Problem 1. We have a recursive solution to Hanoi tower problem with 3 pegs:

```cpp
void Hanoi3(peg A, peg B, peg C, int n)
{ if (n == 0) return;
    Hanoi3(A, C, B, n-1);
    move a disc from A to B;
    Hanoi3(C, B, A, n-1);
}
```

and the exact count how many disc movements are made: \(T_3(n) = 2^n - 1 \).

a) Assuming that each move takes 1 second, what is the number of years needed to execute \(Hanoi3(0,1,2,64) \)? Round the answer to the nearest power of 2, e.g. “approximately \(2^{20} \) years”.

Answer. A year has 365 \times 24 \times 3600 = 31,536,000 \approx 33,554,432 = 2^{25} \) seconds. Thus moving 64 discs with 3 pegs requires approximately \(2^{64}/2^{25} = 2^{39} \) years.

Now suppose that we have 4 pegs, and otherwise the same rules. We may have a function \(f(n) \) that allows to formulate the following recursive algorithm:

```cpp
void Hanoi4(peg A, peg B, peg C, peg D, int n)
{ if (n < 3) {
    Hanoi3(A, B, C, n);
    return;
}
    Hanoi4(A, D, B, C, n-f(n));
    Hanoi3(A, B, C, f(n));
    Hanoi4(D, B, A, C, n-f(n));
}
```

b) Show that if for every \(n > 2 \) we have \(0 < f(n) < n \) then this is a correct algorithm.

Answer. If we have \(n < 3 \) discs, we use \(Hanoi3 \), so we can rely on the correctness of \(Hanoi3 \). For a larger \(n \) we will perform the reasoning of the inductive step.

Let \(N \) denote the top \(n - f(n) \) discs and \(F \) denote the bottom \(f(n) \) discs.

We start with configuration \(A(NF), B(), C(), D() \), meaning, \(N \) and \(F \) on peg \(A \), nothing on other pegs.

- \(Hanoi4(A, D, B, C, n-f(n)) \) changes the configuration to \(A(F), B(), C(), D(N) \).
- \(Hanoi3(A, B, C, f(n)) \) changes the configuration to \(A(), B(F), C(), D(N) \). Note that pegs \(B \) and \(C \) were empty, so \(Hanoi3 \) can operate without obstruction.
- \(Hanoi4(D, B, A, C, n-f(n)) \) changes the configuration to \(A(), B(NF), C(), D() \). Note that discs of \(F \) that were initially on \(B \) are larger than the discs of \(N \), so they do not obstruct the movement of \(N \) when we execute \(Hanoi4(D, B, A, C, n-f(n)) \).

The last configuration is the desired one.
c) For $2 < n \leq 20$, find values for $f(n)$ that result in the minimum number of moves by Hano14.

Answer. We fill a table that gives the number of moves that results from different choices of f, the best choices will be possible values for $f(n)$:

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2T_4(n-1) + T_3(1)$</td>
<td>7</td>
<td>11</td>
<td>19</td>
<td>27</td>
<td>35</td>
<td>51</td>
<td>67</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2T_4(n-2) + T_3(2)$</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>21</td>
<td>29</td>
<td>37</td>
<td>53</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2T_4(n-3) + T_3(3)$</td>
<td>NA</td>
<td>NA</td>
<td>17</td>
<td>25</td>
<td>33</td>
<td>41</td>
<td>57</td>
<td>73</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>$2T_4(n-4) + T_3(4)$</td>
<td>NA</td>
<td>NA</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>33</td>
<td>41</td>
<td>49</td>
<td>65</td>
<td>81</td>
</tr>
<tr>
<td>$2T_4(n-5) + T_3(5)$</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>33</td>
<td>37</td>
<td>41</td>
<td>49</td>
<td>57</td>
<td>65</td>
<td>81</td>
</tr>
<tr>
<td>best $f(n)$</td>
<td>2</td>
<td>2,3</td>
<td>2,3</td>
<td>3</td>
<td>3,4</td>
<td>3,4</td>
<td>3,4</td>
<td>4</td>
<td>4,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Such calculations give the best values for $f(n)$:

<table>
<thead>
<tr>
<th>n</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>4,5</td>
<td>4,5</td>
<td>5</td>
<td>6,6</td>
<td>5,6</td>
<td>5,6</td>
<td>5,6</td>
<td>5,6</td>
<td>6</td>
</tr>
<tr>
<td>$T_4(n)$</td>
<td>97</td>
<td>113</td>
<td>129</td>
<td>161</td>
<td>193</td>
<td>225</td>
<td>257</td>
<td>289</td>
<td>321</td>
</tr>
</tbody>
</table>

d) Suggest a formula for $f(n)$ that results in a low (as low as possible) number of moves needed to move 64 discs with 4 pegs.

Answer. For every n up to 21, an optimum $f(n)$ equals $\sqrt{2n}$. Applying it leads to $T_4(64) = 18,433$.

e) Find the order of growth of the logarithm of the number of moves that results from your formula. Usually, people use notation like $2^{\Theta(f(n))}$.

Answer. Assume that $T_4(n) \leq C^{\sqrt{n}}$.

Calculus workout: $\sqrt{n} - \sqrt{n-1} \geq k\sqrt{n} - \sqrt{n} - 1 = \frac{k}{2\sqrt{n}}$. Thus $\sqrt{n} - \sqrt{n-\sqrt{2n}} > 0.7$.

We will prove that $T_4(n) \leq C^{\sqrt{n}}$ for some C.

$$T_4(n) = 2T_4(n-\sqrt{2n}) + 2^{\sqrt{2n}} \leq 2C^{-0.7}C^{\sqrt{2n}} + 2^{\sqrt{2n}} \leq T(n)$$

This calculation is valid if $2^{\sqrt{2n}} < 0.5C^{\sqrt{n}}$ and $C^{-0.7} < 0.25$, and this is true for a sufficiently large C.

Problem 5, page 128.

a. $a = 4$, $b = 2$, $c = 1$, $A = 4/2 > 1$, leaf dominated, $n^{log_2 4} = n^2$.

b. $a = 4$, $b = 2$, $c = 2$, $A = 4/2^2 = 1$, balanced, $n^2 \log n$.

c. $a = 4$, $b = 2$, $c = 3$, $A = 4/2^3 < 1$, root dominated, n^3.