
Hint: find minimum and maximum numbers, say a and b. Define $g = (b - a)/(n - 1)$. Clearly, the maximum gap has $A[j] - A[i] \geq g$. Split the numbers in the array into intervals of the form $[a + kg, a + (k + 1)g)$. The maximum gap cannot be within one of these intervals. This method is inspired by counting sort because you map $A[m]$ into the interval number $\lfloor (A[m] - a)/g \rfloor$, and we can sort them according to these interval numbers.

Problem 2. Radix sort. In a railroad yard, we have three tracks labeled B, C and D, which are connected by a switch to track A:

A railroad car can move from A to B, C or D by rolling down on a gentle slope. We can release and engage the brakes in a car by remote control, and we can operate the switch to direct the car to B, C or D.

\[\text{track A} \quad \text{track B} \quad \text{track C} \quad \text{track D} \]

a. Suppose that we have some number of cars on tracks B, C and D, and that we have one locomotive on track A. How can we move all of the cars to A using the one locomotive? The locomotive can push or pull cars, and you can connect cars to each other or disconnect them.

b. Now suppose that we have a train consisting of a locomotive followed by a string of cars on track A, with the train facing away from the switch (that is, the locomotive is farther from the switch than the cars are). The cars have destinations 1, 2, \cdots, 9 in some random order. (Note that many cars may have the same destination.) We want to rearrange the cars in the train so that cars to 1 are in front, followed by cars to 2, then to 3, and so forth. Describe a method for sorting the cars in this fashion using tracks A, B, C and D efficiently; that is, you want the total number of times that cars cross the switch to be as small as you can make it.

Hint: it suffices to roll cars from A to the other tracks and return them to A, repeating this roll-return process a suitable number of times, if you do it correctly.
Problem 3. Radix sort. You are given an array of characters $C[N]$ and an array $A[n + 1]$ such that $0 = A[0] \leq A[1] < \cdots \leq A[n + 1] = N$. String s_i is the sequence of characters in the array sector $(C, A[i], A[i + 1])$. We define lexicographic order of strings:

- if λ is an empty string and s any other string then $\lambda < s$;
- if c, d are characters, s, t are strings and $c < d$ then $cs < dt$;
- if c is a character, s, t are strings and $s < t$ then $cs < ct$.

Your task is to sort the strings, e.g. initialize

```plaintext
for (i = 0; i < n; i++)
    S[i] = i;
```

and then to permute $S[n]$ in such a way that $s_{S[i]} \leq s_{S[i+1]}$ for $i = 0, 1, \cdots, n-2$. You should use $O(N)$ time.

Hint: start by sorting strings by their length. Let L be the maximum length. You should use Radix sort, but when you are performing census and distribution according to k-th characters of the strings you cannot inspect strings that do not have that characters, i.e. that are shorter than k.

Problem 7 from page 271.