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ABSTRACT

Managed languages such as JavaScript are popular. For perfor-
mance, modern implementations of managed languages adopt Just-
In-Time (JIT) compilation. The danger to a JIT compiler is that an
attacker can often control the input program and use it to trigger a
vulnerability in the JIT compiler to launch code injection or JIT
spraying attacks. In this paper, we propose a general approach
called RockJIT to securing JIT compilers through Control-Flow
Integrity (CFI). RockJIT builds a fine-grained control-flow graph
from the source code of the JIT compiler and dynamically up-
dates the control-flow policy when new code is generated on the fly.
Through evaluation on Google’s V8 JavaScript engine, we demon-
strate that RockJIT can enforce strong security on a JIT compiler,
while incurring only modest performance overhead (14.6% on V8)
and requiring a small amount of changes to V8’s code. Key con-
tributions of RockJIT are a general architecture for securing JIT
compilers and a method for generating fine-grained control-flow
graphs from C++ code.

Categories and Subject Descriptors

D.4.6 [Software]: Operating Systems—Security and Protection
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1. INTRODUCTION
Programming languages with managed runtime systems are be-

coming increasingly popular during the last two decades. Such lan-
guages include JavaScript, Java, C#, Python, PHP, and Lua. The
use of managed languages is in general beneficial to software se-
curity. Managed environments provide a natural place to deploy
a range of security mechanisms to constrain untrusted code exe-
cution. For instance, Java and .NET virtual machines implement
security sandboxes and bytecode verification. As another example,
a JavaScript engine enforces dynamic typing, making execution of
JavaScript much more secure than native-code-based ActiveX.
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For performance, modern managed language implementations
adopt Just-In-Time (JIT) compilation. Instead of performing pure
interpretation, a JIT compiler dynamically compiles programs into
native code and performs optimization on the fly based on informa-
tion collected through runtime profiling. JIT compilation in man-
aged languages is the key to high performance, which is often the
only metric when comparing JIT engines, as seen in the case of
JavaScript. Hereafter, we use the term JITted code for native code
that is dynamically generated by a JIT compiler, and code heap for
memory pages that hold JITted code.

In terms of security, JIT brings its own set of challenges. First, a
JIT compiler is large and usually written in C/C++, which lacks
memory safety. It contains sophisticated components such as a
parser that parses untrusted input programs, an optimizing com-
piler that generates optimized native code, and a garbage collector.
There are always security-critical bugs in such a large and compli-
cated C/C++ code base. For instance, several buffer-overflow vul-
nerabilities have been found in Google’s V8 JavaScript engine [1].

Second, the code heap used in JIT compilation is often made
both writable and executable to facilitate online code modifica-
tion, which is used in crucial optimization techniques such as in-
line caching [15, 19] and on-stack replacement [20]. Consequently,
Data Execution Prevention (DEP) cannot be applied to memory
pages of the code heap. By exploiting a bug such as a heap over-
flow, an attacker can inject and execute new code in those pages.

Finally, even without code injection, a class of attacks called JIT

spraying [8] enables an attacker to craft input programs with special
embedded constants, influence a JIT compiler to generate native
code with those constants embedded, and hijack the control flow to
execute those constants as malicious code; more information about
the JIT spraying is in the background section (Sec. 3).

Research progress has been made in improving the security of
JIT compilation [6, 21, 34, 11, 35, 10]. NaCl-JIT [6] puts a JIT
compiler and its JITted code in a sandbox based on Software-based
Fault Isolation (SFI [32]). Software diversification techniques such
as librando [21] are used to diversify JITted code to mitigate JIT
spraying attacks. However, past techniques suffer from two main
drawbacks. First, existing systems provide only loose security.
NaCl-JIT enforces coarse-grained control-flow integrity, which can-
not prevent advanced Return-Oriented Programming (ROP) attacks
[18, 13, 9]. Software diversification techniques improve security in
a probabilistic sense; a lucky or determined attacker might be able
to defeat such schemes. Second, some systems impose a large per-
formance overhead. For instance, NaCl-JIT imposes around 51%
overhead on the V8 JavaScript x86-64 engine. More detailed dis-
cussion about related work is in Sec. 2.

In this paper, we propose an approach entitled RockJIT for secur-
ing JIT compilation. Our starting idea for security is to enforce fine-



grained Control-Flow Integrity (CFI), in which a high-precision
Control-Flow Graph (CFG) is statically extracted from the source
code of a JIT compiler and enforced during runtime. The distinc-
tion between fine-grained and coarse-grained CFI will be discussed
in Sec. 2, but at a high level fine-grained CFI is stronger and is an
effective defense against control-flow hijacking attacks, including
code injection, return-to-libc, and ROP attacks.

