BFS and Coloring-based Parallel Algorithms for Strongly Connected Components and Related Problems

George M. Slota1,2 Sivasankaran Rajamanickam1 Kamesh Madduri2

1Sandia National Laboratories
2Pennsylvania State University

20 May 2014
Overview

- Introduction
- Previous parallel strongly connected component (SCC) algorithms
- Multistep: Our shared memory parallel algorithm
- Extension to CC and WCC
- Performance results
- Conclusions and Future work
Motivation

- Block Triangular Form (BTF): Useful in shared memory parallel direct and incomplete factorizations.
- Computing the strongly connected components (SCCs) of a matrix is key for computing the BTF.
- SCCs are also useful in formal verification and analyzing web-graphs.
- SCCs algorithms are also a good candidate to study task-parallel vs data-parallel algorithms in the existing architectures with the available runtime systems.
Introduction

- Computing strongly connected components (SCCs) refers to detection of all maximal strongly connected sub-graphs in a large directed graph.
- A strongly connected subgraph is a subgraph in which there is a path from every vertex to every other vertex.
- Standard sequential algorithm is Tarjan’s algorithm
 - DFS based recursive algorithm.
 - Not amenable to a scalable parallel algorithm.
Previous Parallel SCC Algorithms

- Forward-Backward (FW-BW) (Hendrickson, Pinar, Plimpton, Fleischer, Mclendon)
- Coloring (Orzan)
- Task parallel, but own runtime with algorithmic improvements (Hong et al, SC 2013)
- Others (Barnat et al)
Our Contributions

- A Multistep method for SCC detection:
 - Data parallel SCC detection with the advantages of previous methods.
 - Uses minimal synchronization and fine-grained locking.
- Faster and scales better than the previous methods.
- Up to 9x faster than state-of-the-art Hong et al’s method.
- Easily extendable to computing connected and weakly connected components
Previous Algorithms

Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant D)
Find all vertices that can reach the pivot (predecessor P)
Intersection of those two sets is an SCC ($S = P \cap D$)
Now have three distinct sets leftover ($D \setminus S$), ($P \setminus S$), and remainder (R)
Previous Algorithms
Forward-Backward (FW-BW)

- Select pivot
Previous Algorithms
Forward-Backward (FW-BW)

- Select pivot
- Find all vertices that can be reached from the pivot (descendant \((D)\))
Previous Algorithms
Forward-Backward (FW-BW)

- Select pivot
- Find all vertices that can be reached from the pivot (descendant (D))

Intersection of those two sets is an SCC ($S = P \cap D$)

Now have three distinct sets leftover ($D \setminus S$), ($P \setminus S$), and remainder (R)
Previous Algorithms
Forward-Backward (FW-BW)

- Select pivot
- Find all vertices that can be reached from the pivot (descendant \((D)\))
- Find all vertices that can reach the pivot (predecessor \((P)\))
Previous Algorithms
Forward-Backward (FW-BW)

- Select pivot
- Find all vertices that can be reached from the pivot (descendant \((D)\))
- Find all vertices that can reach the pivot (predecessor \((P)\))
Previous Algorithms
Forward-Backward (FW-BW)

- Select pivot
- Find all vertices that can be reached from the pivot (descendant \((D)\))
- Find all vertices that can reach the pivot (predecessor \((P)\))
Previous Algorithms
Forward-Backward (FW-BW)

- Select pivot
- Find all vertices that can be reached from the pivot (descendant \(D \))
- Find all vertices that can reach the pivot (predecessor \(P \))
Previous Algorithms
Forward-Backward (FW-BW)

- Select pivot
- Find all vertices that can be reached from the pivot (\textit{descendant} \((D)\))
- Find all vertices that can reach the pivot (\textit{predecessor} \((P)\))
- Intersection of those two sets is an SCC \((S = P \cap D)\)
Previous Algorithms
Forward-Backward (FW-BW)

- Select pivot
- Find all vertices that can be reached from the pivot (descendant \((D)\))
- Find all vertices that can reach the pivot (predecessor \((P)\))
- Intersection of those two sets is an SCC \((S = P \cap D)\)
- Now have three distinct sets leftover \((D \setminus S), (P \setminus S),\) and remainder \((R)\)
Forward-Backward (FW-BW) Algorithm

