Characterizing Biological Networks Using Subgraph Counting and Enumeration

George Slota Kamesh Madduri

madduri@cse.psu.edu

Computer Science and Engineering

The Pennsylvania State University

SIAM PP14

February 20, 2014
of speakers mentioning protein interaction networks

4 out of 5 (including me)

of speakers mentioning BFS

3 out of 5
Acknowledgments

• NSF ACI award 1253881
• NSF XSEDE allocation TG-CCR13006
• Siva Rajamanickam, Sandia

• Current and past organizers of parallel graph analysis minisymposia at SIAM PP
Parallel Processing

- SIAM Conference on Parallel Processing for Scientific Computing (PP14)
- SIAM Conference on Parallel Processing for Scientific Computing (PP12)
- SIAM Conference on Parallel Processing for Scientific Computing (PP10)
- SIAM Conference on Parallel Processing for Scientific Computing (PP08)
- SIAM Conference on Parallel Processing for Scientific Computing (PP06)
- SIAM Conference on Parallel Processing for Scientific Computing (PP04)
- Tenth SIAM Conference on Parallel Processing for Scientific Computing (SIAG/SC) (PP01)
- Ninth SIAM Conference on Parallel Processing for Scientific Computing (PP99)
- Eighth SIAM Conference on Parallel Processing (PP97)
- Seventh SIAM Conference on Parallel Processing (PP95)
- Sixth SIAM Conference on Parallel Processing (PP93)
- Fifth SIAM Conference on Parallel Processing (PP91)
- Fourth SIAM Conference on Parallel Processing (PP89)
- Third SIAM Conference on Parallel Processing (PP87)
- Second SIAM Conference on Parallel Processing (PP85)
MS16
Parallel Graph Algorithms

4:00 PM - 6:00 PM
Room: Carmel - 2nd Floor

Graph algorithms have long played a pivotal enabling role in many applications of parallel computing, su applications. While these are still active research areas, important, emerging areas of science, which are fi computational biology, scientific data mining, and network analysis, are changing the relationship between performance, graph algorithms are now customers for parallel computing. This minisymposium will addr approaches.

Organizer: Bruce Hendrickson
Sandia National Laboratories, USA
Ali Pinar
Sandia National Laboratories, USA

4:00-4:25 Computing Approximate Matchings in Parallel abstract
Fredrik Manne,

4:30-4:55 Scalable Graph-Theoretical Approaches to Biological Network Analysis abstract
Nagiza F. Samatova, ; Yun Zhang, ; Henry Suters, ; Faisal Abu-Khzam, ; Michael A. Langston,

5:00-5:25 The Parallel Boost Graph Library abstract
Andrew Lumsdaine and Douglas Gregor,

5:30-5:55 A Graph Infrastructure for Multithreaded Architectures abstract
Jonathan Berry,
Network motifs in protein interaction networks (PINs) and gene-disease networks

Signaling pathways in PINs

Two high-scoring pathways from human PIN

C Elegans PIN

Diseasome
DisGeNET

<table>
<thead>
<tr>
<th>SHC1</th>
<th>Grb2</th>
<th>EGFR</th>
<th>PTPN1</th>
<th>INSR</th>
<th>Irs1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SH3KBP1</th>
<th>CBL</th>
<th>Grb2</th>
<th>EGFR</th>
<th>GRB2</th>
<th>SOS1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SHC1</th>
<th>Grb2</th>
<th>EGFR</th>
<th>PTPN1</th>
<th>INSR</th>
<th>Irs1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SH3KBP1</th>
<th>CBL</th>
<th>Grb2</th>
<th>EGFR</th>
<th>GRB2</th>
<th>SOS1</th>
</tr>
</thead>
</table>

Network motifs in protein interaction networks (PINs) and gene-disease networks.
Our new parallel approach: FASCIA