Enforcing fine-grained CFI on a JIT compiler is not enough,
however, because it dynamically generates new code, whose CFG
also needs to be considered. RockJIT is built upon Modular Control-

Flow Integrity (MCFI [26]), a new CFI system that supports dy-
namic linking. In MCFI, a program is divided into multiple mod-
ules, each of which carries its own CFG. When modules are linked
dynamically, individual CFGs are combined to form the CFG of
the combined module. During runtime, CFGs are represented as ta-
bles, which are accessed and updated through lightweight software
transactional memory. The support for modularity is necessary for
a JIT environment because each piece of newly generated code is
essentially a new module, whose CFG needs to be combined with
the CFG of existing code.

Nevertheless, significant challenges remain when hardening a
JIT compiler through MCFI. The first challenge is about perfor-
mance. MCFI was designed to support dynamic linking of libraries.
Dynamic linking happens infrequently during program execution.
A JIT compiler, however, generates and updates code frequently.
For instance, the V8 JavaScript engine installs new code about
50 times per second. It is unclear how MCFI’s scheme scale in
the context of JIT with frequent code generation and modification.
The second challenge is about the generation of a fine-grained CFG
from C++ source code. The MCFI work proposes how to generate a
fine-grained CFG for C code, while most JIT compilers have a large
body of C++ code. The C++ language contains advanced control-
flow features such as exceptions and virtual methods, which com-
plicate the process of CFG generation.

RockJIT addresses the aforementioned challenges and is a gen-
eral JIT compilation hardening approach. It makes the following
contributions:

• RockJIT hardens both the JIT compiler and JITted code, but
by enforcing different levels of CFG precision on the JIT
compiler and JITted code, its overhead is much smaller than
previous work and its security is stronger. Our evaluation on
the V8 engine shows that RockJIT-hardened V8 can remove
over 99.97% functionality-irrelevant indirect branch edges
from NaCl-JIT-hardened V8, and is only 14.6% slower than
the vanilla V8.

• We propose a method for generating high-precision CFGs
for C++ programs. Our extensive experience on over one
million lines of code shows our method is practical: C++
programs can be made compatible with our method with a
small amount of changes to source code.

• Our evaluation on the V8 engine shows that our scheme for
JIT protection requires only minimal changes to a JIT com-
piler. We changed only around 800 lines of source code,
about 0.14% of V8’s code base. Furthermore, our investi-
gation leads us to believe our scheme can be easily adopted
to other JIT compilers.

2. RELATED WORK
For related work, we discuss coarse-grained and fine-grained

CFI as well as past schemes for protecting JIT compilation.

2.1 Coarse-grained and fine-grained CFI
CFI [3] enforces a pre-determined Control-Flow Graph (CFG)

on a program. Indirect branches (i.e., returns, indirect calls, and
indirect jumps) are instrumented to ensure that their targets are con-
sistent with the specified CFG.1 A CFG is a static over-approximation
of a program’s dynamic control flow and therefore a program can
have many CFGs. Depending on the precision of enforced CFGs,
we can broadly classify CFI techniques into coarse-grained and
fine-grained ones.

In coarse-grained CFI, an imprecise CFG is enforced on indirect
branches. In such a CFG, all indirect branches share a common set
or a few sets of possible targets. For instance, an indirect call (e.g.,
a call via a function pointer) can be allowed to call all functions
(even though the call may actually target a small subset of func-
tions during runtime). CCFIR [37] and binCFI [38] are two typical
coarse-grained CFI systems. PittSFIeld [23], NaCl [36, 29], and
MIP [25] are designed to sandbox native code and they also enforce
coarse-grained CFI to prevent inlined sandboxing instructions from
being bypassed. The precision of coarse-grained CFI is lower and
ROP attacks are still possible without violating the imprecise CFG.
Recent work [18, 13, 9] demonstrates how to mount ROP attacks on
systems hardened with coarse-grained CFI. The benefits of coarse-
grained CFI are that the imprecise CFGs are easier to build and its
performance overhead is usually lower.

In fine-grained CFI, each indirect branch can have its own set of
targets and as a result its precision is much higher. It significantly
enhances security because it restrains an attacker’s ability to link
ROP gadgets. We believe it is probably the best defense against
ROP attacks. Various techniques for fine-grained CFI have been
proposed in the literature [16, 33, 4, 12, 27]. However, none of
them is modular, meaning that dynamically linked libraries cannot
be instrumented once and reused across programs. Each program
has to come with its own instrumented version of libraries. Tice et

al. [31] proposed an approach to fine-grained CFI with modular-
ity support. However, it does not protect return instructions, and
its modularity support introduces time windows for attacks during
dynamic module linking. RockJIT is based on MCFI [26], which
secures all indirect branches and supports dynamic linking; we will
present background information about MCFI in Sec. 3.3.