1: procedure FW-BW(V)
2: if V = ∅ then
3: return ∅
4: Select a pivot \(u \in V \)
5: \(D \leftarrow \text{BFS}(G(V, E(V)), u) \)
6: \(P \leftarrow \text{BFS}(G(V, E'(V)), u) \)
7: \(R \leftarrow (V \setminus (P \cup D)) \)
8: \(S \leftarrow (P \cap D) \)
9: new task do FW-BW(D \setminus S)
10: new task do FW-BW(P \setminus S)
11: new task do FW-BW(R)
Previous Algorithms
Trimming

- Used to find trivial SCCs
Previous Algorithms
Trimming

- Used to find trivial SCCs
- Detect and prune all vertices that have an in/out degree of 0 or an in/out degree of 1 with a self loop (simple trimming)
Previous Algorithms
Trimming

- Used to find trivial SCCs
- Detect and prune all vertices that have an in/out degree of 0 or an in/out degree of 1 with a self loop (simple trimming)
Previous Algorithms

Trimming

- Used to find trivial SCCs
- Detect and prune all vertices that have an in/out degree of 0 or an in/out degree of 1 with a self loop (simple trimming)
- Repeat iteratively until no more vertices can be removed (complete trimming)
Previous Algorithms
Trimming

- Used to find trivial SCCs
- Detect and prune all vertices that have an in/out degree of 0 or an in/out degree of 1 with a self loop (simple trimming)
- Repeat iteratively until no more vertices can be removed (complete trimming)
Consider vertex identifiers as *colors*.
Consider vertex identifiers as *colors*

- Highest colors are propagated **forward** through the network to create sets
Previous Algorithms
Coloring

- Consider vertex identifiers as *colors*
- Highest colors are propagated **forward** through the network to create sets
Consider vertex identifiers as \textit{colors}.

- Highest colors are propagated \textbf{forward} through the network to create sets.

Remove found SCCs, reset colors, and repeat until no vertices remain.
Consider vertex identifiers as *colors*
- Highest colors are propagated **forward** through the network to create sets
- Consider the original vertex of each color to be the *root* of a new SCC
Previous Algorithms

Coloring

- Consider vertex identifiers as *colors*
- Highest colors are propagated **forward** through the network to create sets
- Consider the original vertex of each color to be the *root* of a new SCC
- Each SCC is all vertices (of the same color as the root) reachable **backward** from each root.
Previous Algorithms
Coloring

- Consider vertex identifiers as *colors*
- Highest colors are propagated **forward** through the network to create sets
- Consider the original vertex of each color to be the *root* of a new SCC
- Each SCC is all vertices (of the same color as the root) reachable **backward** from each root.
Previous Algorithms

Coloring

- Consider vertex identifiers as *colors*
- Highest colors are propagated **forward** through the network to create sets
- Consider the original vertex of each color to be the *root* of a new SCC
- Each SCC is all vertices (of the same color as the root) reachable **backward** from each root.
Consider vertex identifiers as *colors*
Highest colors are propagated **forward** through the network to create sets
Consider the original vertex of each color to be the *root* of a new SCC
Each SCC is all vertices (of the same color as the root) reachable **backward** from each root.
Previous Algorithms

Coloring

- Consider vertex identifiers as *colors*
- Highest colors are propagated **forward** through the network to create sets
- Consider the original vertex of each color to be the *root* of a new SCC
- Each SCC is all vertices (of the same color as the root) reachable **backward** from each root.
- Remove found SCCs, reset colors, and repeat until no vertices remain
Previous Algorithms
Coloring

- Consider vertex identifiers as colors.
- Highest colors are propagated forward through the network to create sets.
- Consider the original vertex of each color to be the root of a new SCC.
- Each SCC is all vertices (of the same color as the root) reachable backward from each root.
- Remove found SCCs, reset colors, and repeat until no vertices remain.
1: procedure COLORSCC($G(V, E)$)
2: while $G \neq \emptyset$ do
3: for all $u \in V$ do Colors(u) ← u
4: while at least one vertex has changed colors do
5: for all $u \in V$ in parallel do
6: for all $(u, v) \in E$ do
7: if Colors(u) > Colors(v) then
8: Colors(v) ← Colors(u)
9: for all unique $c \in$ Colors in parallel do
10: V_c ← $\{u \in V :$ Colors(u) = $c\}$
11: $SCCV_c$ ← BFS($G(V_c, E'(V_c))$, u)
12: V ← ($V \setminus SCCV_c$)
Barnat et al. (2011)
- Evaluated coloring, FW-BW, and several other variants running in parallel on CPU and Nvidia CUDA platform

