
Gaussian Mixture Models (GMM)

and the K-Means Algorithm

Source Material for Lecture

http://www.autonlab.org/tutorials/gmm.html

http://research.microsoft.com/~cmbishop/talks.htm

Copyright © 2001, Andrew W. Moore

Very important in math and science due to the 
Central Limit Theorem:  the distribution of the sum/mean 
of a set of iid random variables tends towards Gaussian 
as the number N of variables increases.

Example: sample mean of a set of N iid uniform(0,1) random variables:

N=1 N=2 N=10

Example: binomial distribution as a function of m (number of heads) of
N iid binary Bernoulli trials becomes more-and-more Gaussian-like for 
large N

Gaussian Distribution aka Multivariate Normal Distribution. Gaussian Distribution aka Multivariate Normal Distribution.

1 dimensional case

D dimensional case

mean

variance

mean vector

covariance matrix

Review: The Gaussian Distribution

• Multivariate Gaussian

mean covariance

Isotropic (circularly symmetric) if covariance is diag(k,k,...,k)

Gaussian
consider 2D case: constant-probability curves are ellipses

* centered at mean location u = (x0,y0)
* oriented and elongated according to eigenvalues �Oand

unit eigenvectors v of 2x2 symmetric pos.def. covariance 
matrix C

mean

�Omax vmax

�Omin vmin

special cases

C = diag( �O1, �O2)
axis-oriented
ellipses

C =  �O���,��
circular
(isotropic)



Gaussian Gaussians are cool.  Among other things, they have some
amazing “self-replicating” properties (my word, not Bishop’s)

For example, all marginals of a Gaussian are Gaussian.
Also, all conditionals of a Gaussian are Gaussian.
The combination of a Gaussian prior and a Gaussian likelihood

using Bayes rule yields a Gaussian posterior.
And, for what it’s worth (cause it is not in this chapter):
The sum of Gaussian random variables is Gaussian
Affine transforms of Gaussian r.v.s yield Gaussian r.v.s

blue curve : marginal (integrate down columns)
red curve : conditional (take values along red line and renormalize)

examples: two ways
of reducing a 2D 
Gaussian to 1D

Likelihood Function

• Data set

• Assume observed data points generated independently

• Viewed as a function of the parameters, this is known as 
the likelihood function

Maximum Likelihood

• Set the parameters by maximizing the likelihood function

• Equivalently maximize the log likelihood

Maximum Likelihood Solution

• Maximizing w.r.t. the mean gives the sample mean

• Maximizing w.r.t covariance gives the sample covariance

WILL DERIVE THIS ON THE BOARD FOR 1D CASE

Tasks 1-3 of incremental homework
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Comments

Gaussians are well understood and easy to estimate

However, they are unimodal, thus cannot be used
to represent inherently multimodal datasets

Fitting a single Gaussian to a multimodal dataset is
likely to give a mean value in an area with low
probability, and to overestimate the covariance.



Old Faithful Data Set

Duration of eruption (minutes)

Time 
between
eruptions 
(minutes)

Multi-Modal Data
Major problem with the Gaussian is that it can only
describe a distribution with one mode (one “bump”)

Bad description of bimodal data using
the inherently unimodal Gaussian

However, if we are willing to use more than
one Gaussian, we can fit one to each
mode or cluster of the data.

Some Bio Assay data
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Sometimes it may not
even be easy to tell 
how many “bumps”
there are…

Idea: Use a Mixture of Gaussians

• Linear super-position of Gaussians

• Normalization and positivity require

• Can interpret the mixing coefficients as prior probabilities

Mixture of Gaussians

mixture of 3 one-dimensional
Normal distributions

mixture of 3 two-dimensional Gaussians

GMM describing assay data



GMM density function

Note: now we have a 
continuous estimate of 
the density, so can 
estimate a value at any 
point.  

Also, could draw 
constant-probability 
contours if we wanted to.

