CSE 586, Spring 2009
Advanced Computer Vision

Graphical Models:
Hidden Markov Models
Hidden Markov Models

Markov Chain

Set of states, e.g. \{S_1, S_2, S_3, S_4, S_5\}

Table of transition probabilities (\(a_{ij} = \text{Prob of going from state } S_i \text{ to } S_j\))

\[
\begin{array}{cccccc}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
 a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
 a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
 a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
 a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \\
\end{array}
\]

Prob of starting in each state

\[\pi_1, \pi_2, \pi_3, \pi_4, \pi_5\]

Computation: prob of an ordered sequence \(S_2 \, S_1 \, S_5 \, S_4\)

\[
P(S_2) \, P(S_1 \mid S_2) \, P(S_5 \mid S_1) \, P(S_4 \mid S_5) = \pi_2 \, a_{21} \, a_{15} \, a_{54}
\]

Note: this picture is a state transition diagram, not a graphical model!
Hidden Markov Model

Set of states, e.g. \{S_1, S_2, S_3, S_4, S_5\}

Table of transition probabilities (\(a_{ij} = \text{Prob of going from state } S_i \text{ to } S_j\))
\[
\begin{array}{cccccc}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
 a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
 a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
 a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
 a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \\
\end{array}
\]

Prob of starting in each state
\[P(S_i)\]
e.g. \(\pi_1, \pi_2, \pi_3, \pi_4, \pi_5\)

Set of observable symbols, e.g. \{v_1, v_2, v_3\}

Prob of seeing each symbol in a given state
\(b_{ik} = \text{Prob seeing } v_k \text{ in state } S_i\)
\[
\begin{array}{cccccc}
 b_{11} & b_{12} & b_{13} & b_{14} & b_{15} \\
 b_{21} & b_{22} & b_{23} & b_{24} & b_{25} \\
 b_{31} & b_{32} & b_{33} & b_{34} & b_{35} \\
 b_{41} & b_{42} & b_{43} & b_{44} & b_{45} \\
 b_{51} & b_{52} & b_{53} & b_{54} & b_{55} \\
\end{array}
\]

Prob of seeing each symbol given a state
\[P(v_k | S_i)\]
Hidden Markov Model

Computation: Prob of ordered sequence \((S_2, v_3) (S_1, v_1) (S_5, v_2) (S_4, v_1)\)

\[
P(S_2, S_1, S_5, S_4, v_3, v_1, v_2, v_1) \\
= P(S_2) P(v_3 | S_2) P(S_1 | S_2) P(v_1 | S_1) P(S_5 | S_1) P(v_2 | S_5) P(S_4 | S_5) P(v_1 | S_4) \\
= \pi_2 \ b_{23} \ a_{21} \ b_{11} \ a_{15} \ b_{52} \ a_{54} \ b_{41} \\
= (\pi_2 \ a_{21} \ a_{15} \ a_{54}) \ (b_{23} \ b_{11} \ b_{52} b_{41}) \\
= P(S_1, S_2, S_3, S_4) P(v_1, v_2, v_3, v_4 | S_1, S_2, S_3, S_4)
\]
HMM as Graphical Model

Given HMM with states S_1, S_2, \ldots, S_n symbols v_1, v_2, \ldots, v_k, transition probs $A=\{a_{ij}\}$, initial probs $\Pi=\{\pi_i\}$, and observation probs $B=\{b_{ik}\}$

Let state random variables be $X_1, X_2, X_3, X_4, \ldots$ with X_t being state at time t. Allowable values of X_t (a discrete random variable) are $\{S_1, S_2, \ldots, S_n\}$

Let observed random variables be O_1, O_2, O_3, \ldots with O_t observed at time t. Allowable values of O_t (a discrete random variable) are $\{v_1, v_2, \ldots, v_k\}$
HMM as Graphical Model

Given HMM with states $S_1, S_2, ..., S_n$ symbols $v_1, v_2, ..., v_k$, transition probs $A=\{a_{ij}\}$, initial probs $\Pi=\{\pi_i\}$, and observation probs $B=\{b_{ik}\}$

Let state random variables be $X_1, X_2, X_3, X_4, ...$ with X_t being state at time t. Allowable values of X_t (a discrete random variable) are $\{S_1, S_2, ..., S_n\}$

