
Safe Java Native InterfaceS J v N v c

Gang Tan*, Andrew W. Appel#, Srimat Chakradhar◊,
Anand Raghunathan◊, Srivaths Ravi◊, and Daniel Wang#

*Boston College
#Princeton Universityy
◊NEC Labs America

dHeterogeneous Programming Paradigm

…

C code C# codeJava code

Application

Reuse legacy code
Mix-and-match benefits of different languages

E.g., C is faster and more flexible than Java
E.g., Java based GUIs are easier to develop

2

F i F i I f (FFI)Foreign Function Interfaces (FFIs)
Most modern languages have FFIs

Java, ML, OCaml, Haskell, …

FFIs address issues such as
Representation of datap
Calling conventions
Memory managementy g
…

3

What about Safety and Security?
Same address space

C codeJava code
Same address space

Application

Weakly typedStrongly typed

Memory unsafeMemory safe Memory unsafeMemory safe

The whole application becomes memory unsafe!

4

pp y

A h f S fApproaches for Safe Interoperation:
Component models: COM, DCOM, SOAP,
CORBA

Different address spaces
Communication via RPCs
But, high performance overhead and inflexible

Rewrite every component in a safe y p
language

Substantial programming effortp g g
Hard/impossible sometimes

5
We focus on FFI-based approaches.

Our Focus: Java Native Interface (JNI)

C codeJava code
J
N
I

J ll C i l d h dJava can call C-implemented methods
C code can

Access update and create Java objectsAccess, update and create Java objects
Call a Java method
Catch and raise exceptions

6

…

lOur Goal
Make calling native C code in Java as safe
as calling Java code in Java
Benefits:

Reuse legacy C code in Java safely and g y y
conveniently
Improve the security of Java platform

JDK 1.4.2 contains over 600,000 lines of C code
under the cover of JNI

More lightweight and flexible comparing to More lightweight and flexible comparing to
RPC-based approaches

7

T S b blTwo Subproblems
Provide internal safety for C Code.

CCured [Necula, Condit, et al.]
Ensure memory-safety by source-to-source
transformation
Insert runtime checksInsert runtime checks
Heavily optimized

Cyclone [Jim, Morrisett, et al.]Cyclone [Jim, Morrisett, et al.]

Safe interoperation between C and Java
Ensure that C uses JNI in a principled wayEnsure that C uses JNI in a principled way

8

lOutline
Motivation
JNI and its loopholesp
SafeJNI system
Preliminary experimentsPreliminary experiments
Future work

9

An E ample Of Using JNIAn Example Of Using JNI
class IntArray {
…
native int sumArray(int arr[]);
…
} Java code

C code

10

dUsing JNI in C Code
Pass in a pointer to the int arrayGet a pointer into

C code

Pass in a pointer to the int arrayGet a pointer into
the Java heap

Pointer arith.

Well behaved C code manipulates Java

Get the length of the array

11

Well-behaved C code manipulates Java
objects through JNI APIs

Loophole: Out-of-Bounds Accesses

Out-of-bound write;

12

;
destroys JVM’s state

Loophole: Arguments of Wrong Classes
JNI completely ignores the Java class
hierarchy

All Java classes are mapped to jobject * in C

C can pass objects of

13

wrong classes to Java

Loophole: Calling Wrong Methods

Nothing prevents C from calling
GetFloatArrayElements

14

GetFloatArrayElements

Loophole: Manual Memory
Management

Dangling pointers; memory leak; release twice

15

g g p ; y ;

Safety/Security Vulnerabilities in JNI
Bypassing JNI: direct read/write through Java
pointers
Out-of-bounds array access
Passing objects of wrong classes to Java
No access control
Manual memory management
Calling wrong methods
Exception handling
Out of the Java sandbox security model

At best: causes a JVM crash
16

At best: causes a JVM crash
At worst: security violation

lOutline
Motivation
JNI and its loopholesp
SafeJNI system
Preliminary experimentsPreliminary experiments
Future work

17

Safe Java Native Interface (SafeJNI)Safe Java Native Interface (SafeJNI)

Goal:Goal:
Make calling native C code in Java as safe as
calling Java code in Javacalling Java code in Java

C codeJava code

JNI

• A pointer kind system
• Safe mem. management

V i d i h k
18

• Various dynamic checks

b l fRestricting Capabilities of Pointers
Opaqueness of Java object pointers

Can pass them as arguments to JNI APIs
No pointer arith./cast/read/write

Java primitive array pointersp y p
Allow pointer arith., but must be within bounds
Carry bounds information at runtimey

19

A d SA Pointer Kind System
Classify pointers with different capabilitiesClassify pointers with different capabilities
An extension of CCured’s pointer kinds

