An Empirical Security Study ot
the Native Code 1n the JDK

Gang Tan, Boston College = Lehigh University
Jason Croft, Boston College



Java Security

O Various holes identified and fixed

m [Dean, Felten, Wallach 96]; [McGraw & Felten
99]; [Saraswat 97]; [Liang & Bracha 99]; ...

O Formal models of various aspects of
Java
= Stack inspection [Wallach & Felton 98]

= JVML model [Freund & Mitchell 03] [Stata &
Abadi 99]

O Machine-checked theorems and
Proofs [Klein & Nipkow 06]

SWILEY -
Securing

IAVA

G ttrLgD Wnt
111111111




What About Native Methods?

O A Java class can have native methods
= Implemented in C/C++
= Interact with Java through the Java Native Interface
(JNI)
O Outside of the Java security model
= No type safety
= Outside of the Java sandbox

O By default, Java applets does not allow loading
non-local native code




What About the Native code in the Java
Development Kit (JDK)?

O java.io.FilelnputStream

= A Java wrapper for C code that invokes system
libraries

O java.util.zip.*

= Java wrappers that invoke the Zlib C
compression/decompression library

O The JDK’s native code Is trusted by default



How Large Is This Trust?

= 800 kloc In Sun’'s JDK 1.6




The JDK’s Native Code: On the

Increase

900,000 832,000
800,000 743,000
/700,000
000,000 1 500,000
500,000
400,000
300,000
200,000
100,000
0

JDK 1.4.2 JDK 1.5 JDK 1.6
LOC of JDK's Native Code



Trigeering a Bug in the Native Code




An Obvious Example

" class Vulnerable { A
public native void bcopy(byte[] arr);

\} Java code Y

-

void Java_Vulnerable bcopy (..., Jobject jarr) {
char buffer[512];

joyte *arr = GetByteArrayElements(jarr, 0);
strcpy(buffer, arr);

}
\ Unbounded C code/

string copy!

~




An Empirical Security Study

O Folklore: bugs in the JDK’s native code Is a
threat to Java security

= All 800,000 lines are too big to be trusted
O Problem: how to alleviate the threat?

O An empirical study is a first and important step

O Goals of the study:

m Collect evidence that the native code Is a realistic
threat to Java security

m Collect data to understand the extent
m Characterize bug patterns



Approach to Characterizing Bug

Patterns

O Static analysis tools + manual inspection

m Common C vulnerabilities
Splint, ITS4, Flawfinder

= Bug patterns particular to the JNI

Custom built scanners: grep-based scripts; ClL-based
scanners

Bug patterns inferred from the JNI manual

= Manual inspection to rule out false positives

An HTML interface for browsing the code: GNU Global
source code tag system, htags

10



Approach and Scope ot the Study

O Pros

= Can cover many bug patterns

m The scanning results are fairly complete: good for
collecting empirical evidence

O Cons
m Lots of manual work: cannot cover all 800,000 lines

O Limiting the scope: target directories

= Native code under share/native/java and
solaris/native/java

= They implement the native methods of the classes
under java.*

m 38,000 LOC of C code

11



A Taxonomy ot Bugs in the
Native Code of the [DK



A Summary of the Bugs Identitied

Bugs | Security Tools used
Critical
11 Y grep-based scripts
38 N Our CIL scanner
Race conditions in file 3 Y ITS4, Flawfinder
accesses
Buffer Overflows 5* Y Splint, ITS4, Flawfinder
Mem. Management Flaws 29 N Splint, grep-based scripts
Insufficient error checking 40 Y Splint, grep-based scripts
TOTAL 126 59

13




Java Exceptions

/try{ \

If checkFails() { The sensitive
throw ...; operation skipped

}

doSensitiveOp();

7 catch (Exception e) {

\} Java cody

O When an exception is thrown

= The JVM transfers the control to the nearest enclosing catch
statement




JNI Exceptions Are Ditterent!

élassA{

public native void c_fun();

void |_fun () {
c_fun();

.
\

Java code /

Q

A void c_fun (...){ N\

If (checkFalils()) {
Throw(...); return;

}
doSensitiveOp();

C codg/

The sensitive operation
still executed!