Hong et al. (2013)
- Parallel FW-BW with 1 and 2 sized SCC trimming, set partitioning after finding largest SCC based on WCCs, in-house task queue for load balancing
Current Implementation
Observations

- FW-BW can be efficient at finding large SCCs, but when there are many small disconnected ones, the remainder set will dominate, creating a large work imbalance
 - Using tasks for finding small SCCs has a lot of overhead, even for efficient tasking implementations
- Coloring is very inefficient at finding a large SCC, but is efficient at finding many small ones
 - Data parallel, but colors reassigned multiple times in a large SCC.
- Tarjan’s [6] serial algorithm runs extremely quick for a small number of vertices. (100K)
- Most real-world graphs have one giant SCC and many small SCCs
- Multistep: combine the best of these methods
Multistep Method

1: procedure Multistep(G(V, E))
2: \[T \leftarrow \text{MS-SimpleTrim}(G) \]
3: \[V \leftarrow V \setminus T \]
4: Select \(v \in V \) for which \(d_{in}(v) \ast d_{out}(v) \) is maximal
5: \[D \leftarrow \text{BFS}(G(V, E(V)), v) \]
6: \[S \leftarrow D \cap \text{BFS}(G(D, E'(D)), v) \]
7: \[V \leftarrow V \setminus S \]
8: while \(\text{NumVerts}(V) > n_{\text{cutoff}} \) do
9: \[C \leftarrow \text{MS-Coloring}(G(V, E(V))) \]
10: \[V \leftarrow V \setminus C \]
11: \[\text{Tarjan}(G(V, E(V))) \]

- Do simple trimming
- Perform single iteration of FW-BW to remove giant SCC
- Do coloring until some threshold of remaining vertices is reached
- Finish with serial algorithm
Since we don’t care about \((D \setminus S), (P \setminus S), R\) sets, we only need to look for
\((S = P \cap D)\)
Multistep Method

- Since we don’t care about \((D \setminus S), (P \setminus S), R\) sets, we only need to look for \((S = P \cap D)\).
- Begin as before, select pivot and find all of \((D)\).
Multistep Method

- Since we don’t care about \((D \setminus S), (P \setminus S), R\) sets, we only need to look for \((S = P \cap D)\).
- Begin as before, select pivot and find all of \((D)\).
- For backward search, only consider vertices already marked in \((D)\).
Multistep Method

- Since we don’t care about \((D \setminus S), (P \setminus S), R\) sets, we only need to look for
 \((S = P \cap D)\)
- Begin as before, select pivot and find all of \((D)\)
- For backward search, only consider vertices already marked in \((D)\)
Multistep Method

- Since we don’t care about \((D \setminus S), (P \setminus S), R\) sets, we only need to look for \((S = P \cap D)\)
- Begin as before, select pivot and find all of \((D)\)
- For backward search, only consider vertices already marked in \((D)\)
- For certain graphs, this can dramatically decrease the search space
Implementation Details

- Simple trimming can be implemented using flip of a boolean array.
- Complete trimming also needs a current and future queues for parallel performance. (Thread private queues combined at the end of an iteration).
- BFS and coloring use thread local queues as well.
- “visited” array is not a bitmap, but a boolean.
 - more accesses to “visited” than BFS
 - less arithmetic to find the index
 - guaranteed atomic read/writes at byte level (Intel IA-32, Intel 64)
- Per socket graph partitioning did not help performance
- “Direction-optimizing” BFS (Beamer et al) is used as well.
Implementation Details
Extending Multistep to CC and WCC

