FASCIA: Fast Approximate Subgraph Counting and Enumeration
George M. Slota and Kamesh Madduri
Department of Computer Science and Engineering
The Pennsylvania State University

Abstract
We present a new shared-memory parallel implementation of Alon et al.’s color-coding technique called FASCIA for the problems of approximate subgraph counting and subgraph enumeration.

Reported runtimes were retrieved from a single node of Gordon at the San Diego Supercomputing Center. The graphs used came from the SNAP database, Virginia Tech Network Dynamics and Simulation Science Laboratory.

Algorithmic Optimizations
- Multiple parallelization strategies
- Representation of subgraph colorings as single integers using a combinatorial indexing system
- Pre-computation of complex operations stored in cache-resident table
- Template partitioning scheme that allows up to k^2 reduction in total work performed

Memory Optimizations
- Smart storage and dynamic programming table initialization
- Careful template partitioning and organization
- Fast hash table which exploits random graph coloring to reduce collisions
- These memory optimizations can demonstrate up to a 90% reduction in memory usage over the naive approach

Color-Coding Technique
Color-coding allows an approximation algorithm for subgraph counting that runs in about $O(n^2 \cdot k^4 \cdot e^4)$ instead of $O(n^4)$ for the exact naïve algorithm, where n is the number of edges in the graph, n is the number of vertices, and k is the number of vertices in the subgraph. The procedure for the algorithm is as follows:
- Randomly color every vertex in the graph with at least k colors
- Use a dynamic programming scheme to count the number of colorful subgraph embeddings, where colorful means each subgraph vertex has a distinct color
- Scale this count by the probability that any given embedding will be colorful
- Repeat the first three steps some number of times
- Average all determined counts and output result

Test Environment

Runtimes and Parallel Scaling
Figure 3 demonstrates how FASCIA can produce real-time count estimates for templates up to 7 nodes in size on a large 33 million edge network. Template up to 12 nodes complete in a matter of minutes.

Using a 12 node template on a large network, we achieve $12 \times$ parallel speedup. On a smaller network we can parallelize multiple simultaneous counts, and achieve over a $6.5 \times$ parallel speedup.

Error Bounds
Testing demonstrates that for even a modest sized network, error is very small after few iterations. Error decreases with increasing network size but increase with increasing template size.

Motif Finding
Motif finding is determining frequently occurring subgraphs by comparing counts between networks, and has found importance within the field of bioinformatics. Below we demonstrate counts for all 11 possible 7 vertex templates on 4 biological networks. All counts were calculated in a few minutes with under 1% error.

Figure 6: Motif finding on E. coli, S. cerevisiae, H. pylori, and C. elegans

Graphlet Degree Distributions
Similar to a regular degree distribution, a graphlet degree distribution is the number of vertices have a distinct number of subgraph embeddings. This distribution can be used to compare networks on the basis of local structural similarity.

Figure 7: Graphlet degree distribution for template U5-2 on the Enron network and a random $O(n, p)$ graph of the same size and average degree

Conclusions
- Through algorithmic optimizations, FASCIA achieves considerable speedup compared to prior work while reducing memory consumption and parallel overhead
- FASCIA is especially useful for motif finding and calculating graphlet degree distributions