One obstacle to fine-grained CFI is the difficulty of building
a fine-grained CFG. This is technically possible with the access
to source code. However, advanced control-flow features in C++
make the building of a CFG difficult. We propose a method for
generating high precision CFGs for C++ programs and it covers all
C++ control-flow features.

2.2 JIT protection mechanisms
RockJIT’s goal of improving the security of JIT compilation is

shared by several other systems. Perhaps the closest work is NaCl-
JIT [6], which applies Software-based Fault Isolation (SFI) to con-
straining both a JIT compiler and JITted code. To prevent SFI
checks from being bypassed, NaCl-JIT enforces aligned-chunk CFI,
which is coarse grained. In aligned-chunk CFI, the code is divided
into fixed-size chunks (e.g., 32 bytes) and indirect branches are re-
stricted by address masking to target only chunk beginnings. This
form of CFI is easy to implement, but brings several disadvantages.
First, it provides weaker security. As discussed, coarse-grained CFI
allows an indirect branch to target many more addresses than nec-
essary. In contrast, RockJIT applies fine-grained CFI on the JIT
compiler and therefore provides stronger security. As our experi-
1The targets of direct branches are statically computable and their control
flow is checked statically in CFI. Therefore, only indirect branches need to
be instrumented with dynamic checks.



JIT Compiler

Baseline
Executor

Optimizing
Compiler

Garbage
Collector

Basic
Services

JE
nt

ri
es

C
E

nt
ri

es

Code Heap (RWX)

Function f1

Function f2

Function f3

Code Emission Control Flow Transfer

Figure 1: The architecture of modern JIT compilers.

ments show, RockJIT can eliminate 99.97% indirect branch targets
from NaCl-JIT’s enforced CFG. Second, NaCl-JIT has high perfor-
mance overhead. Its aligned-chunk CFI requires insertion of many
no-op instructions to make indirect-branch targets 32-byte aligned.
NaCl-JIT reports no-ops account for half of the sandboxing cost.
Largely because of this, its performance overhead is around 51%.
By contrast, RockJIT’s overhead is 14.6%.

Software diversification has been used to mitigate JIT spraying
attacks. The librando system [21] inserts a random amount of no-
ops in the JITted code. In addition, it uses a technique called con-
stant blinding: it replaces instructions that have constant operands
with other equivalent instruction sequences because JIT spraying
attacks inject malicious logic in constants that are operands of in-
structions such as xor. Due to its black-box implementation, li-
brando has to disassemble the JITted code, modify the code, and re-
assemble the new code. It incurs a significant overhead (265.8%).
Other systems including INSeRT [34], JITSafe [11], and RIM [35]
also employ diversification techniques similar to librando’s. These
diversification-based systems provide only probabilistic defenses;
a determined attacker can enumerate all possibilities if the search
space is small; a lucky attacker might also defeat the defense. Fur-
thermore, they protect only JITted code, not the JIT compiler. In
comparison, RockJIT can eliminate JIT spraying attacks and en-
forces CFI on both the JIT compiler and JITted code. On the other
hand, since software-diversification techniques are orthogonal to
CFI, it is perhaps beneficial to deploy both defenses in a JIT com-
piler, following the principle of defense in depth.

Finally, another mitigation mechanism is to separate the write
permission from the execution permission for the code heap. For
instance, JITDefender [10] and JITSafe [11] drop the write permis-
sion of the code heap whenever it is not needed. However, before
dropping the permission, those code pages may have already been
modified by the attacker for arbitrary code execution. More im-
portantly, they cannot prevent JIT spraying attacks, which do not
require modifying the code heap.

3. BACKGROUND
We briefly present the background information for RockJIT, in-

cluding the general architecture of JIT compilers, how JIT spraying
attacks work, and MCFI.

3.1 The architecture of JIT compilers
We investigated a range of JIT compilers, including Google V8

(JavaScript), Mozilla TraceMonkey (JavaScript), Oracle HotSpot
(Java), Facebook HHVM (PHP), and LuaJIT (Lua). We found that
their architectures share many commonalities and can all be rep-
resented by the diagram in Figure 1. A JIT compiler emits JITted
code in the code heap and executes it. The code heap is readable
(R), writable (W), and executable (X). A typical JIT compiler con-
tains the following major components:

Baseline Executor. When a program starts running, its execution
is the job of the baseline executor. Oftentimes, the baseline
executor is an interpreter, which is easy to implement but
slow. For instance, HotSpot has an interpreter that interprets
Java bytecode. The baseline executor may have a different
implementation from an interpreter. For example, the base-
line executor of V8 compiles JavaScript source code directly
to unoptimized native code.