1: procedure MULTISTEP-(W)CC(G(V, E))
2: \(T \leftarrow \text{MS-SimpleTrim}(G) \)
3: \(V \leftarrow V \setminus T \)
4: Select \(v \in V \) for which \(d_{in}(v) \times d_{out}(v) \) is maximal
5: \(S \leftarrow \text{BFS}(G(V, E(V) \cup E'(V)), v) \)
6: \(V \leftarrow V \setminus S \)
7: while NumVerts(V) > \(n_{\text{cutoff}} \) do
8: \(C \leftarrow \text{MS-Coloring}(G(V, E(V) \cup E'(V))) \)
9: \(V \leftarrow V \setminus C \)
10: BFS-(W)CC(G(V, E(V) \cup E'(V)))

- Simple to extend Multistep idea to CC, WCC
- Trim zero degree verts
- Run single BFS including both in and out edges for WCC
- Perform Coloring with both in and out edges
- Run standard serial BFS algorithm for (W)CC with remainder
Performance Results
Test Algorithms

- **Multistep**: Simple trimming, parallel BFS, coloring until less than 100k vertices remain, serial Tarjan
- **FW-BW**: Complete trimming, FW-BW algorithm until completion
- **Coloring**: Coloring.
- **Serial**: Serial Tarjan
- **Hong et al**: FW-BW, custom task queue.
- **Multistep-(W)CC**: Multistep for CC and WCC
- **Ligra**: Ligra CC coloring implementation (Shun and Blelloch PPoPP13)
Performance Results
Test Environment and Graphs

- Compton (Intel): Xeon E5-2670 (Sandybridge), dual socket, 16 cores.

<table>
<thead>
<tr>
<th>Network</th>
<th>n</th>
<th>m</th>
<th>deg avg</th>
<th>deg max</th>
<th>\tilde{D}</th>
<th>(S)CCs count</th>
<th>(S)CCs max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>53M</td>
<td>2000M</td>
<td>37</td>
<td>780K</td>
<td>19</td>
<td>12M</td>
<td>41M</td>
</tr>
<tr>
<td>ItWeb</td>
<td>41M</td>
<td>1200M</td>
<td>28</td>
<td>10K</td>
<td>830</td>
<td>30M</td>
<td>6.8M</td>
</tr>
<tr>
<td>WikiLinks</td>
<td>26M</td>
<td>600M</td>
<td>23</td>
<td>39K</td>
<td>170</td>
<td>6.6M</td>
<td>19M</td>
</tr>
<tr>
<td>LiveJournal</td>
<td>4.8M</td>
<td>69M</td>
<td>14</td>
<td>20K</td>
<td>18</td>
<td>970K</td>
<td>3.8M</td>
</tr>
<tr>
<td>XyceTest</td>
<td>1.9M</td>
<td>8.3M</td>
<td>4.2</td>
<td>246</td>
<td>93</td>
<td>400K</td>
<td>1.5M</td>
</tr>
<tr>
<td>RDF_Data</td>
<td>1.9M</td>
<td>130M</td>
<td>70</td>
<td>10K</td>
<td>7</td>
<td>1.9M</td>
<td>1</td>
</tr>
<tr>
<td>RDF_linkedct</td>
<td>15M</td>
<td>34M</td>
<td>2.3</td>
<td>72K</td>
<td>13</td>
<td>15M</td>
<td>1</td>
</tr>
<tr>
<td>R-MAT.20</td>
<td>0.56M</td>
<td>8.4M</td>
<td>15</td>
<td>24K</td>
<td>9</td>
<td>210K</td>
<td>360K</td>
</tr>
<tr>
<td>R-MAT.22</td>
<td>2.1M</td>
<td>34M</td>
<td>16</td>
<td>60K</td>
<td>9</td>
<td>790K</td>
<td>1.3M</td>
</tr>
<tr>
<td>R-MAT.24</td>
<td>7.7M</td>
<td>130M</td>
<td>17</td>
<td>150K</td>
<td>9</td>
<td>3.0M</td>
<td>4.7M</td>
</tr>
<tr>
<td>GNP.1</td>
<td>10M</td>
<td>200M</td>
<td>20</td>
<td>49</td>
<td>7</td>
<td>1</td>
<td>10M</td>
</tr>
<tr>
<td>GNP.10</td>
<td>10M</td>
<td>200M</td>
<td>20</td>
<td>49</td>
<td>7</td>
<td>10</td>
<td>5.0M</td>
</tr>
<tr>
<td>Friendster</td>
<td>66M</td>
<td>1800M</td>
<td>53</td>
<td>5.2K</td>
<td>34</td>
<td>70</td>
<td>66M</td>
</tr>
<tr>
<td>Orkut</td>
<td>3.1M</td>
<td>117M</td>
<td>76</td>
<td>33K</td>
<td>11</td>
<td>1</td>
<td>3.1M</td>
</tr>
<tr>
<td>Cube</td>
<td>2.1M</td>
<td>62M</td>
<td>56</td>
<td>69</td>
<td>157</td>
<td>47K</td>
<td>2.1M</td>
</tr>
<tr>
<td>Kron.21</td>
<td>1.5M</td>
<td>91M</td>
<td>118</td>
<td>213K</td>
<td>8</td>
<td>94</td>
<td>1.5M</td>
</tr>
</tbody>
</table>
Doing complete trimming isn’t always the best choice for multistep; sometimes even no trimming is fastest; extra trimming work is handled better by coloring or serial algorithm.

