets. Initially, each particle consists of two
white contours: one initialised on each of the two targets. A contour
is drawn in black if its value ofy, as defined in (6), implies that it is
partially occluded.

The derivation of (7) is otherwise identical to (3). A
detailed example is given in Fig. 8.

The likelihoodPoccl performs well in experiments.
Figure 9 shows a typical sequence involving occlu-
sion. The configuration space has 16 dimensions: 8
key-frames from principal components analysis of tem-
plates (Baumberg and Hogg, 1994; Cootes and Taylor,
1992), for each of 2 targets. Tracking is performed with
N = 2000 particles, and predictive dynamics in the
form of Brownian motion with an amplitude matched
to the speed of a walking person. Note how the occluded
contours diffuse at 0.7 seconds. Because of the exclu-
sion principle they coalesce again only when some ev-
idence from the correct target is observed. The unde-
sirable tracking behaviour of Fig. 1 has been corrected.

As a canonical tracking challenge, the same multiple
target methodology was applied to the “leaf sequence”
used in (Isard and Blake, 1998a). Two leaves were
tracked, using an affine shape space andN = 4000
samples with learnt dynamics. (The need for 4000
samples is reduced to 750 by the partitioned sampling
method described in the next section.) Tracking is suc-
cessful despite occlusions; some stills are shown in
Fig. 10.

Table 1 gives details of the parameter values used
for all the experiments.
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Figure 10. Tracking multiple leaves, in moving clutter and with
occlusions. Three stills from a tracked sequence are shown. The
black contour shows a correctly inferred occlusion.

5. Partitioned Sampling for Condensation

A potential limitation of the Condensation algorithm
is that if the state space has many dimensions, then the
number of particles required to model a distribution
can be very large indeed. This is of particular con-
cern when tracking multiple objects, since the number
of dimensions in the state space is proportional to the
number of objects. Fortunately, “partitioned sampling”
significantly mitigates this curse of dimensionality. It
is the statistical analogue of a hierarchical search: the
intuition is that it should be more efficient to search
first for whichever target is unoccluded, and only then
to search for another target which may lie behind.

5.1. Weighted Resampling

The partitioned sampling algorithm requires an addi-
tional operation on particle sets, termed weighted re-
sampling. This operationdoes not alter the distribu-
tion represented by the particle set. However, it can
be used to reposition the locations of the particles
so that the representation is more efficient for future
operations.

Weighted resampling is usually carried out with re-
spect to a strictly positiveimportance function g(x).
Given a particle sets1, . . . , sn with weightsπ1, . . . , πn,
the basic idea is to produce a new particle set by re-
sampling, with replacement, from thesi , using prob-
abilities proportional tog(si )—this has the effect of
selecting many particles in regions whereg is peaked.
The weights of the resampled particles are calculated
in such a way that the overall distribution represented
by the new particle set is the same as the old one. In-
tuitively, g(x) is a function with high values in regions
where we would like to have many particles. The ob-
jective of the weighted resampling is to populate such

Figure 11. Weighted resampling. A uniform priorp0(X), repre-
sented as a particle set (top), is resampled via an importance resam-
pling functiong to give a new, re-weighted particle set representation
of p0. Note that these are one-dimensional distributions; the particles
are spread in they-direction only so they can be seen more easily.

regions so that subsequent operations on the particle
set will produce accurate representations of the de-
sired probability distributions. Figure 11 shows a sim-
ple one-dimensional example of weighted resampling
with respect to an importance function. A more formal
discussion follows.

Definition(Weighted resampling). Lets1, . . . , sn be a
particle set with weightsπ1, . . . , πn, and letρ1, . . . , ρn

be any list of strictly positive weights with
∑
ρi = 1.

The operation ofweighted resamplingwith respect
to theρi produces a new particle sets′1, . . . , s

′
n with

weightsπ ′1, . . . , π
′
n by the following algorithm:

1. Fori = 1, . . . ,n

(a) Randomly select an indexk ∈ {1, . . . ,n} with
probabilityρk.

(b) Sets′i = sk.
(c) Setπ ′i = πk/ρk.

2. Normalise theπ ′i so that
∑
π ′i = 1.

Often, theρi are determined from a strictly positive
functiong(x), in the sense thatρi ∝ g(si ). In this case,
g(x) is called theimportance functionand we refer to
weighted resampling with respect tog(x).

Before stating the key property of importance re-
sampling, we must define precisely what it means for
a particle set to represent a distribution.