O The JNI exception won'’t be thrown until the C
method returns

15



Mishandling JNI Exceptions

O Things become more complicated when function
calls are involved

(void ¢_fun (..){ A
util_fun(); //Might throw a JNI exception
If (ExceptionOccurred()) {...; return;}
{---}
Q C code /

O Our study found 11 cases of mishandling JNI
Exceptions
= Mismatch between the programming models
= Blame the programmers or the API designers

16



Another Bug Pattern:
C Pointers as Java Integers

O Often, need to store C pointers at the Java side
= However, how to declare the types of the C pointers
In Java?
O Commonly used pattern
= Cast the C pointers to Java integers

= When passed back to C, they are cast back to
pointers

O Example:

= Zlib maintains a z_stream struct for keeping state info

= A Java Deflater object needs to store a pointer to this
C struct

17



Bogus Pointers to C

O The pattern is unsafe if the Java side can inject
arbitrary integers to C

O Example [Greenfieldboyce & Foster]: GTK
class GUILIDb {

public native static void setFocus (int windowPtr);

}

= A public method that anybody can invoke with bogus
pointers

O Some cases will enable reading/writing arbitrary
memory locations

18



Bogus Pointers to C in the JDK

O The target directories in the JDK

= 38 native methods that accept Java integers and cast
them to pointers

= Not security critical: they are declared as private

= Attackers cannot invoke private methods, without
Java Reflection

O Should still be fixed

= Java Reflection: can invoke private methods

= Java Reflection + C pointers as Java integers:
read/write arbitrary memory locations

Still type safe

Type unsafe! 10



A Summary ot Bug Patterns

O We found a range of bugs: buffer overflows,
misusing JNI exceptions, ...

= O(100) bugs in 38 kloc code
O Other bug patterns (we did not find violations)
= Type misuses

m Deadlocks
= Violating the Java sandbox security model

20



Remedies, Limitations, and Future
Directions



Remedy: Static Analysis

O Find and remove bugs

O The static tools used in the study do not scale
= High proportions of false positives (FP)

Off-the-shelf tools FP rates
ITS4 -c1 97.5%
Flawfinder 98.3%
Splint 99.8%

= Same story for our own scripts and scanners

= A large amount of time on manual inspection
Prone to human errors



Reducing False Positives

O Advanced static analysis techniques can help

= Software model checking; abstract interpretation; type
gualifiers; theorem proving techniques

O Mishandling JNI exceptions: dataflow analysis

= How many more bugs can we expect to find?

11 violations out of 337 Throws
2471 Throws => ~ 80 violations

23



Reducing False Positives:
Inter-Language Analysis

O During our manual inspection, we often went
back and forth between Java and C side to
decide If a warning Is a bug

Gnt deflatebytes(..., jarray b, jint len, jint off) { \

| No range checks
out_buf = (jbyte *) malloc (len); on len and off!

SetByteArrayRegion(b, off, len, out_buf) ,

Is this a buffer overrun?

Well, it depends on how
the Java side invokes it



Static Analysis on Multi-Lingual
Applications

O Most existing source-code analysis tools are
limited a priori to code written in a single
language

O Extending the horizon of analysis

= Saffire [Furr & Foster, PLDI '05, ESOP ‘06]
m APLT [Zhang et al., ISSTA '06]
= [LEA [Tan & Morrisett, OOPSLA '07]

Enable Java analysis to also understand the behavior of C
code

25



Remedy: Dynamic Mechanisms

O SafeJNI [Tan et al. ISSSE ‘06]. dynamic checks +
static pointer type system

= Statically reject or dynamically stop ill-behaved C
programs

= Leverage CCured [Necula et al.] to provide internal
memory safety to C code

= Checkings at the boundary between Java and C
= Performance slowdown: Microbenchmark: 14%-
119%; Zlib: 74%
= Limitations: concurrency; efficiency
O Assembly level monitoring: SFI, XFl

26



Remedy: Rewrite the Native Code 1n
Sater Languages

O Java
O Cyclone

O Better interfaces between Java and C

= Jeannie [Hirzel and Grimm OOPSLA ‘07]
= Janet

27



In Summary

O Native code Iin the JDK is a time bomb to Java
security
O In the short term

m Develop scalable static analysis tools to eliminate
bugs

= Efficient dynamic mechanisms
O In the long term

m Most of the C code should be converted into Java
code---CLASSPATH'’s long term goal

O Same problem with .NET

28



The End




