Why is Application Aware Prefetch Prioritization needed?

Motivation
Aggressive prefetching causes severe network congestion as prefetcher injects significant number of inaccurate prefetches into the network.

Problem:
1) Prefetches are prioritized over demands in NoC routers
2) Useless or less beneficial prefetches are prioritized over more useful & timely prefetches.

Goal
Prioritize prefetches from those applications where prefetching
1) is more likely to improve its performance
2) is likely to not cause significant interference to other applications.

Prioritization Table (rank)

<table>
<thead>
<tr>
<th>High Prefetch Count</th>
<th>Low Prefetch Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Prefetch Accuracy</td>
<td>Mid High(2)</td>
</tr>
<tr>
<td>Low Prefetch Accuracy</td>
<td>Min(4)</td>
</tr>
</tbody>
</table>

Static Vs Dynamic Prioritization

Static: Profile run determines priority of application. Rank remains static throughout the execution.

Dynamic: Captures applications dynamic behavior. Hardware collects prefetch accuracy & count periodically based on which applications are ranked.

Need for Dynamism

Applications have dynamic behavior.

Results

- System Config = 64-core CMP, mesh n/w, XY-routing, 5 VCs, demands not differentiated from prefetches.
- AVG: across 12 heterogeneous multi-programmed SPEC workloads.
- Ideal = prefetches do not content with each other or demand requests in the network.

Future work: Includes analyzing our techniques and combining them with other application-aware prioritization techniques in NoC routers.

Contact: nachi@cse.psu.edu