Definition(Representation of a probability distribution
by a particle set). Suppose we have a (possibly sto-
chastic) algorithm which takes a positive integern
as input, and outputs a particle sets1, . . . , sn with
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weightsπ1, . . . , πn. This particle set can be regarded as
a probability distributionpn(x) =

∑n
i=1πi δ(x− si )—

a weighted sum of Diracδ-functions centred on the
si . The particle set is said torepresenta probability
distribution p(x) if pn→ p, weakly, asn→∞.

Remark (i). One LetP(X ) be the space of all prob-
ability distributions on the configuration spaceX , and
let P(P(X )) be the space of all probability distribu-
tions onP(X ). Although we are used to considering
weak convergence in the spaceP(X ), the convergence
referred to above is in the weak topology onP(P(X )).
Nevertheless, the definition of weak convergence re-
mains the same (Billingsley, 1995). Specifically, we
require that for all continuous, bounded, real-valued
functions f onP(X ), the expectation off (pn) tends
to f (p) asn→∞. The expectation is over all possible
random choices of thesi andπi . Interested readers are
referred to (MacCormick, 2000; Del Moral, 1998).

Remark (ii). Strictly speaking, it is thealgorithm
for producing a particle set of arbitrary size which rep-
resents a given distribution. Nevertheless, it is conve-
nient to speak of the set itself as representing a distri-
bution when no confusion can arise.

Now it is possible to state accurately the fact that
weighted resampling does not affect the distribution
represented.

Proposition 2. Suppose(si , πi )
n
i=1 is a particle set

representing a probability distribution p(x), and
(s′i , π

′
i )

n
i=1 is the result of weighted resampling with re-

spect to an importance function g(x). Suppose further
that

• the support of p is a closed and bounded subset of
Rd

• theπi in the particle set are proportional to some
continuous function f, i.e.

πi = f (xi )∑n
j=1 f (x j )

• g is continuous and strivtly positive on the support
of p

Then(s′i , π
′
i )

n
i=1 represents p(x).

A sketch of the proof is given in the appendix.
Note that weighted resampling has a similar objec-

tive and effect to the “importance resampling” intro-
duced in (Isard and Blake, 1998b), but that the al-

gorithms for the two types of resampling are com-
pletely different. Importance resampling draws parti-
cles randomly from the importance distribution, then
attaches weights to these particles by calculating tran-
sition probabilities from each of the old particles to
each of the new ones. A crucial advantage of weighted
resampling is that its number of operations isO(n),
whereas the calculation of transition probabilities in
importance resampling isO(n2). Weighted resampling
is a generalisation of both tempered weights (Carpenter
et al., 1999) and the auxiliary particle filter (Pitt and
Shepherd, 1997).

5.2. Basic Partitioned Sampling

Let us return to the problem of tracking two targets,A
andB. If each target deforms and moves in a space of
M dimensions, there are 2M dimensions to be inferred
at each time step. By employing partitioned sampling,
this problem will be reduced to the more feasible task
of performing 2 inferences ofM dimensions each. To
be more concrete, suppose it is known that targetApar-
tially occludes targetB. Then we can localise the two
targets efficiently by first inferring the configuration of
targetA, and then using this knowledge to localiseB.
To infer the configuration ofA, we will use the 1-body
likelihoodPA defined by (5).

The basic algorithm is as follows. Suppose we can
decompose the joint dynamics as

p(x′′ | x) =
∫

x′
pB(x′′ | x′)pA(x′ | x) dx′

wherepA are the dynamics for targetA and similarly
for B. (This assumption would hold if, as is often the
case, the dynamics of the targets were independent of
each other.) One time step of the partitioned sampling
algorithm consists of five steps: given a particle set
(st

i , π
t
i )

n
i=1 which represents the posterior at timet ,

(i) resampling: just as in standard Condensation, sam-
ple thesi with replacement, using probabilities propor-
tional to theπi , and set all weights in the new particle
set to 1/n; (ii) first partition of the dynamics: apply dy-
namics for targetA only to all particles; (iii) weighted
resampling: perform weighted resampling with respect
to the importance functionPA; (iv) second partition of
dynamics: apply dynamics for targetb only to all parti-
cles; (v) multiply by likelihood: multiply the weight
π t+1

i of each particle by the likelihoodp(Z | st+1
i ).

These steps are summarised by the following diagram:
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(8)

The symbol∼ PA means “perform weighted resam-
pling with respect to the importance functionPA”, and
the labels (a)–(d) refer to the example given later in
Fig. 13. The validity of this algorithm is guaranteed by
the following

Proposition 3. If p(x′′ | x) = ∫
x′ pB(x′′ | x′)pA(x′ |

x), the posterior generated by diagram(8) is the same
as that generated by diagram(4).