What is the underlying process?

procedure to generate a mixture of gaussians

for i=1:N

generate a uniform U(0,1) random number to determine
which of K components to draw a sample from (based on
probabilities pi_k

generate a sample from a Gaussian N(mu_k, Sigma_k)

end

Sampling from a Gaussian Mixture

equivalent procedure to generate a mixture of gaussians:

for k=1:K

compute number of samples n_k = round(N * pi_k) to draw  
from the k-th component Gaussian

generate n_k samples from Gaussian N(mu_k, Sigma_k)

end

+ + =

Sampling from a Gaussian Mixture Task 4 of incremental homework

Fitting the Gaussian Mixture

• We wish to invert this process – given the data set, find 
the corresponding parameters:
– mixing coefficients

– means 
– covariances

• If we knew which component generated each data point, 
the maximum likelihood solution would involve fitting 
each component to the corresponding cluster

• Problem: the data set is unlabelled

• We shall refer to the labels as latent (= hidden) variables

Maximum Likelihood for the GMM

• The log likelihood function takes the form

• Note: sum over components appears inside the log

• There is no closed form solution for maximum likelihood

• However, with labeled data, the story is different



Labeled vs Unlabeled Data

labeled unlabeled
Easy to estimate params
(do each color separately)

Hard to estimate params
(we need to assign colors)

Side-Trip : Clustering using K-means

K-means is a well-known method of clustering data.

Determines location of clusters (cluster centers), as well as 
which data points are “owned” by which cluster.

Motivation: K-means may give us some insight into how to
label data points by which cluster they come from 
(i.e. determine ownership or membership)

K-means and Hierarchical Clustering

Andrew W. Moore

Associate Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Note to other teachers and users of 
these slides. Andrew would be delighted 
if you found this source material useful 
in giving your own lectures. Feel free to 
use these slides verbatim, or to modify 
them to fit your own needs. PowerPoint 
originals are available. If you make use 
of a significant portion of these slides in 
your own lecture, please include this 
message, or the following link to the 
source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials . 
Comments and corrections gratefully 
received. 

Some Data

This could easily be 
modeled by a 
Gaussian Mixture 
(with 5 components)

But let’s look at an 
satisfying, friendly and 
infinitely popular 
alternative…

K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations



K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns”
a set of datapoints)

K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns

K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated!

K-means 
Start

Example generated by 
Dan Pelleg’s super-
duper fast K-means 
system:

Dan Pelleg and Andrew 
Moore. Accelerating 
Exact k-means 
Algorithms with 
Geometric Reasoning. 
Proc. Conference on 
Knowledge Discovery in 
Databases 1999, 
(KDD99) (available on 
www.autonlab.org/pap.html)

K-means 
continues…

K-means 
continues…



K-means 
continues…

K-means 
continues…

K-means 
continues…

K-means 
continues…

K-means 
continues…

K-means 
continues…



K-means 
terminates

Common uses of K-means

• Often used as an exploratory data analysis tool

• In one-dimension, a good way to quantize real-valued 
variables into k non-uniform buckets

• Used on acoustic data in speech understanding to 
convert waveforms into one of k categories (known as 
Vector Quantization)

• Also used for choosing color palettes on old fashioned 
graphical display devices!

• Used to initialize clusters for the EM algorithm!!! 

Comments

We can model and visualize multimodal datasets by using 
multiple unimodal (Gaussian-like) clusters.

K-means gives us a way of partitioning points into N 
clusters.  Once we know which points go to which cluster, 
we can estimate a Gaussian mean and covariance for that 
cluster.

We have introduced the idea of writing what you want to 
do as a function to be optimized (maximized or minimized).  
e.g. maximum likelihood estimation to fit parameters of a 
Gaussian.

Motivation for Next Time

• want to do MLE of mixture of Gaussian parameters

• But this is hard, because of the summation in the mixture 
of Gaussian equation (can’t take the log of a sum).

• If we knew which point contribute to which Gaussian 
component, the problem would be a lot easier (we can 
rewrite so that the summation goes away)

• So... let’s guess which point goes with which component, 
and proceed with the estimation.

• We were unlikely to guess right the first time, but based 
on our initial estimation of parameters, we can now make 
a better guess at pairing points with components.

• Iterate

• This is the basic idea underlying the EM algorithm.


