
An Empirical Security Study ofAn Empirical Security Study of
the Native Code in the JDKthe Native Code in the JDK

Gang Tan, Boston College ⇒ Lehigh University
Jason Croft Boston CollegeJason Croft, Boston College

J S iJava Security
V i h l id tifi d d fi dVarious holes identified and fixed

[Dean, Felten, Wallach 96]; [McGraw & Felten
99]; [Saraswat 97]; [Liang & Bracha 99]; …99]; [Saraswat 97]; [Liang & Bracha 99]; …

Formal models of various aspects of
Java

Stack inspection [Wallach & Felton 98]
JVML model [Freund & Mitchell 03] [Stata &
Abadi 99]
…

Machine checked theorems andMachine-checked theorems and
proofs [Klein & Nipkow 06]

2

Wh Ab N i M h d ?What About Native Methods?
A Java class can have native methods

Implemented in C/C++
Interact with Java through the Java Native Interface
(JNI)

Outside of the Java security model
No type safety
Outside of the Java sandbox

By default, Java applets does not allow loading y de au , Ja a app e s does o a o oad g
non-local native code

3

What About the Native code in the Java
lDevelopment Kit (JDK)?

java.io.FileInputStream
A Java wrapper for C code that invokes system
libraries

java.util.zip.*
Java wrappers that invoke the Zlib C
compression/decompression library

The JDK’s native code is trusted by default

4

Th THow Large Is This Trust?

Java

C/C++
> 800 kloc in Sun’s JDK 1.6

5

The JDK’s Native Code: On the
IIncrease

743,000
832,000

800,000
900,000

500,000
500 000
600,000
700,000
800,000

300,000
400,000
500,000

0
100,000
200,000

JDK 1.4.2 JDK 1.5 JDK 1.6

LOC of JDK's Native Code

6

T i i B i h N i C dTriggering a Bug in the Native Code

Java

C/C++

7

An Obvious ExampleAn Obvious Example

class Vulnerable {
public native void bcopy(byte[] arr);
…

} Java code

void Java_Vulnerable_bcopy (…, jobject jarr) {
char buffer[512];
jbyte *arr = GetByteArrayElements(jarr, 0);
strcpy(buffer arr);

C code

strcpy(buffer, arr);
}

Unbounded

8

string copy!

A E i i l S i S dAn Empirical Security Study
Folklore: bugs in the JDK’s native code is a
threat to Java security

All 800,000 lines are too big to be trusted
Problem: how to alleviate the threat?
An empirical study is a first and important step
Goals of the study:Goals of the study:

Collect evidence that the native code is a realistic
threat to Java securitythreat to Java security
Collect data to understand the extent
Characterize bug patterns

9

Characterize bug patterns

Approach to Characterizing Bug
Patterns

St ti l i t l l i tiStatic analysis tools + manual inspection
Common C vulnerabilities

S li t ITS4 Fl fi dSplint, ITS4, Flawfinder
Bug patterns particular to the JNI

Custom built scanners: grep-based scripts; CIL-basedCustom built scanners: grep based scripts; CIL based
scanners
Bug patterns inferred from the JNI manual

M l i ti t l t f l itiManual inspection to rule out false positives
An HTML interface for browsing the code: GNU Global
source code tag system; htags

10

A h d S f h S dApproach and Scope of the Study
PPros

Can cover many bug patterns
Th i lt f i l l t d fThe scanning results are fairly complete: good for
collecting empirical evidence

ConsCons
Lots of manual work: cannot cover all 800,000 lines

Limiting the scope: target directoriesLimiting the scope: target directories
Native code under share/native/java and
solaris/native/javasolaris/native/java
They implement the native methods of the classes
under java.*
38,000 LOC of C code

11

A Taxonomy of Bugs in the y g
Native Code of the JDK

A S f h d f dA Summary of the Bugs Identified
Bugs Security

Critical
Tools used

Mishandling JNI exceptions 11 Y grep-based scripts

C pointers as Java integers 38 N Our CIL scanner

Race conditions in file
accesses

3 Y ITS4, Flawfinder

Buffer Overflows 5* Y Splint, ITS4, Flawfinder

Mem. Management Flaws 29 N Splint, grep-based scripts

Insufficient error checking 40 Y Splint, grep-based scripts

TOTAL 126 59

13

J E iJava Exceptions

try {
if checkFails() { The sensitive() {
throw …;

}
d S iti O ()

The sensitive
operation skipped

doSensitiveOp();
} catch (Exception e) {

…
} Java code

When an exception is thrown
The JVM transfers the control to the nearest enclosing catch

14

The JVM transfers the control to the nearest enclosing catch
statement

JNI E i A Diff !JNI Exceptions Are Different!

class A {
public native void c fun();

void c_fun (…) {
if (checkFails()) {p _ ();

void j_fun () {
c_fun();

}

(()) {
Throw(…);

}
d S iti O ()

return;

C code

}…
}

Java code

doSensitiveOp();
}

The sensitive operation
still executed!

