Sate Java Native Interface

Gang Tan*, Andrew W. Appel#, Srimat Chakradhar?,
Anand Raghunathan®, Srivaths Ravi®, and Daniel Wang#

*Boston College
#Princeton University
°NEC Labs America

Heterogeneous Programming Paradigm

O Reuse legacy code

o Mix-and-match benefits of different languages
m E.g., Cis faster and more flexible than Java
= E.g., Java based GUIs are easier to develop

Foreign Function Intertaces (FFIs)

o Most modern languages have FFIs
= Java, ML, OCaml, Haskell, ...

O FFIs address issues such as
m Representation of data
= Calling conventions
= Memory management

What about Safety and Security?

Strongly typed Weakly typed

Memory safe Memory unsafe

The whole application becomes memory unsafe!

Approaches for Sate Interoperation:

o Component models: COM, DCOM, SOAP,
CORBA
= Different address spaces
= Communication via RPCs
= But, high performance overhead and inflexible

O Rewrite every component in a safe
language
m Substantial programming effort
= Hard/impossible sometimes

We focus on FFI-based approaches.

Our Focus: Java Native Interface (JNI)

C code

Java code

0 Java can call C-implemented methods

o C code can
m Access, update and create Java objects
= Call a Java method

m Catch and raise exceptions
m ...

Our Goal

O Make calling native C code in Java as safe
as calling Java code in Java

O Benefits:

= Reuse legacy C code in Java safely and
conveniently

= Improve the security of Java platform
JDK 1.4.2 contains over 600,000 lines of C code
under the cover of IJNI
= More lightweight and flexible comparing to
RPC-based approaches

Two Subproblems

O Provide internal safety for C Code.

m CCured [Necula, Condit, et al.]

Ensure memory-safety by source-to-source
transformation

Insert runtime checks
Heavily optimized

m Cyclone [Jim, Morrisett, et al.]
O Safe interoperation between C and Java
= Ensure that C uses IJNI in a principled way

Outline

O Motivation

o JNI and its loopholes

o SafeJNI system

O Preliminary experiments
o Future work

An Example Ot Using JNI

class IntArray {

native int sumArray(int arr[]);

\} Java code 1
jint Java_IntArray_sumArray ‘\\\
(JNIEnv *env, jobject *obj, jobject *arr) C code
{
jeize len = (*env)->GetArraylLength{env, arr);
jint =body =

(wenv)}->GetIntArrayElements(env, arr, 0};
int i, sum = O;
for (i=0; i<len; i++} sum+=body[i];

(*env)->ReleassIntirrayElements{(env, arr, body, 0);

\} return sum; /

Using JNI in C Code

Get a pointer into Pass in a pointer to the int array

the Java

int Java_IntArray sumirray / C code\

nv *env, jobject *obj, jobject *arr)

jsize leln= (*env)->GetArrayLength(env, arr);

jint #body =
{*env)->GetIntArrayElements(env, arr, 0);

int i, sum = {;

for (i=0Q; i<len; i++) sumi=bedy[i];

(*env)->ReleaselntArrayElefients(env, arr, bodw, 0);

return sum, i i
Q Pointer arith. Get the length of the arpay

o Well-behaved C code manipulates Java
objects through IJNI APIs

11

Loophole: Out-of-Bounds Accesses

jint Java_IntArray_sumArray
(JNIEnv *env, jobject *obj, jobject *arr)

{

jsize len = (*env)->GetArrayLength(env, arr);
jint *body =
(xenv)->GetIntArrayElements(env, arr, 0);

body [100]=9831;

\\ét o \\\

~

\

Out-of-bound write;
destroys JVM'’s state

12

Loophole: Arguments of Wrong Classes

0 JNI completely ignores the Java class
hierarchy

= All Java classes are mapped to jobject * in C

4)

jint Java_IntArray_sumArray
(IJNIEnv *env, jobject *obj, jobject *arr)

{

jsize len = (*env)->GetArrayLength(env, arr);

o / Y

C can pass objects of
wrong classes to Java

Loophole: Calling Wrong Methods

jint Java_IntArray_sumArray
(JNIEnv *env, jobject *obj, jobject *arr)
{
jsize len = (*env)->GetArrayLength(env, arr);
jint *body =
(xenv)->GetIntArrayElements (env, arr, 0);

- :

\

Nothing prevents C from calling
GetFloatArrayElements

14

Loophole: Manual Memory

Management

jint Java_IntArray_sumArray \
(JNIEnv *env, jobject *obj, jobject *arr)

{

jesize len = (*env)->GetirrayLength(env, arr);
jint *body =
{*env)->CetIntérrayElements (env, arr, 0);

(*env)->ReleaselntirrayElements{env, arr, body, 0);

o)