Pointer Kind Description Capabilities

t *HNDL Java handle Pass to JNI APIs; t *HNDL Java handle
Pointers

Pass to JNI APIs;
equality testing

t *RO Read-only read

Model JNI
interface
pointers

pointers
t *SAFE Safe pointer read/write
t *SEQ Sequence Above + pointer M d l J t *SEQ Sequence

pointers
Above + pointer
arithmetic

t *WILD Wild pointers Above + casts

Model Java
primitive

array
pointe s

20

pointers

Memory Management in JNI
Java Heap C Heap

GC

Java Heap

objects

 C Heap

Java

After step 4

pointer 2

pointer 1
After step 4,
“Pointer 1” is
dangling if GCpointer 2 dangling if GC
recycles the buffer

1. C calls GetIntArrayElements and gets “pointer 1”
2. In GetIntArrayElements, JVM pins the buffer so that y , p

GC will not move it
3. When it’s done, C calls ReleaseIntArrayElements

21
4. JVM unpins the buffer

S l fOur Solution for Mem. Management
Java Heap C Heap

validity tagGC
0/1

Java Heap

objects

 C Heap

Java

0/1

pointer 1

pointer 2pointer 2

Create a validity tag
Change the representation of a pointer to a structg p p
In GetIntArrayElements, init the tag to 1
In ReleaseIntArrayElements, change the tag to 0

22

In ReleaseIntArrayElements, change the tag to 0
Before dereferencing, check that the tag is 1

Various Dynamic Checks
Runtime type checking

E.g., when GetIntArrayElements is called, check g , y ,
the second arg. is an int-array object
When a Java method is called, check the
number and classes of arguments

Access control
Check during “get field ID”

Exception checkingException checking
Non-null checking

23
Java maintains all information at runtime

S f S T f dSafeJNI System: On Top of CCured

C code Annotated
jni.h Insert

Checks J d

Kind
Inference Engine

Checks

Safe

Java code

JInference Engine

Annotated C code

Safe
C code

Java
Compiler

Annotated C code

Type

gcc

Lib

Bytecode

linkType
Checker

Library
code

link

24NO Yes

lOutline
Motivation
JNI and its loopholesp
SafeJNI system
Preliminary experimentsPreliminary experiments
Future work

25

Microbenchmarks

2.19 2.09
2

2.5

1.49
1 29

1.5

2

1.29
1.14

1

SafeJNI/JNI
Ratio

0.5

0

26

Zlib Experiment
Zlib compression library

9,000 lines of C code + 262 lines of glue 9,000 lines of C code 262 lines of glue
code
The basis for java util zipThe basis for java.util.zip

SafeJni
Ratio

CCured
Ratio

JZlib*
Ratio

Zlib 1 63 1 46 1 74Zlib 1.63 1.46 1.74

* JZlib is a 100% pure Java reimplemention of Zlib

27

* JZlib is a 100% pure Java reimplemention of Zlib

A Safety Loophole in java.util.zip
Zlib maintains a z_stream struct

For keeping state info

The Deflater object needs to store a
pointer to this C structp

However, it’s difficult to define a pointer to a C
struct in Java!

class Deflater {
private long strm;p g ;
…

}

28
Then C casts it back to a pointer

A Safety Loophole in java.util.zip
With reflection support, we can change
the private long.
import java.lang.reflect.*;
import java.util.zip.Deflater;
public class Bug {

public static void main(String args[]) {
Deflater deflate = new Deflater();Deflater deflate new Deflater();

byte[] buf = new byte[0];
Class deflate_class = deflate.getClass();
try {

Field strm = deflate_class.getDeclaredField("strm");
strm setAccessible(true);

Crashed Sun’s JVM
and IBM’s VM

strm.setAccessible(true);
strm.setLong(deflate,1L);

} catch (Throwable e) {
e.printStackTrace();

}
deflate.deflate(buf);

}
}
/* Policy file needed in a secure environment */
grant {

29

grant {
permission java.lang.RuntimePermission "accessDeclaredMembers";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

};

Related Work
OCaml’s FFI [Furr and Foster]

Track OCaml types in C to prevent misuseyp p

NestedVM [Alliet and Megacz]
Put native code into a separate VMPut native code into a separate VM
Slowdown ratio: 200% to 900%

Janet [Bubak et al]Janet [Bubak et al.]
A cleaner interface

“ X h k j i”“-Xcheck:jni”
Incomplete and undocumented

30

Future Work
Reduce the amount of dynamic checks

Keep track of Java types in C codep yp
Use static analysis/theorem proving

.Net: interaction between managed and .Net: interaction between managed and
unmanaged code

31

SafeJNI: Conclusions
Reuse legacy C code safely and
convenientlyy
More lightweight and flexible comparing
to RPC-based approachesto RPC based approaches

32

The Endd