The JNI exception won’t be thrown until the C

15

method returns

Mi h dli JNI E iMishandling JNI Exceptions
Things become more complicated when function
calls are involved

void c_fun (…) {
util_fun(); //Might throw a JNI exception
if (ExceptionOccurred()) { ; return;}if (ExceptionOccurred()) {…; return;}
{…};

} C code

Our study found 11 cases of mishandling JNI
E ti

} C code

Exceptions
Mismatch between the programming models

16

Blame the programmers or the API designers

Another Bug Pattern:
C Pointers as Java Integers

Often, need to store C pointers at the Java side
However, how to declare the types of the C pointers
in Java?

Commonly used pattern
Cast the C pointers to Java integers
When passed back to C, they are cast back to
pointers

Example:
Zlib maintains a z_stream struct for keeping state info
A Java Deflater object needs to store a pointer to this

17

j p
C struct

Bogus Pointers to C
The pattern is unsafe if the Java side can inject
arbitrary integers to C
Example [Greenfieldboyce & Foster]: GTK
class GUILib {{
public native static void setFocus (int windowPtr);
...

}
A public method that anybody can invoke with bogus p y y g
pointers

Some cases will enable reading/writing arbitrary
18

Some cases will enable reading/writing arbitrary
memory locations

Bogus Pointers to C in the JDK
The target directories in the JDK

38 native methods that accept Java integers and cast
them to pointers
Not security critical: they are declared as private
Attackers cannot invoke private methods, without
Java Reflection

Still type safe
Should still be fixed

Java Reflection: can invoke private methods

yp

Java Reflection + C pointers as Java integers:
read/write arbitrary memory locations

19Type unsafe!

A Summary of Bug Patterns
We found a range of bugs: buffer overflows,
misusing JNI exceptions, …

O(100) bugs in 38 kloc code
Other bug patterns (we did not find violations)g p ()

Type misuses
Deadlocks
Violating the Java sandbox security model

20

Remedies, Limitations, and Future , ,
Directions

Remedy: Static Analysis
Find and remove bugs
The static tools used in the study do not scaley

High proportions of false positives (FP)

Off the shelf tools FP ratesOff-the-shelf tools FP rates
ITS4 -c1 97.5%
Flawfinder 98.3%

Same story for our own scripts and scanners

Flawfinder 98.3%
Splint 99.8%

Same story for our own scripts and scanners
A large amount of time on manual inspection

Prone to human errors

22

Reducing False Positives
Advanced static analysis techniques can help

Software model checking; abstract interpretation; type
qualifiers; theorem proving techniques

Mishandling JNI exceptions: dataflow analysis
How many more bugs can we expect to find?

11 violations out of 337 Throws
2471 Throws => ≈ 80 violations

23

Reducing False Positives:
Inter-Language Analysis

During our manual inspection, we often went
back and forth between Java and C side to
decide if a warning is a bug

jint deflatebytes(jarray b jint len jint off) {jint deflatebytes(…, jarray b, jint len, jint off) {
…
out buf = (jbyte *) malloc (len);

No range checks
on len and off!out_buf (jbyte) malloc (len);

…
SetByteArrayRegion(b, off, len, out_buf)

on len and off!

…
} C code

Is this a buffer overrun?

Well it depends on how
24

Well, it depends on how
the Java side invokes it

Static Analysis on Multi-Lingual
A lApplications

Most existing source-code analysis tools are
limited a priori to code written in a single
language
Extending the horizon of analysisg y

Saffire [Furr & Foster, PLDI ’05, ESOP ‘06]
APLT [Zhang et al., ISSTA ’06][g ,]
ILEA [Tan & Morrisett, OOPSLA ’07]

Enable Java analysis to also understand the behavior of C
code

25

R d D i M h iRemedy: Dynamic Mechanisms
SafeJNI [Tan et al. ISSSE ‘06]: dynamic checks +
static pointer type system

Statically reject or dynamically stop ill-behaved C
programs
Leverage CCured [Necula et al.] to provide internal
memory safety to C code
Ch ki t th b d b t J d CCheckings at the boundary between Java and C
Performance slowdown: Microbenchmark: 14%-
119%; Zlib: 74%119%; Zlib: 74%
Limitations: concurrency; efficiency

A bl l l it i SFI XFI
26

Assembly level monitoring: SFI, XFI

Remedy: Rewrite the Native Code in
S f LSafer Languages

Java
Cycloney
Better interfaces between Java and C

Jeannie [Hirzel and Grimm OOPSLA ‘07]Jeannie [Hirzel and Grimm OOPSLA 07]
Janet

27

I SIn Summary
Native code in the JDK is a time bomb to Java
security
In the short term

Develop scalable static analysis tools to eliminate p y
bugs
Efficient dynamic mechanisms

In the long term
Most of the C code should be converted into Java
code---CLASSPATH’s long term goal

Same problem with .NET
28

Same problem with .NET

The Endd

