CMPEN 411
VLSI Digital Circuits
Spring 2009

Lecture 06: Static CMOS Logic

Review: CMOS Process at a Glance

- Define active areas
- Etch and fill trenches
- Implant well regions
- Deposit and pattern polysilicon layer
- Implant source and drain regions and substrate contacts
- Create contact and via windows
- Deposit and pattern metal layers

- One full photolithography sequence per layer (mask)
- Built (roughly) from the bottom up:
 4 metal
 2 polysilicon exception!
 3 source and drain diffusions
 1 tubs (aka wells, active areas)
CMOS Circuit Styles

- **Static complementary CMOS** - except during switching, output connected to either V_{DD} or GND via a low-resistance path
 - high noise margins
 - full rail to rail swing
 - V_{OH} and V_{OL} are at V_{DD} and GND, respectively
 - low output impedance, high input impedance
 - no steady state path between V_{DD} and GND (no static power consumption)
 - delay a function of load capacitance and transistor resistance
 - comparable rise and fall times (under the appropriate transistor sizing conditions)

- **Dynamic CMOS** - relies on temporary storage of signal values on the capacitance of high-impedance circuit nodes
 - simpler, faster gates
 - increased sensitivity to noise
Static Complementary CMOS

- Pull-up network (PUN) and pull-down network (PDN)

V\(_{DD}\)

- **PMOS transistors only**
 - pull-up: make a connection from V\(_{DD}\) to F when \(F(In_1, In_2, \ldots, In_N) = 1\)

- **NMOS transistors only**
 - pull-down: make a connection from F to GND when \(F(In_1, In_2, \ldots, In_N) = 0\)

Question: How many transistors are used to implement \(N\)-input function \(F(In_1, In_2, \ldots, In_N)\)?
Construction of PDN

- NMOS devices in series implement a NAND function

\[\overline{A \cdot B} \]

- NMOS devices in parallel implement a NOR function

\[\overline{A + B} \]
Dual PUN and PDN

- PUN and PDN are dual networks
 - DeMorgan’s theorems

\[
A + B = \overline{A \cdot B} \quad \text{and} \quad \overline{A + B} = \overline{A} \cdot \overline{B} \\
A \cdot B = \overline{A + B} \quad \text{and} \quad \overline{A \cdot B} = \overline{A} + \overline{B}
\]

- a parallel connection of transistors in the PUN corresponds to a series connection of the PDN

- Complementary gate is naturally inverting (NAND, NOR, AOI, OAI)

- Number of transistors for an N-input logic gate is 2N
CMOS NAND

A • B

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Sp09 CMPEN 411 L06 S.7
CMOS NOR

\[
\begin{array}{c}
A + B \\
\hline
B \\
A \\
\hline
\end{array}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Complex CMOS Gate

OUT = !(D + A \cdot (B + C))
Complex CMOS Gate

\[\text{OUT} = \neg (D + A \cdot (B + C)) \]
Naturally inverting, implementing only functions such as NAND, NOR, and XNOR in a single stage.

PMOS transistors only
- pull-up: make a connection from V_{DD} to F when $F(In_1, In_2, ... In_N) = 1$

NMOS transistors only
- pull-down: make a connection from F to GND when $F(In_1, In_2, ... In_N) = 0$

Question 1: why PUN are PMOS only and PDN are NMOS only?
Threshold Drops

PUN

PDN
Threshold Drops

PUN

\[V_{DD} \]

\[0 \rightarrow V_{DD} \]

\[C_L \]

PDN

\[V_{DD} \rightarrow 0 \]

\[V_{GS} \]

\[V_{DD} \rightarrow |V_{Tp}| \]
Standard Cell Layout Methodology

What logic function is this?
OAI21 Logic Graph

\[X = \neg(C \cdot (A + B)) \]

Sp09 CMPEN 411 L06 S.15
Two Stick Layouts of \(!{(C \cdot (A + B))}\)

crossover requiring vias

uninterrupted diffusion strip
Consistent Euler Path

- An uninterrupted diffusion strip is possible only if there exists a Euler path in the logic graph.
 - Euler path: a path through all nodes in the graph such that each edge is visited once and only once.

For a single poly strip for every input signal, the Euler paths in the PUN and PDN must be consistent (the same).
Consistent Euler Path

- An uninterrupted diffusion strip is possible only if there exists a Euler path in the logic graph.
 - Euler path: a path through all nodes in the graph such that each edge is visited once and only once.

- For a single poly strip for every input signal, the Euler paths in the PUN and PDN must be consistent (the same).
OAI22 Logic Graph

\[X = !(A+B)\cdot(C+D) \]
Some functions have no consistent Euler path like $x = !(a + bc + de)$ (but $x = !(bc + a + de)$ does!)
XNOR/XOR Implementation

- How many transistors in each?
- Can you create the stick transistor layout for the lower left circuit?
VTC is Data-Dependent

The threshold voltage of M_2 is higher than M_1 due to the body effect (γ)

$V_{Tn1} = V_{Tn0}$

$V_{Tn2} = V_{Tn0} + \gamma(\sqrt{|2\phi_F| + V_{int}} - \sqrt{|2\phi_F|})$

since V_{SB} of M_2 is not zero (when $V_B = 0$) due to the presence of C_{int}
Static CMOS Full Adder Circuit
Static CMOS Full Adder Circuit (page 565)

\[C_{out} = AB + BC_{in} + AC_{in} \]
\[\text{Sum} = ABC_{in} + !C_{out}(A+B+C_{in}) \]

\[C_{out} = C_{in} \land (A \lor B) \lor (A \land B) \]
\[\text{Sum} = !C_{out} \land (A \lor B \lor C_{in}) \lor (A \land B \land C_{in}) \]

\# transistors = 24+4
Two chips you are seeing today

PowerPC 750 Copper

Microprocessor

ASIC (Application Specific IC)
Standard Cell Library

NAND

INV
Standard Cell Library
The design flow

VHDL (decoder.vhd) → Simulation → Synthesis

Standard Cell Lib

Verilog netlist (decoder.v)

Place/Route

Physical layout (decoder.cif) → Fab

Silicon Ensemble
The IBM ASIC Design Flow
Next Lecture and Reminders

Next lecture

- Pass transistor logic
 - Reading assignment – Rabaey, et al, 6.2.3