Optimizing Compiler. During the execution of a program by the
baseline executor, the JIT compiler performs runtime profil-
ing to identify hot code and to identify types in the case of dy-
namically typed languages. Based on the runtime profile, the
optimizing compiler generates optimized native code. JIT
engines can have quite different designs for the optimizing
compiler. For example, V8 profiles method execution and
optimizes a whole method at a time. However, TraceMon-
key profiles execution paths (e.g., a hot loop) and performs
trace-based optimizations.

Garbage Collector. Managed languages provide automatic mem-
ory management, which is supported by a garbage collector.
Most garbage collectors implement common algorithms such
as concurrent mark and sweep.

Basic Services. The JIT compiler also provides runtime services,
including support for debugging, access to internal states for
performance tuning, foreign function interfaces for enabling
interoperability between managed languages and native code.

For performance, all JIT compilers we inspected are developed
in C/C++. Since the calling convention of C/C++ is different from
that of JITted code, which is JIT-compiler specific, JIT compil-
ers introduce interfaces to allow context switches between the code
of the compiler and JITted code. In Figure 1, the interfaces are
depicted as JEntries and CEntries; both are essentially in-
direct branches. JEntries transfer control to JITted code and
CEntries transfer control to the JIT compiler. As an example of
JEntries in V8, the initial control transfer from the JIT compiler
to the code heap is through an indirect call (JEntry) in a code
stub called JSEntryStub. As an example of CEntries, V8
provides services (or functions) such as JavaScript object creation
and object property access. When JITted code invokes these ser-
vices, the control is first transferred to a stub called CEntryStub
with a register containing the address of the target service function.
Within CEntryStub, an indirect call (CEntry) through the reg-
ister is executed to transfer the control to the service function.

3.2 JIT spraying attacks
JIT compilers have large attack surfaces, since the input program

can be fully controlled by an attacker. Specifically, a JIT spray-
ing attack takes advantage of the often predictable code-emission
logic in the JIT compiler. The attacker crafts an input program
with special embedded constants and uses a vulnerability in the JIT
compiler to hijack the control flow to execute those constants as
malicious code. To illustrate this point using JavaScript, suppose
the input code is “x = x ∧ 0x3C909090”, where ∧ is Java-
Script’s xor operator. A JavaScript compiler then generates native
code for implementing the xor operation. Suppose, in its gener-
ated code, the constant 0x3C909090 is encoded literally. Then
the byte sequence on x86 for encoding an xor operation is as fol-
lows, assuming %eax holds the value for x.

35 90 90 90 3c: xorl 0x3C909090, %eax



Now suppose the JavaScript compiler has a vulnerability that en-
ables the attacker to control the program counter. Because x86 has
a variable-length instruction set, the attacker can then change the
control flow to point to the middle of the above instruction and
start the execution of a totally different instruction stream from the
intended. For example, if the program counter is changed to point
to the first 0x90 in the above, then the next instruction to exe-
cute is a no-op (the encoding of 0x90), followed by other instruc-
tions not intended in the original program. Note that the constant
0x3C909090 above is under the control of the attacker, who can
put any constant there to determine what code to execute.

Modern operating systems deploy Address Space Layout Ran-
domization (ASLR), which makes it hard for the attacker to guess
the absolute addresses of constants in instructions such as xor. The
attacker, however, can spray many copies of the same code in mem-
ory to increase the chance of a successful attack on the JIT; this is
why it is called JIT spraying. Real JIT spraying attacks have been
demonstrated, for example, on the JavaScript engine of the Safari
browser [30] and Adobe’s Flash Player [7].

One observation about JIT spraying attacks is they involve both
the JITted code and the JIT compiler. The attacker takes advan-
tage of the fact that the JITted code is often predictable for a given
piece of source code. Furthermore, there must be a vulnerability in
the compiler so that the control can be transferred to the middle of
an instruction to start an unexpected and harmful code sequence.
Given this observation, one natural defense is to randomize code
generation to make the generated native code less predictable. This
approach has been explored by systems such as librando [21] and
others. The downside is that it provides only a probabilistic de-
fense. Instead, we explore an alternative approach. We harden the
JIT compiler (and the JITted code) using control-flow integrity so
that it is impossible to transfer the control to the middle of instruc-
tions; as a result, unexpected instructions can never be executed.

3.3 Modular Control-Flow Integrity (MCFI)
MCFI [26] is a new fine-grained CFI system with low perfor-

mance overhead (around 5%) and modularity support. Past CFI
techniques do not support dynamic linking, because they require
all code to be available during static instrumentation. In MCFI, a
program is divided into multiple modules. Each module contains
not only code and data, but also auxiliary information that is used
to generate a new CFG when linking with other modules. Code
of a module is instrumented separately for CFI, without consider-
ing other modules. When a new module is dynamically linked, a
new CFG is generated based on the new module’s and the existing
module’s auxiliary information. The new control-flow policy may
allow an indirect branch to target more destinations.

