Lecture 06: Harris Corner Detector
Reading: T&V Section 4.3

Motivation: Matching Problem
Vision tasks such as stereo and motion estimation require finding corresponding features across two or more views.

Motivation: Patch Matching
Elements to be matched are image patches of fixed size

Task: find the best (most similar) patch in a second image

Not all Patches are Created Equal!
Intuition: this would be a good patch for matching, since it is very distinctive (there is only one patch in the second frame that looks similar).

Not all Patches are Created Equal!
Intuition: this would be a BAD patch for matching, since it is not very distinctive (there are many similar patches in the second frame)

What are Corners?
- Intuitively, junctions of contours.
- Generally more stable features over changes of viewpoint.
- Intuitively, large variations in the neighborhood of the point in all directions.
- They are good features to match!
Corner Points: Basic Idea

- We should easily recognize the point by looking at intensity values within a small window
- Shifting the window in any direction should yield a large change in appearance.

Harris Corner Detector: Basic Idea

- "Flat" region: no change in all directions
- "Edge": no change along the edge direction
- "Corner": significant change in all directions

Harris corner detector gives a mathematical approach for determining which case holds.

Harris Detector: Mathematics

Change of intensity for the shift \([u, v]\):

\[
E(u, v) = \sum_{(x,y)} w(x,y) (I(x+u,y+v) - I(x,y))^2
\]

Window function

Shifted intensity

Intensity

For nearly constant patches, this will be near 0. For very distinctive patches, this will be larger. Hence... we want patches where \(E(u,v)\) is LARGE.

Appearance Change in Neighborhood of a Patch

Interactive “demo”

Harris Detector: Intuition

Change of intensity for the shift \([u, v]\):

\[
E(u, v) = \frac{1}{12} \left[u^2 f_{xx}(x,y) + u^2 f_{yy}(x,y) + v^2 f_{xx}(x,y) + v^2 f_{yy}(x,y) + 2uv f_{xy}(x,y) \right]
\]

First partial derivatives

Second partial derivatives

Third partial derivatives

\[f(x+u,y+v) \approx f(x,y) + uf_x(x,y) + vf_y(x,y) \]

Taylor Series for 2D Functions

\[
f(x+u,y+v) = f(x,y) + uf_x(x,y) + vf_y(x,y) + \frac{1}{2!} [u^2 f_{xx}(x,y) + u^2 f_{yy}(x,y) + 2uv f_{xy}(x,y)] + \frac{1}{3!} [u^3 f_{xxx}(x,y) + u^3 f_{yyy}(x,y) + 3uv^2 f_{xxy}(x,y)] + \ldots
\]

First order approx

\[
f(x+u,y+v) \approx f(x,y) + uf_x(x,y) + vf_y(x,y)
\]
Harris Corner Derivation

\[
\sum (I(x+u,y+v) - I(x,y))^2 \\
\approx \sum (\theta(x,y) + u I_x + v I_y - I(x,y))^2 \quad \text{First order approx} \\
= \sum u^2 \theta_x^2 + 2uv \theta_x \theta_y + v^2 \theta_y^2 \\
= \sum [u \ v] \begin{bmatrix} \theta_x^2 & \theta_x \theta_y \\ \theta_x \theta_y & \theta_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \quad \text{Rewrite as matrix equation} \\
= [u \ v] \left(\sum \begin{bmatrix} \theta_x^2 & \theta_x \\ \theta_x & \theta_y \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}
\]

Harris Detector: Mathematics

For small \([u,v]\) we have a bilinear approximation:

\[
E(u,v) \equiv \begin{bmatrix} u \\ v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}
\]

where \(M\) is a 2×2 matrix computed from image derivatives:

\[
M = \sum w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]

Windowing function - computing a weighted sum (simplest case, \(w=1\))

Note: these are just products of components of the gradient, \(I_x, I_y\)

Intuitive Way to Understand Harris

Treat gradient vectors as a set of \((dx,dy)\) points with a center of mass defined as being at \((0,0)\).

Fit an ellipse to that set of points via scatter matrix

Analyze ellipse parameters for varying cases…

Example: Cases and 2D Derivatives

- Linear Edge
- Flat
- Corner

Plotting Derivatives as 2D Points

The distribution of the \(x\) and \(y\) derivatives is very different for all three types of patches

- Corner
- Linear Edge
- Flat

Fitting Ellipse to each Set of Points

The distribution of \(x\) and \(y\) derivatives can be characterized by the shape and size of the principal component ellipse

- \(\lambda_1 - \lambda_2 = \text{small}\)
- \(\lambda_1 = \text{large; } \lambda_2 = \text{small}\)
Classification via Eigenvalues

Classification of image points using eigenvalues of M.

λ_1 and λ_2 are small; E is almost constant in all directions.

Corner Response Measure

Measure of corner response:

\[R = \det M - k (\text{trace } M)^2 \]

\[
\det M = \lambda_1 \lambda_2, \quad \text{trace } M = \lambda_1 + \lambda_2.
\]

(k is an empirically determined constant; $k \approx 0.04$ - 0.06)

Corner Response Map

$R = \det M - k (\text{trace } M)^2$

Corner Response Example

Harris R score.

Ix, Iy computed using Sobel operator
Windowing function $w = \text{Gaussian}$, sigma=1

Corner Response Example

Threshold: $R < -10000$
(edges)
Harris Corner Detection Algorithm

1. Compute x and y derivatives of image

 \[I_x = G_{xx} \ast I \quad I_y = G_{yy} \ast I \]

2. Compute products of derivatives at every pixel

 \[I_{xx} = I_x \cdot I_x \quad I_{xy} = I_x \cdot I_y \quad I_{yy} = I_y \cdot I_y \]

3. Compute the sums of the products of derivatives at each pixel

 \[S_{xx} = G_{xx} \ast I_{xx} \quad S_{xy} = G_{xx} \ast I_{xy} \quad S_{yy} = G_{yy} \ast I_{yy} \]

4. Define at each pixel (x, y) the matrix

 \[H(x, y) = \begin{bmatrix}
 S_{xx}(x, y) & S_{xy}(x, y) \\
 S_{xy}(x, y) & S_{yy}(x, y)
 \end{bmatrix} \]

5. Compute the response of the detector at each pixel

 \[R = \text{Det}(H) - k \text{(Tr}(H))^2 \]

6. Threshold on value of R. Compute nonmax suppression.