Dangling pointers; memory leak; release twice

15

Safety/Security Vulnerabilities in JNI

O

O O O 0O O 0 O

Bypassing JNI: direct read/write through Java
pointers

Out-of-bounds array access

Passing objects of wrong classes to Java
No access control

Manual memory management

Calling wrong methods

Exception handling

Out of the Java sandbox security model

At best: causes a JVM crash
At worst: security violation

16

Outline

O Motivation

o JNI and its loopholes

o SafeJNI system

O Preliminary experiments
o Future work

17

Safe Java Native Interface (Sate]JNI)

O Goal:

= Make calling native C code in Java as safe as
calling Java code in Java

Java code C code
A
' N\

A pointer kind system
e Safe mem. management
e VVarious dynamic checks

18

Restricting Capabilities ot Pointers

0 Opaqueness of Java object pointers
= Can pass them as arguments to JNI APIs
= No pointer arith./cast/read/write

O Java primitive array pointers
= Allow pointer arith., but must be within bounds
= Carry bounds information at runtime

19

A Pointer Kind System

o Classify pointers with different capabilities
O An extension of CCured’s pointer kinds

Pointer Kind Description Capabilities

Model INI t *HNDL Java handle Pass to JNI APIs;
interface Pointers equality testing

pointers rk t *RO Read-only read

pointers
t *SAFE Safe pointer read/write
Model Java t *SEQ Sequence Above + pointer
orimitive pointers arithmetic
array t *WILD Wild pointers Above + casts

pointers

20

Memory Management 1n JNI

Java Heap

Java
GC objects

O

(<

C Heap

\

pointer 1

—

@

pointer 2

I

Y

After step 4,
“Pointer 1" is
dangling if GC
recycles the buffer

1. C calls GetIntArrayElements and gets “pointer 1”

2. In GetIntArrayElements, JVM pins the buffer so that
GC will not move it

3. When it's done, C calls ReleaselntArrayElements
4. JVM unpins the buffer

21

Our Solution tor Mem. Management

O O O 0O 0O

Java Heap C Heap
Java —
GC objects validity tag
0/1
O pointef 1

T Te
@
pointer 2

g

Create a validity tag

Change the representation of a pointer to a struct
In GetIintArrayElements, init the tag to 1

In ReleaselntArrayElements, change the tag to O
Before dereferencing, check that the tag is 1

22

Various Dynamic Checks

O Runtime type checking

= E.g., when GetIntArrayElements is called, check
the second arg. is an int-array object

= When a Java method is called, check the
number and classes of arguments

O Access control
m Check during “get field ID”

0 Exception checking
o Non-null checking

Java maintains all information at runtime

23

Sate]NI System: On Top of CCured

\ ‘/jni.h
Kind

Inference Engine

|

Annotated C code

Type
Checker

/ |

NO Yes

.

Insert
Checks

l

Safe
C clode

gcc

l

Library
code

Java code

l

Java
Compiler

l

Bytecode

ik

Outline

O Motivation

o JNI and its loopholes

o SafeJNI system

O Preliminary experiments
o Future work

25

Microbenchmarks

O SafeJNI/JNI
Ratio

26

/1ib Experiment

0 Zlib compression library

® 9,000 lines of C code + 262 lines of glue
code

= The basis for java.util.zip

Safedni |CCured |JZlib*
Ratio Ratio Ratio

Zlib 1.63 1.46 1.74

* JZlib is a 100% pure Java reimplemention of Zlib

A Satety Loophole 1n java.util.zip

O Zlib maintains a z_stream struct
= For keeping state info

O The Deflater object needs to store a
pointer to this C struct

= However, it's difficult to define a pointer to a C
struct in Java!

class Deflater {
private long strm;

}
O Then C casts it back to a pointer

28

A Satety Loophole 1n java.util.zip

o With reflection support, we can change
the private long.

import java.lang.reflect.*;
import java.util.zip.Deflater;
public class Bug {
public static void main(String args[]) {
Deflater deflate = new Deflater();

byte[] buf = new byte[0]; Crashed Sun’s JVM

Class deflate_class = deflate.getClass(); d

try { and IBM’'s VM
Field strm = deflate_class.getDeclaredField("strm");
strm.setAccessible(true);
strm.setLong(deflate,1L);

} catch (Throwable e) {
e.printStackTrace();

by

deflate.deflate(buf);

b
¥

/* Policy file needed in a secure environment */
grant {

permission java.lang.RuntimePermission "accessDeclaredMembers";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

I

Related Work

O OCaml’s FFI [Furr and Foster]
m Track OCaml types in C to prevent misuse

O NestedVM [Alliet and Megacz]
= Put native code into a separate VM
= Slowdown ratio: 200% to 900%

O Janet [Bubak et al.]
m A cleaner interface

O "-Xcheck:jni”
= Incomplete and undocumented

30

Future Work

O Reduce the amount of dynamic checks
m Keep track of Java types in C code
m Use static analysis/theorem proving

O .Net: interaction between managed and
unmanaged code

31

SateJNI: Conclusions

O Reuse legacy C code safely and
conveniently

o More lightweight and flexible comparing
to RPC-based approaches

32

The End