The auxiliary information carried in MCFI modules is type infor-
mation, specifically, the types of its functions and function point-
ers. MCFI takes a module’s source code and compiles it using a
modified LLVM toolchain to acquire the type information. MCFI
includes a simple yet effective way of generating CFGs for C pro-
grams (but not C++ programs) based on a type-matching method.
This method is efficient and can be used during dynamic linking. It
generates relatively precise CFGs, and requires only small changes
to the source code.

For CFI enforcement, MCFI represents the CFG in tables during
runtime. It designs thread-safe table transactions for accessing and
updating the tables. When a new module is dynamically linked,
a table-update transaction is executed to update the tables with in-
formation about the new CFG. Indirect branches are instrumented
to first load the target into a register r, run a table-check transac-
tion to see if the target is allowed, and, if so, perform an indirect

jump through r. The tables are stored in memory and need pro-
tection. MCFI instruments indirect memory writes in the untrusted
program to first mask the target address before the write; this is a
form of Software-based Fault Isolation and ensures the integrity of
the tables. Finally, indirect branch targets are aligned at four-byte
aligned addresses so that an entry in MCFI tables can be retrieved
atomically in one memory-access instruction.

4. RockJIT OVERVIEW
In this section, we discuss RockJIT’s threat model, its main de-

fense mechanisms, and its security strength.

4.1 Threat model
RockJIT’s threat model is the same as the strong model in the

original CFI work [3]. An attacker is modeled as a concurrent user-
level thread, running in parallel with other threads in the JIT com-
piler. The attacker thread can read and write any memory, subject
to memory page protection. Therefore, in this model, any writable
memory can change because of the attacker thread between any
two instructions in the user program. CPU registers of a thread are
assumed not writable directly by the attacker thread. However, the
attacker can indirectly affect registers of other threads by corrupt-
ing memory. For example, if one JIT-compiler thread loads from
writable memory to a register, then the register’s value is controlled
by the attacker because she/he controls the writable memory.

We assume the JIT compiler’s code is benign, but may contain
vulnerabilities. The JITted code can contain malicious logic since
it is compiled from source code that might be provided by the at-
tacker. The malicious logic aims to launch attacks such as code
injection and JIT spraying attacks.

We further make two assumptions about the JIT compiler. First,
we assume context switches between the JIT compiler and JITted
code are through a set of interfaces; that is, only through one of
those JEntries and CEntries in Figure 1 can the control trans-
fer between the JIT compiler and JITted code. This assumption en-
ables different CFG precision on the JIT compiler and JITted code.
Second, we assume JITted code, when executed normally (i.e., no
jumps to the middle of instructions), does not contain direct system-
call invocations and privileged instructions. The JITted code can,
however, invoke one of the CEntries to request services such as
OS system calls from the JIT compiler (after appropriate security
checking by the compiler). These two assumptions are true in all
the JIT compilers we have inspected. Even if a certain JIT compiler
violates these assumptions, it should be easy to modify it to make
the assumptions hold.

4.2 Defenses in RockJIT
RockJIT’s architecture is visualized in Figure 2. It provides ser-

vices to a JIT compiler and monitors its security. An existing JIT
compiler such as V8 is modified slightly to cooperate with Rock-
JIT. It is then compiled and instrumented by RockJIT’s compila-
tion toolchain to generate an MCFI module. The module is loaded
by RockJIT into a sandbox. After loading, RockJIT generates a
control-flow graph for the JIT compiler based on the auxiliary type
information in the module, constructs MCFI tables that encode the
control-flow graph, and starts execution of the JIT compiler.

The sandbox around the JIT compiler and JITted code restricts
their control flow according to the tables and also restricts their
memory access to be inside the sandbox. The JIT compiler can
request services provided by RockJIT via a set of well-defined in-
terface functions. For example, to prevent code in the sandbox from
changing memory protection arbitrarily, all direct system calls for
changing memory mapping and memory pages’ protection bits are
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Figure 2: The architecture of RockJIT.

forbidden; instead, the code can invoke services provided by Rock-
JIT to issue such system calls in a managed way.

To rule out code injection attacks, RockJIT guarantees that no
memory pages are writable and executable at the same time, simi-
lar to Data Execution Protection (DEP). One thorny issue we men-
tioned before is that the code heap (i.e., memory pages that hold
JITted code) is made both writable and executable in typical JIT
compilers.