• For **subgraph counting**: Parallel and memory-efficient implementation of an approximation algorithm based on the **color-coding** technique
 – $O(2^k e^k m)$ work (exhaustive search requires $O(n^k)$ work)

• Significantly faster (at least **10X**) than prior parallel color-coding implementations

• Multicore parallelism: Slota and Madduri, Proc. ICPP 2013

• Distributed-memory parallelism and network analysis: Slota and Madduri, Proc. IPDPS 2014 (to appear)

FASCIA features

• Get approximate counts of tree-structured templates
• Determine network motifs
• Comparative network analysis using
 – Graphlet frequency distances (GFD)
 – Graphlet degree distributions (GDD)
 – Graphlet degree signatures (GDS)
• Cluster networks into categories
• New: simple modifications to find signaling pathways in protein interaction networks (PINs)
This talk: FASCIA applied to PIN analysis and comparative network analysis

• The dynamic programming scheme and shared-memory parallelism

• FASCIA and approximate counting for finding motifs in protein interaction networks

• Comparative network analysis

• Parallel performance results
FASCIA Algorithm and Parallelization Overview

- Template partitioning
- Count number of colorful occurrences of template
 - Memory-intensive step
 - $O(m2^k)$ work; $O(n2^k)$ space requirements
 - Optimizations, Parallelization of dynamic programming-based counting step
- Estimate the total number of occurrences
Color-coding approximation strategy

- Alon et al., 1995: approximate counting of tree-like non-induced subgraphs
Color-coding approximation strategy

Template

Randomly “color” vertices of graph

$k = 3$
Color-coding approximation strategy

Possible colorful embeddings
Color-coding approximation strategy

Possible colorful embeddings

Identify colorful embeddings
Color-coding approximation strategy

- Cntcolorful = 3, Probability of colorful embedding = 3!/33
- Perform multiple (~ ek) coloring iterations
- Each iteration requires $O(m^{2k})$ work
FASCIA Algorithm

1: Partition input template T (k vertices) into subtemplates S_i using single edge cuts.
2: Select N_{iter} to be performed
3: for $i = 1$ to N_{iter} do
4: Randomly assign to each vertex v in graph G a color between 0 and $k-1$.
5: for all $v \in G$ do
6: Use a dynamic programming scheme to count colorful non-induced occurrences of T rooted at v.
7: end for
8: end for
9: Take average of all N_{iter} counts to be final count.
Counting step

1: for all sub-templates S_i created from partitioning T, in reverse order they were created during partitioning do
2: for all vertices $v \in G$ do
3: if S_i consists of a single node then
4: Set $\text{table}[S_i][v][\text{color of } v] := 1$
5: else
6: S_i consists of active child a_i and passive child p_i
7: for all colorsets C of unique values mapped to S do
8: Set $\text{count} := 0$
9: for all $u \in N(v)$, where $N(v)$ is the neighborhood of v do
10: for all possible combinations C_a and C_p created by splitting C and mapping onto a_i and p_i do
11: $\text{count} += \text{table}[a_i][v][C_a] \cdot \text{table}[p_i][u][C_p]$
12: end for
13: end for
14: Set $\text{table}[S_i][v][C] := \text{count}$
15: end for
16: end if
17: end for
18: end for
19: $\text{templateCount} := \sum_v \sum_C \text{table}[T][v][C]$
Test network families, example templates

<table>
<thead>
<tr>
<th>Network type</th>
<th># of networks</th>
<th># of edges in largest network</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINs</td>
<td>8</td>
<td>22 K</td>
</tr>
<tr>
<td>Web crawls</td>
<td>4</td>
<td>3.9 M</td>
</tr>
<tr>
<td>Social networks</td>
<td>6</td>
<td>5.4 M</td>
</tr>
<tr>
<td>Road</td>
<td>5</td>
<td>2.8 M</td>
</tr>
<tr>
<td>Collaboration</td>
<td>6</td>
<td>1.05 M</td>
</tr>
<tr>
<td>Large soc. net (Orkut)</td>
<td>1</td>
<td>117 M</td>
</tr>
<tr>
<td>Large synth. urban pop. (Portland!)</td>
<td>1</td>
<td>31 M</td>
</tr>
</tbody>
</table>