Let observed random variables be $O_1, O_2, O_3, ...$ with O_t observed at time t. Allowable values of O_t (a discrete random variable) are $\{v_1, v_2, ..., v_k\}$

O_i are observed variables. X_j are hidden (latent) variables.
Verify: What is $P(X_1,X_2,X_3,X_4,O_1,O_2,O_3,O_4)$?

$$P(X_1,X_2,X_3,X_4,O_1,O_2,O_3,O_4) = P(X_1) P(O_1|X_1) P(X_2|X_1) P(O_2|X_2) P(X_3|X_2) P(O_3|X_3) P(X_4|X_3) P(O_4|X_4) \cdots$$
Three Computations for HMMs

Problem 1: Given the observation sequence $O = O_1 O_2 \cdots O_T$, and a model $\lambda = (A, B, \pi)$, how do we efficiently compute $P(O|\lambda)$, the probability of the observation sequence, given the model?

Problem 2: Given the observation sequence $O = O_1 O_2 \cdots O_T$, and the model λ, how do we choose a corresponding state sequence $Q = q_1 q_2 \cdots q_T$ which is optimal in some meaningful sense (i.e., best "explains" the observations)?

Problem 3: How do we adjust the model parameters $\lambda = (A, B, \pi)$ to maximize $P(O|\lambda)$?
HMM Problem 1

What is the likelihood of observing a sequence, e.g. O1,O2,O3 ?

Note: there are multiple ways that a given sequence could be emitted, involving different sequences of hidden states X1,X2,X3

One (inefficient) way to compute the answer: generate all sequences of three states Sx,Sy,Sz and compute P(Sx,Sy,Sz,O1,O2,O3) [which we know how to do]. Summing up over all sequences of three states gives us our answer.

Drawback, there are 3^N subsequences that can be formed from N states.
Better (efficient) solution is based on message passing / belief propagation.

\[
P(O_1, O_2, O_3) = \sum_{x_1} \sum_{x_2} \sum_{x_3} P(x_1, x_2, x_3, O_1, O_2, O_3)
\]

\[
= \sum_{x_1} \sum_{x_2} \sum_{x_3} P(x_1)P(O_1|x_1)P(x_2|x_1)P(O_2|x_2)p(x_3|x_2)P(O_3|x_3)
\]

\[
= \sum_{x_1} P(x_1)P(O_1|x_1) \left(\sum_{x_2} P(x_2|x_1)P(O_2|x_2) \sum_{x_3} p(x_3|x_2)P(O_3|x_3) \right)
\]

This is the sum-product procedure of message passing. It is called the forward-backward procedure in HMM terminology.
HMM Problem 2

What is the most likely sequence of hidden states S_1, S_2, S_3 given that we have observed O_1, O_2, O_3?

Again, there is an inefficient way based on explicitly generating the exponential number of possible state sequences... AND, there is a more efficient way using message passing.
HMM Problem 2

\[X_{MAP} = \arg\max_X P(x_1, x_2, x_3, O_1, O_2, O_3) \]

\[= \arg\max_X P(x_1)P(O_1|x_1)P(x_2|x_1)P(O_2|x_2)p(x_3|x_2)P(O_3|x_3) \]

Define:

\[\Phi(X) = \max_{x_1} P(x_1)P(O_1|x_1) \left(\max_{x_2} P(x_2|x_1)P(O_2|x_2) \left(\max_{x_3} p(x_3|x_2)P(O_3|x_3) \right) \right) \]

Then

\[X_{MAP} = \arg\max_X \Phi(X) \]

This is the max-product procedure of message passing. It is called the Viterbi algorithm in HMM terminology.
Viterbi, under the hood

1) Build a state-space *trellis*. 2) Add a source and sink node.
3) Given observations. 4) Assign weights to edges based on observations.

Do multistage dynamic programming to find the max product path.
(note: in some implementations, each edge is weighted by $-\log(w_i)$ of the weights shown here, so that standard min length path DP can be performed.)
HMM Problem 3

Given a *training set* of observation sequences

\[
\{\{O_1,O_2,...\}, \{O_1,O_2,...\}, \{O_1,O_2,...\}\}
\]

how do we determine the transition probs \(a_{ij}\), initial state probs \(p_i\),
and observation probs \(b_{ik}\)?