To address this issue, RockJIT uses a shadow code heap, sim-
ilar to what NaCl-JIT does [5]. It takes advantage of the virtual
memory mechanism available to user-space programs. The shadow
code heap is outside of the JIT compiler’s sandbox and in Rock-
JIT’s private memory. It is mapped to the same physical pages as
the code heap in the sandbox but with different permissions. This
can be achieved by shared memory mechanisms provided by OSes
(e.g., shm_open, ftruncate and mmap libc calls on Linux). In
particular, the code heap in the sandbox is made readable and exe-
cutable, but not writable. The shadow code heap is made readable
and writable, but not executable.2 Because memory access of the
JIT compiler is restricted to be inside the sandbox, the JIT compiler
cannot directly modify the shadow code heap for runtime code ma-
nipulation. Instead, it invokes services of RockJIT to install new
native code or modify existing native code. RockJIT performs ver-

ification on the native code to check a set of properties (detailed in
Sec. 5) for security. If the verification succeeds, RockJIT installs
the new code in the shadow code heap and updates MCFI tables us-
ing a new control-flow graph that takes the new code into account.
Since the shadow code heap maps to the same physical pages as the
in-sandbox code heap, the code heap is filled with the same code,
which can then be invoked by the JIT compiler.

RockJIT enforces control-flow integrity on both the JIT compiler
and JITted code, but applies different levels of precision on those
two parts. For the JIT compiler, RockJIT applies a C++ CFG gener-
ation strategy detailed in Sec. 6 to produce a relatively fine-grained
CFG offline; it takes into consideration C++ semantics such as vir-
tual method calls. In contrast, the CFG for JITted code is coarse-

2Since the shadow code heap is controlled by trusted RockJIT, whether it
is executable or not does not affect security; we make it not executable,
following the principle of least privilege.

grained in the sense that all its indirect branches share a common
set of targets. The JIT compiler is modified to emit not only na-
tive code, but also information about indirect-branch targets. The
verifier then deduces the coarse-grained CFG for the new code and
combines it with the old CFG.

The approach of hybrid CFI precision in RockJIT is the result
of a careful consideration of both security and performance. First,
the JIT compiler’s code is mostly where the majority of the code
is and contains dangerous system call invocations. Since its code
is statically available, constructing a fine-grained CFG offline for
the JIT compiler increases security substantially as recent work
has shown that coarse-grained CFI can still be attacked by ROP
attacks [18, 13, 9]. On the other hand, JITted code is frequently
generated on the fly and for performance it is important that ver-
ification and new CFG generation do not have high performance
overhead. Verification and CFG-generation algorithms for coarse-
grained CFI run much faster. Some readers may wonder whether
coarse-grained CFI for JITted code might jeopardize security. We
do not believe that is the case because one of our assumptions is
that JITted code cannot contain dangerous instructions such as sys-
tem calls, a property that is enforced by RockJIT’s verifier; such
instructions are required in an attack. JITted code can still request
system-call services from the JIT compiler, but the JIT compiler is
hardened through fine-grained CFI: security is maintained as long
as sufficient checks are placed before system calls for the set of
control-flow paths in a fine-grained CFG, which is a much smaller
set than the one in a coarse-grained CFG.

4.3 Security benefits
Despite the threats described in the threat model, RockJIT’s de-

fense provides the following security benefits:

• No JIT spraying attacks. JIT spraying attacks inject mali-
cious instruction sequences in seemingly benign JITted code
and jump to the malicious code by hijacking the control-flow.
RockJIT enforces control-flow integrity and it is not possi-
ble to execute instructions that are not in the original JITted
code. Therefore, JIT spraying attacks are prevented.

• The execution of the JIT compiler respects a fine-grained
CFG and there are no known ROP attacks that can attack
a system with fine-grained CFI. Furthermore, no memory
pages in the JIT compiler and JITted code are both writable
and executable, preventing code injection attacks.

One point worth mentioning is that, thanks to the verifier, the JIT
compiler is not in the TCB even though it performs runtime code
manipulation. The native code generated by the JIT compiler is
first checked to obey a set of safety properties before installed. The
verifier is in the TCB but it is much smaller than the JIT compiler.

5. SECURING JITTED CODE
The code heap maintained by a JIT compiler is where code is

dynamically managed. It consists of multiple code regions. A JIT
compiler dynamically installs, deletes, and modifies code regions.
New code regions are frequently generated by the compiler and in-
stalled in the code heap. When a code region is no longer needed,
the JIT compiler can delete it from the code heap and reuse its
memory for future code installation. Runtime code modification is
mostly used in performance-critical optimizations. As an example,
inline caching [15, 19] is a technique that is used in JIT compil-
ers to speed up access to object properties. In this technique, a JIT
compiler modifies native code to embed an object property such as
a member offset after the property has been accessed for the first



time, avoiding expensive object-property access operations in the
future. Another example of runtime code modification happens in
V8 during code optimization. V8 profiles function and loop execu-
tion to identify hot functions and loops. It performs optimization on
the hot code to generate an optimized version. Afterwards, runtime
code patching is performed on the unoptimized code to transfer its
control to the optimized version through a process called on-stack
replacement [20].