Proof: It is easy to check the conditions of
Proposition 2 are satisfied here: in tracking problems
we can always restrict the configuration space to be
closed and bounded; the weights before the weighted
resampling operation are all equal so are certainly de-
rived from a continuous function; and the importance
functionPA is positive and continuous. So by Propo-
sition 2, the reweighting operation∼PA has no effect
(asymptotically, as the number of particlesN→∞) on
the distribution represented. Hence we may delete this
step from the diagram without affecting the posterior.
The step∗ pA(x′ | x) is now followed immediately by
∗ pB(x′′ | x′) and by assumption the consecutive appli-
cation of these steps is equivalent to∗ p(x′′ | x). Mak-
ing this substitution on the diagram, we obtain (4), as
desired. 2

Remark. It is clear from the proof that instead ofPA

in diagram (8), one could use any strictly positive func-
tion without affecting the posterior. However the ob-
jective of partitioned sampling is to obtain an accurate
representation of the posterior with a moderate number
of particles. Hence we would like the weighted resam-
pling step to position as many particles as possible near
peaks in the posterior. Because we assumed targetA
partially occludes targetB, the one-body densityPA

is a good choice as importance reweighting function.
Particles surviving the weighted resampling step lie in
peaks ofPA, and this function has peaks in the “right”
place because targetA is completely visible.

Example. Consider a simple example with a 2-dimen-
sional configuration space; then each particle in a par-
ticle set can be schematically represented on a plane,
with area proportional to its weight. Figure 12 uses this
convention to illustrate one iteration of the conventional

(non-partitioned) Condensation algorithm. Box (a)
shows the prior—a Gaussian centred on the centre of
the image. The black cross shows the actual position
of the target, which of course is not known to the algo-
rithm at this stage. Box (b) shows the distribution after
the prior has been resampled and the dynamics (which
in this case are isotropic additive Gaussian) have been
applied. Note that at this point each particle has equal
weight. In (c), the particles have the same configura-
tions as in (b), but their weights are now proportional
to the observation density. This is the particle represen-
tation of the posterior distribution.

Figure 13 shows the application of partitioned sam-
pling in the same scenario. The dynamics and observa-
tions are partitioned intox andy components. Box (a)
shows the same prior as in Fig. 12. In (b), the prior has
been resampled and thexA-component of the dynam-
ics has been applied. To produce (c), we first perform
weighted resampling on these particles, with respect to
an importance function centred on an observation of
thexA-coordinate of the target. Recall that this has no
effect on the distribution represented, but of course it
selects many particles whosexA-coordinate is close to
the target’s—this will be beneficial later. Next thexB-
component of the dynamics is applied, producing the
particle set shown in (c). Finally, this set is multiplied

Figure 12. Conventional (i.e. non-partitioned) Condensation. The
true position of the target in this 2-dimensional configuration space is
shown as a cross; particles representing a probability distribution are
shown as circles whose areas are proportional to their weights. Each
step shown is one stage in the condensation diagram (4). (a) The prior.
(b) After the dynamics have been applied. (c) After reweighting by
the posterior. The posterior is centred at approximately the correct
position, but this representation of the posterior is not very accurate
because relatively few particles have significant weights. In technical
terms, the estimated effective sample size (10) is low. Superior results
are achieved using partitioned sampling (Figs. 13 and 14).
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Figure 13. Partitioned sampling. A simple example implementing
the condensation diagram (8). The 2-dimensional configuration space
is partitioned as the cross product of thexA andxB dimensions, and
the true position of the target is shown as a cross. (a) The prior. (b) The
particles in (a) have been resampled, and dynamics have been applied
in thexA-direction. (c) The weighted resampling operation has been
performed, and the remaining dynamics (i.e. in thexB direction)
applied. (d) The particles in (c) are re-weighted by the posterior.
Note how fine-grained the sample set for the posterior is, compared
with the final set from conventional sampling in Fig. 12. In other
words, this representation of the posterior has a higher estimated
effective sample size (10) than that in Fig. 12.

by the joint observation density forxA andxB coor-
dinates. The result is shown in (d). Notice how dense
this representation is, compared to the final outcome of
non-partitioned sampling in Fig. 12.

5.3. Branched Partitioned Sampling

Branching is a refinement of partitioned sampling
which is needed in our application to a mixed state
Condensation tracker. In the discussion above, it was
assumed targetA partially occluded targetB. This en-
abled us to select the one-body densityPA as a suit-
able importance function for the reweighting step in
(8). However at any given time step, there are some
particles for whichy = 1 (i.e. A is unoccluded) and
some for whichy= 2 (i.e. B is unoccluded). It would
be preferable to select adifferentimportance function
for eachy value.