Complete is almost always the best choice when doing FW-BW.
The graph structure determines the runtime of different stages

- Large number of non-trivial SCCs affects FW-BW (tasking overhead)
- Large diameter or a large SCC affects coloring
Both Multistep and Hong et al scale well in most graphs.

Lots of small non-trivial SCCs in ItWeb affects the performance of Hong et al.

Relative to Tarzan’s Algorithm, Multistep results in better speedups.
Performance Results

Runtime and Speedups

<table>
<thead>
<tr>
<th>Network</th>
<th>Serial</th>
<th>MS</th>
<th>Hong</th>
<th>FW-BW</th>
<th>Color</th>
<th>MS Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Serial</td>
</tr>
<tr>
<td>Twitter</td>
<td>33.0</td>
<td>1.60</td>
<td>2.6</td>
<td>120.00</td>
<td>40.0</td>
<td>20.0×</td>
</tr>
<tr>
<td>ItWeb</td>
<td>6.7</td>
<td>1.80</td>
<td>16.0</td>
<td>1400.00</td>
<td>7.1</td>
<td>3.6×</td>
</tr>
<tr>
<td>WikiLinks</td>
<td>4.9</td>
<td>0.90</td>
<td>0.98</td>
<td>270.00</td>
<td>9.3</td>
<td>5.5×</td>
</tr>
<tr>
<td>LiveJournal</td>
<td>1.3</td>
<td>0.11</td>
<td>0.20</td>
<td>4.10</td>
<td>1.6</td>
<td>12.0×</td>
</tr>
<tr>
<td>XyceTest</td>
<td>0.2</td>
<td>0.04</td>
<td>0.08</td>
<td>0.07</td>
<td>0.37</td>
<td>4.7×</td>
</tr>
<tr>
<td>R-MAT_24</td>
<td>2.4</td>
<td>0.25</td>
<td>0.25</td>
<td>0.62</td>
<td>2.4</td>
<td>9.5×</td>
</tr>
<tr>
<td>GNP_1</td>
<td>7.2</td>
<td>0.15</td>
<td>0.30</td>
<td>1.60</td>
<td>6.5</td>
<td>47.0×</td>
</tr>
<tr>
<td>GNP_10</td>
<td>5.5</td>
<td>2.90</td>
<td>5.10</td>
<td>1.20</td>
<td>3.5</td>
<td>1.9×</td>
</tr>
</tbody>
</table>
Performance Results - Connected Components

Strong Scaling

- Multistep for CC compared to MS-Coloring and Ligra CC color-based approach
- Scaling shown against baseline serial BFS approach
Performance Results - Weakly Connected Components

Strong Scaling

- Multistep for WCC compared to MS-Coloring
Conclusions and Future work

- New Multistep shared-memory algorithm for computing CCs, SCCs, and WCCs in large graphs
- Faster than three different algorithms on a variety of graphs
- Current state of task parallellism in OpenMP/TBB is not fine-grained enough for these algorithms
- Future work: investigate performance on many-core architectures (Xeon Phi) and scaling for larger graphs
Conclusions and Future work

- New Multistep shared-memory algorithm for computing CCs, SCCs, and WCCs in large graphs
- Faster than three different algorithms on a variety of graphs
- Current state of task parallellism in OpenMP/TBB is not fine-grained enough for these algorithms
- Future work: investigate performance on many-core architectures (Xeon Phi) and scaling for larger graphs

Questions?