Since RockJIT enforces CFI, it is necessary to check security for
each step of runtime code installation, deletion, and modification.
In Sec. 5.1, we present how verification is performed when a new
piece of code is installed. The process for code deletion and mod-
ification has only small differences; we leave their discussion to
Sec. 5.2 when we discuss the detailed steps for runtime code ma-
nipulation. In Sec. 5.3, we discuss how to modify a JIT compiler
to cooperate with RockJIT for secure native code execution using
V8 as an example.

5.1 Verification
The verifier maintains three sets of addresses that are code ad-

dresses in the code heap:

• Pseudo-instruction start addresses (PSA). This address
set remembers the start addresses of all pseudo-instructions.
We define a pseudo-instruction as: (1) a checked indirect

branch, which is MCFI’s table-based instruction sequence
for checking a register r immediately followed by an indi-
rect branch through r; or (2) a masked memory write, which
is MCFI’s mask on a register r immediately followed by a
memory write through r; or (3) an instruction that is neither
an indirect branch nor an indirect memory write.

• Indirect branch targets (IBT). This address set remembers
all possible indirect branch targets. All such targets are four-
byte aligned.

• Direct branch targets (DBT). This address set remembers
all direct branch targets.

The critical invariant of the three sets is IBT ∪ DBT ⊆ PSA.
That is, all indirect and direct branch targets must be start addresses
of pseudo-instructions. With this invariant, it is impossible to jump
to the middle of an instruction, which is necessary for JIT spraying
attacks. Furthermore, it is impossible to transfer the control to an
indirect branch or a memory write without executing its preceded
MCFI check, which is necessary for CFI and SFI.

The three address sets are built incrementally with the instal-
lation of new code. Initially, they are all empty sets when the
code heap contains no code. When a new code region is installed,
the verifier updates the three address sets; that is, compute PSA

′,
IBT

′, and DBT
′ after taking new code into consideration. Our ap-

proach for computing these new sets is through a combination of
information already in the code and meta information emitted by a
modified JIT compiler. For instance, direct branch targets (DBT

′)
can be computed from the code alone. For PSA′, our verifier for
V8 takes the start address of the new code and identifies pseudo-
instruction boundaries by following a process similar to sequential
disassembly (however, no full disassembly is performed; only the
boundaries are identified; see the DFA approach later). This is suf-
ficient for V8. If a JIT compiler mixes code and data in JITted
code, then we could modify the JIT compiler to emit also instruc-
tion boundary information. For IBT′, since V8 installs the native
code of one function at a time, new indirect branch targets include

the start address of the function and the addresses after direct/indi-
rect calls in the function. In addition, there are indirect branch tar-
gets related to exception handling and optimization (e.g., on-stack
replacement entry points in an optimized function). We modified
V8 to emit these additional indirect branch targets along with code.

With the new address sets, the verifier checks IBT′
∪ DBT

′
⊆

PSA
′ and the following constraints on the new code:

C1 Indirect branches and memory-write instructions are appropri-
ately instrumented. In particular, only checked indirect branches
and masked memory writes are allowed.

C2 Direct branches jump to addresses in DBT
′. This ensures that

the new code respects DBT
′.

C3 The code contains only instructions that are used for a partic-
ular JIT compiler. This set of instructions is usually a small
subset of the native instruction set and can be easily derived by
inspecting the code-emission logic of a JIT compiler. Impor-
tantly, this subset cannot contain system calls and privileged
instructions—one of our assumptions.

Next we present some implementation details about a verifier
we constructed for V8. First, the address sets are implemented by
bitmaps for fast look-ups and updates. Each bitmap maps a code
address to one if and only if that address belongs to the correspond-
ing set, otherwise zero.

Second, the speed of verification is of practical importance. Since
V8 performs frequent code installation, a slow verifier can impact
the performance nontrivially. For example, NaCl-JIT includes a
disassembly-based verifier and it reports 5% overhead for the veri-
fication alone. We adopt an approach based on Deterministic Finite
Automata (DFA) following RockSalt [24]. It performs address-set
updates and constraint checking in one phase. Our verifier incurs
only 1.7% overhead for the verification.