This is achieved by thebranchedpartitioned sam-
pling algorithm summarised on the following diagram:

(9)

Particles for whichy = 1 follow the top path, which
positions thexA-components first (near peaks inPA),
since these particles believeA is unoccluded. Particles

Figure 14. Branched partitioned sampling. Each step shows a stage
from the Condensation diagram (9). The 2-dimensional configura-
tion has been augmented with a binary variabley, shown as black
(y = 1) or grey (y = 2), and the value of this variable determines
which branch is taken in (9). (a) The prior. (b) Dynamics have been
applied in thexA-direction for black particles and thexB-direction
for grey particles. (c) The weighted resampling operation has been
performed, and the remaining dynamics applied. (d) The particles
from (c) are re-weighted by the posterior. The estimated effective
sample size of the posterior is greater than for the unpartitioned
method (Fig. 12) but in this simple example is no better than the non-
branched, partitioned method (Fig. 13). However, that is because this
example is symmetric inA and B: the branched methodwould be
superior if the 2 importance functionsPA,PB used to produce (c)
were not equally good predictors of particle position.

for which y= 2 follow the bottom path, since they be-
lieve B is unoccluded. The final result is that many
more particles survive the resampling process, com-
pared to the non-partitioned process, and the posterior
is represented more accurately.

One technical point: the sum of weightsπi in any
one branch need not be unity. Hence when performing
weighted resampling, the new weights must be nor-
malised to have the same sum as before the resampling.

Example. In Fig. 14, the 2-dimensional example has
been augmented to include a binary discrete label, indi-
cated by the colour of each particle (grey or black). The
prior, (a), gives an equal weighting to the two discrete
states. Box (b) shows the particle set one step after the
branching: black particles have had thexA-component
of the dynamics applied to them, whereas grey particles

have received thexB-component. Box (c) shows the
particle set after the branches merge again. The black
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particles receive weighted resampling with respect to
an observation of the target’sxA-coordinate, while the
grey particles receive weighted resampling with respect
to an observation of the target’sxB-coordinate. Then
the remaining dynamics are applied: thexA component
to the grey particles, and thexB component to the black
particles. This results in (c). Finally, the weights are
multiplied by the joint observation density forxA and
xB, producing the posterior shown in (d).

5.4. Performance of Partitioned Sampling

Evaluating the performance of particle filters such as
Condensation is a difficult problem (Carpenter et al.,
1999; Doucet, 1998; Kong et al., 1994; Liu and Chen,
1995, 1998). To compare the two schemes (9) and (4)
we use Doucet’s (Doucet, 1998)estimated effective
sample sizêN defined for a set of particles with weights
π1, . . . , πN as

N̂ =
(

N∑
i=1

π2
i

)−1

(10)

Intuitively, this corresponds to the number of “useful”
particles: if all have the same weight 1/N thenN̂ = N,
whereas if all but one of the weights are negligible we
haveN̂ = 1. Any other distribution of the weights falls
between these two extremes. Figure 15 comparesN̂
for the conventional (“unpartitioned”) and partitioned
methods. It is clear that partitioned sampling achieves
much higher values of̂N than unpartitioned sampling

Figure 15. Estimated effective sample sizêN for partitioned and
conventional (unpartitioned) sampling methods. The graph shows
the average value of̂N following a 10-frame sequence tracking two
leaves. Note the superior performance of the partitioned sampling
method.

Figure 16. Unpartitioned sampling can fail when partitioned sam-
pling does not, even if more particles are used. The final frame from
a tracked sequence is shown: with unpartitioned sampling, the track-
ing fails despite using 4 times as many particles as the partitioned
method.

and that we can therefore expect much better tracking
performance for the same computational expense. We
can show this is indeed the case in a practical example:
Fig. 16 shows stills from a certain sequence tracked by
each method. With partitioned sampling, andN = 750
particles, the tracking succeeds. However, despite using
4 times as many particles, unpartitioned sampling fails
to track on the same sequence.

6. Conclusion

An exclusion principle for tracking multiple, indistin-
guishable targets has been introduced, which prevents
a single piece of image data independently contribut-
ing to similar hypotheses for different targets. In its
raw form, the model is valid only for wire-frame ob-
jects. However, by extending the tracking methodology
to permit discrete states for describing the world in 2.1
dimensions, the same type of model can be used to track
solid objects. Moreover, the approach requires only a
simple model of the targets and no knowledge what-
soever of the background, which may itself be mov-
ing non-rigidly. A second contribution of the paper is
to introduce partitioned sampling: a method of using
particle filters with multiple objects, without incurring
excessive additional computational cost for the extra
dimensions.