Diagram of network templates:
Motifs: frequently-occurring subgraphs of certain size and structure

![Graphical representation of motif frequencies for different organisms: E. Coli, S. Cerevisiae, H. Pylori, and C. Elegans. The x-axis represents different motif structures, and the y-axis shows the relative frequency. Each line color corresponds to a specific organism, demonstrating variations in motif frequency across different structures.](image-url)
Error

H. Pylori, Subgraphs of size 7
Error

H. Pylori, Subgraphs of size 7
Error

Enron email network
Graphlet degree distributions

Enron

Portland

Slashdot

G(n,p) random
Graphlet frequency distribution agreement scores heatmap

Road networks

PINs

P2P

Collaboration networks
How similar are PINs to each other?
Execution times for various template sizes

Portland network (31M edges)
Single node performance (Intel Sandy Bridge server, 16 cores)
Shared-memory strong scaling

Portland network (31M edges), U12-2 template
Single node performance (Intel Sandy Bridge server, 16 cores)
1 color-coding iteration

![Graph showing execution time vs. processor cores]

11.8x speedup
Multi-node strong scaling

Orkut network (117M edges)
Performance on an Intel Sandy Bridge cluster (1-15 nodes)

Template

![Graph showing execution time vs. number of MPI tasks for U12-1 and U12-2, with a 6.8x speedup for U12-2.]
Multi-node strong scaling
(communication time)
Orkut network (117M edges)
Performance on an Intel Sandy Bridge cluster (1-15 nodes)

No scaling:
Comm Volume proportional to # of MPI tasks!
FASCIA Summary and Current Work

• FASCIA: Color-coding parallel implementation applied to count subgraphs

• Current work: FastPath, color-coding applied to enumerate simple short paths

• FASCIA performance optimization
 – Graph coarsening
 – Reduce memory utilization
 – Fix the (computation) load imbalance at high concurrencies with better graph partitioning
 – Hide inter-node communication, non-blocking collectives

• Source code: Will be up at fasciapsu.sourceforge.net
Thank you!

- Questions?
 - madduri@cse.psu.edu
 - http://www.cse.psu.edu/~madduri
Backup slides
Subgraph counting

Template

Larger Network
Subgraph counting

Template → Larger Network
Subgraph counting

Template

Larger Network
Subgraph enumeration
Subgraph enumeration

Mapped to vertices:
4 1 2 7 8
Subgraph enumeration

Mapped to vertices:
4 1 2 7 8
8 4 5 11 10
Subgraph enumeration

Subgraph vertices:

| 1 | 2 | 3 | 4 | 5 |

Mapped to Graph vertices:

<table>
<thead>
<tr>
<th>4</th>
<th>1</th>
<th>2</th>
<th>8</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Graph diagram with vertices labeled 1 to 12.
Induced vs. Non-induced subgraphs

G_T

G
Motivation: Why fast algorithms for subgraph counting?

• Important in bioinformatics, chemoinformatics, social network analysis, communication network analysis, etc.

• Forms basis of more complex analysis
 – Motif finding
 – Graphlet frequency distance (GFD)
 – Graphlet degree distributions (GDD)
 – Graphlet degree signatures (GDS)

• Exact counting and enumeration on large networks is very compute-intensive, $O(nk)$ work complexity for naïve algorithm
GFD

• Numerically compare occurrence frequency to other networks

\[S_i(G) = - \log\left(\frac{C_i(G)}{\sum_{i=1}^{n} C_i(G)} \right) \]

\[D(G, H) = \sum_{i=1}^{n} |S_i(G) - S_i(H)| \]