This is a learning problem. It is the hardest problem of the three.
We assume topology of the HMM is known (number and connectivity of the states) otherwise it is even harder.

Two popular approaches:

- Segmental K-means algorithm
- Baum-Welch algorithm (EM-based)
Problem 3

- Given some training data, build a HMM
 - The training data is a set of observation sequences
 - We assume that these sequences are representative and independent
 - We want the HMM to be the one most likely to give rise to the training data
 - We’ll look at a solution based on k-means, which uses the solution to Problem 2 to define the best HMM

Hidden Markov Models

Image Processing and Interpretation at The University of Nottingham

Steve Mills, U.Nottingham
Assumptions

- We make a number of simplifying assumptions
 - Each observation symbol is a vector having some fixed length – this means all our observations have the same basic shape
 - Each observation is a series of T symbols – we don’t need to consider varying lengths (one long sequence can be split up)
 - We know (or guess) the number of states, n (we can try different values if we like)
Segmental K-Means

Algorithm Overview

1. Initialise the HMM states and assign observation symbols to these states
2. Compute the initial state and transition functions given the current HMM
3. Compute some statistics about each state
4. Find the observation function for each state
5. Find the optimal path through the HMM for each observation sequence, and reassign its observation symbols as appropriate
6. If any changes have been made goto 2

Hidden Markov Models

Image Processing and Interpretation at The University of Nottingham

Steve Mills, U.Nottingham
Step 1

- We need to set up some initial states
 - We know there are n of them
 - Choose n (different) observation symbols (vectors) and assign these to the n states at random
 - Assign all the other observed vectors to the state which they are closest to (using Euclidean distance)

Note: this is essentially a clustering problem!

Steve Mills, U.Nottingham
Example

- Suppose our observation symbols are velocity measurements, $[u, v]$
- We’re given three observation sequences:
 - $[0, 1], [-1, 0], [0, 0], [2, 1], [4, 5], [5, 4]$
 - $[-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1, 1]$
 - $[-3, -1], [-1, 0], [0, 1], [3, 3], [4, 4], [4, 3]$
- We pick $k=3$ at random:
 - $[0, 1], [-1, 0], [0, 0], [2, 1], [4, 5], [5, 4]$
 - $[-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1, 1]$
 - $[-3, -1], [-1, 0], [0, 1], [3, 3], [4, 4], [4, 3]$

Hidden Markov Models

Image Processing and Interpretation at The University of Nottingham
Example

- Each of these three vectors becomes a state, and we assign each symbol to the state nearest it.

\[S_1: [-4, 1],
S_2: [2, 1],
S_3: [4, 4] \]

\[[0, 1], [-1, 0], [0, 0], [2, 1], [4, 5], [5, 4] \]
Example

- Doing this for all 3 sequences gives
 - In the state, s_1, centred around $[-4,1]$: $[-1,0], [-3,0], [-4,1], [-3,-1], [-2,-1], [-3,-1], [-1,0]$
 - In the state, s_2, centred around $[2,1]$: $[0,1], [0,0], [2,1], [0,0], [-1,1], [0,1]$
 - In the state, s_3, centred around $[4,4]$: $[4,5], [5,4], [3,3], [4,4], [4,3]$
Step 2

- We now compute the initial probabilities and transition functions
 - $I(s)$ is just the proportion of times a sequence starts in state s
 - $T(s_i, s_j)$ is the proportion of times a sequence takes us from state s_i to state s_j
Example

• Initial state function:
 • The first sequence starts with [0,1], which is in state s_2
 • The second sequence starts with [-3,0], which is in state s_1
 • The third sequence starts with [-3,-1], which is in state s_1
 • So $I(s_1)=2/3$, $I(s_2)=1/3$, $I(s_3)=0$

We’re given three observation sequences:
• [0,1], [-1,0], [0,0], [2, 1], [4, 5], [5, 4]
• [-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1,1]
• [-3, -1], [-1, 0], [0, 1], [3, 3], [4, 4], [4, 3]
Example