The exclusion principle and the partitioned sampling
algorithm were described and demonstrated for 2 tar-
gets. In principle, there are obvious generalisations to
an arbitrary number of targets, but it remains to be seen
whether these suffer from implementation difficulties.

So far the probabilistic exclusion principle has been
developed for only the specific type of edge-based mea-
surements described here. However, the fundamental
idea is that any single measurement should reinforce
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multiple hypotheses coherently; it is hoped this can be
used to guide the implementation of exclusion princi-
ples for more general observation processes.
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Appendix A: Proof of Proposition 1

Remarks. Because of the discrete parametern which
indicates how many argumentszi follow, the func-
tions pc are not quite probability density functions
in the standard sense. However, this is a technical
detail which can be avoided by explaining the nota-
tion more clearly. For example,p0(n; z1, . . . , zn) is
just shorthand forp0(z1, . . . , zn | n, ν)Prob(n), so that
p0(n; z1, . . . , zn)dz1, . . . ,dzn is just the probability of
obtainingn featuresand that these features lie in the
volumedz1, . . . ,dzn centred onz= (z1, . . . , zn).

Another subtle point is that eachzi is a point in the
image, which would normally be described by anx and
y coordinate. However in this context the features are
constrained to lie on the measurement line, which is
a one-dimensional subset of the image. So the nota-
tion dzi refers to a small one-dimensional subset of the
image.

Proof: The formula forp0 follows almost immedi-
ately from the assumptions. By definition there is a
probabilityb(n) of obtainingn features, and these are
distributed uniformly on the lengthL of the measure-
ment line. Hencep0(n; z1, . . . , zn) = b(n)/Ln.

The formula forp1 relies on a simple combinatoric
argument. First note the generative model described
above is equivalent to the following: (i) The number of
background features, saym, is selected with probability
b(m). (ii) The positions of the background features are
drawn from the uniform distribution on the measure-
ment line, obtaining sayb1, . . . ,bm. (iii) The position
a of the boundary feature is selected by a random draw
fromG(a | ν). (iv) The total number of featuresn is set
to m+ 1, and the vector(a, b1, . . . ,bm) is randomly
permuted and reported as(z1, . . . , zn). In mathemati-
cal terms, we can say that a permutationρ is selected
uniformly at random from the symmetric groupSn, and
applied to the vector(a, b1, . . . ,bm).

After stage (iii), the pdfp(m;a, b1, . . . ,bm | ν) of
the unpermuted vector is justb(m)G(a | ν)/Lm, and
since each of then! permutations has an equal proba-
bility we calculate

p1(n; z1, . . . , zn | ν) = b(m)
∑
ρ∈Sn

G
(
zρ(1) | ν

)
Lm

× 1

n!

= b(n− 1)
n∑

k=1

G(zk | ν)
nLn−1

where the last line follows by collecting together the
(n− 1)! permutations which leavezk fixed.

The same type of reasoning leads to the stated for-
mula for p2. 2

Appendix B: Sketch Proof of Proposition 2

A rigorous proof of Proposition 2 is given in
(MacCormick, 2000), and related results can be found
in (Doucet, 1998; Kong et al., 1994; Liu and Chen,
1995). However, the following informal proof is more
intuitive and illuminating.

Sketch of proof. Setρi = g(si )/
∑

j g(sj ). Run step 1
of the weighted resampling algorithm, obtaining thes′i
and the unnormalisedπ ′i . SetK = ∑n

i=1π
′
i . We need

the following lemma.

Lemma 1. As n→∞, K/n→ 1 weakly.

Informal proof of lemma. Whenn is large, each index
k ∈ {1, . . . ,n} is selected approximatelynρk times. By
collecting these together we can write

K =
n∑

i=1

πi

ρi
≈

n∑
k=1

πk

ρk
nρk = n

n∑
k=1

πk = n

which completes the informal proof of the lemma.
Define indicesk1, k2, . . . , so thats′i = ski . Then

by the lemma we know thenormalisedweight π ′i is
approximatelyπki /nρki . To complete the proof of
Proposition 2 it will be enough to show that the total
weight assigned to a valuesi is the same (asn→∞)
in the initial and final particle sets. But this is now im-
mediate: there are approximatelynρki values equal to
s′i , and each has final weightπki /nρki . Thus the total
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weight assigned tos′i is nρki × πki /nρki = πki , just as
in the initial particle set(si , πi )

n
i=1. 2
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