- The transitions in the sequences are:
 \[[0,1], [-1,0], [0,0], [2, 1], [4, 5], [5, 4] \]
 \[
 \begin{array}{c}
 s_2 \rightarrow s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow s_3 \rightarrow s_3 \\
 [-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1,1] \\
 s_1 \rightarrow s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow s_2 \\
 [-3,-1], [-1, 0], [0, 1], [3, 3], [4, 4], [4, 3] \\
 s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_3 \rightarrow s_3
 \end{array}
 \]

- We’re given three observation sequences:
 - \([0,1], [-1,0], [0,0], [2, 1], [4, 5], [5, 4]\)
 - \([-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1,1]\)
 - \([-3,-1], [-1, 0], [0, 1], [3, 3], [4, 4], [4, 3]\)

Steve Mills, U.Nottingham
Example

- 15 transitions:
 - 3 from s_1 to s_1
 - 3 from s_1 to s_2
 - 0 from s_1 to s_3
 - 1 from s_2 to s_1
 - 3 from s_2 to s_2
 - 2 from s_2 to s_3
 - 0 from s_3 to s_1
 - 0 from s_3 to s_2
 - 3 from s_3 to s_3

- Transition function
 - $T(s_1, s_1) = 3/15$
 - $T(s_1, s_2) = 3/15$
 - $T(s_1, s_3) = 0$
 - $T(s_2, s_1) = 1/15$
 - $T(s_2, s_2) = 3/15$
 - $T(s_2, s_3) = 2/15$
 - $T(s_3, s_1) = 0$
 - $T(s_3, s_2) = 0$
 - $T(s_3, s_3) = 3/15$

Hidden Markov Models

Image Processing and Interpretation at The University of Nottingham
Step 3

- Now we compute some statistics about the observations made in each state
 - Usually we compute the mean and variances or covariance
 - These are going to be used in Step 4, so if you change Step 4 then other statistics might be needed

Note: This part assumes continuous-valued observations are output. For a discrete set of observation symbols, we could just do histograms here.

Steve Mills, U. Nottingham
Example

- State s_1 has the vectors $[-1,0]$, $[-3,0]$, $[-4,1]$, $[-3,-1]$, $[-2,-1]$, $[-3,-1]$, and $[-1,0]$
 - The mean of these vectors is $\mu_1 = [-2.43,-0.29]$
 - The variance of each component is $\sigma_{u1}=1.1$ and $\sigma_{v1}=0.5$
- We compute this for each state
Step 4

- The next step is to compute the observation probabilities
 - Since the observations are vectors, this is usually a probability function
 - Commonly a Gaussian model is used, but other models could be used if we want
 - Since the vectors are d-dimensional, this Gaussian is d-dimensional also
Once again: these last few slides have assumed continuous-valued Gaussian observations are output. For a discrete set of observation symbols, we could just do histograms here to compute the prob of outputting each symbol from each state.
Step 5

- We now have estimates for the parameters of our HMM
 - As in normal k-means the next step is to reassign the observations to the states
 - We do this by running the Viterbi algorithm for each observation, giving an optimal assignment of observation symbols to states
 - If any observation has changed state then we go back to step 2 to revise our HMM
Example

- Suppose the Viterbi algorithm gives the sequence $s_2 \rightarrow s_2 \rightarrow s_2 \rightarrow s_2 \rightarrow s_3 \rightarrow s_3$ as the best path for the first observation
 - The second symbol ([-1,0]) is now attributed to state s_2 rather than s_1
 - This affects the statistics related with these two states, and also the transition function
 - As a result, the paths explaining the observations may also change

Hidden Markov Models

Image Processing and Interpretation
at The University of Nottingham

- We're given three observation sequences:
 - [0,1], [-1,0], [0,0], [2, 1], [4, 5], [5, 4]
 - [-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1,1]
 - [-3,-1], [-1, 0], [0, 1], [3, 3], [4, 4], [4, 3]
Training HMMs

- This algorithm, the *segmental k-means* algorithm, allows us to build a HMM from training data.
 - It can be shown that this converges to an optimal result for a variety of observation functions (including Gaussian).
 - In these cases the starting point doesn’t matter, although a poor choice might mean lots of iterations are needed.

Hidden Markov Models

Image Processing and Interpretation
at The University of Nottingham
Baum-Welch Algorithm

Same thing, but with dancing bears.

Fractional assignments of observations to states

Basic idea is to use EM instead of K-means as a way of assessing ownership weights before computing observation statistics at each state.