In detail, we followed Seaborn’s approach [28] of using a trie
structure [17] to enumerate all possible allowed instruction encod-
ing. Then the trie is converted to a DFA. The DFA has 257 states.
It has multiple acceptance states: one for recognizing a checked
indirect branch; one for recognizing a masked memory write; one
for recognizing a direct branch; one for recognizing all other V8-
allowed instructions. The verifier iterates through all instructions
recognized by the DFA. When a direct branch is matched, it records
its jump target; when a checked indirect branch, a masked mem-
ory write, or one allowed instruction is matched, it moves for-
ward. In the above cases, the pseudo-instruction boundaries are
also recorded. The verification fails when the DFA reaches a fail-
ure state (e.g., due to an illegal instruction). After all code bytes
have been matched, the verifier updates the address sets and checks
that IBT′

∪DBT
′
⊆ PSA

′. When the verification succeeds, con-
straints C1–C3 are respected by the code.

Recall that our threat model does allow attackers to write arbi-
trary memory pages in the sandbox that are writable, so it is pos-
sible that after the code is emitted in the sandbox and before it is
copied outside of the sandbox for verification, the attackers might
corrupt it. However, the corrupted code still needs to pass the ver-
ification. Once it passes the verification, the security benefits men-
tioned in Sec. 4.3 are still valid.

5.2 JITted code installation, deletion,
and modification

In RockJIT, a JIT compiler cannot directly manipulate the code
heap, which does not have the writable permission. Instead, Rock-
JIT provides interface functions to the JIT compiler for code instal-



lation, deletion, and modification. One worry for runtime code ma-
nipulation is thread safety: one thread is manipulating code, while
another thread may see partially manipulated code. We next dis-
cuss the detailed steps involved in RockJIT’s code manipulation
and how thread safety is achieved.

Code installation. For code installation, the JIT compiler invokes
RockJIT’s code installation service and sends a piece of native
code, the target address where the native code should be installed,
and meta information about the code for constructing new address
sets. The code-installation service then performs the following
steps:

1. The verifier performs verification on the code and updates
the address sets to PSA

′, IBT′, and DBT
′.

2. If the verification succeeds, the code is copied to the shadow
code heap at an address computed from the start address
where the code should be installed. There is a fixed corre-
spondence between addresses of the code heap in the sand-
box and addresses of the shadow code heap.

3. The runtime tables used by MCFI are updated to take into
account the new code. Since coarse-grained CFI is enforced
on JITted code, only information in IBT

′ is needed to update
the tables.

There are a couple of notes worth mentioning about the above
steps. First, the verification of benign programs is expected to suc-
ceed if there are no bugs in the JIT compiler. A verification failure
indicates a bug that should be fixed. Second, it is important that the
MCFI tables are updated after copying the code, not before. During
the copying process, the code becomes partially visible to the JIT
compiler as the code heap is mapped to the same physical pages as
the shadow code heap. However, since the MCFI tables have not
been updated yet, no branches can jump to the new code, avoiding
the situation in which one thread is installing some new code and
another thread branches to partially installed code.

Code deletion. In a multi-threaded JIT compiler, one thread may
request the deletion of a code region, while another thread may
be executing in the middle of that code region due to JIT compiler
bugs or attacks. For safety, the code region shall not be deleted until
all threads exit the code region. The following steps are performed
when one thread invokes the code-deletion service to delete code
region cr :

1. Check that direct branches outside cr do not target any in-
struction in cr . If this check fails, deleting cr would break
the critical invariant mentioned before; this would imply ei-
ther a bug in the JIT compiler or an attack and therefore
RockJIT simply terminates the JIT compiler in this case.

2. Remove cr -related entries in the MCFI tables to prevent all
indirect branches from targeting cr . After this step, no thread
can enter cr simply because no direct or indirect branch in
the JITted code can target cr .

3. Check that there are no threads running (or sleeping) in cr .
To achieve this, RockJIT waits until it observes that each
thread has entered the code in RockJIT’s runtime at least
once after the update to the MCFI tables. Once a thread en-
ters the code in RockJIT’s runtime, it can no longer execute
instructions in cr thanks to the update to the MCFI tables.

In detail, RockJIT maintains a local counter for each thread.
The counter for a thread is atomically incremented by one

each time when the thread enters the code in RockJIT’s run-
time. When handling a code-deletion request, RockJIT atom-
ically reads all threads’ counters, associates them with cr ,
and returns without removing cr . At a later time (e.g., in the
next invocation of code deletion), RockJIT checks that each

thread’s current counter value is not equal to the thread’s

old counter value associated with cr . If the condition holds,
it means that after the code deletion request, each thread
has executed RockJIT’s code at least once and therefore no
thread can possibly run code in cr ; so it can be safely deleted.

Compared to NaCl-JIT, which supports only a finite number of
code deletion operations, our code deletion supports an arbitrary
number of code deletion operations. Readers may wonder whether
some code region may never be deleted in our asynchronous scheme
if a thread is executing a long-running loop in the JITted code.
However, modern JIT engines implement mechanisms to interrupt
JITted code execution (e.g., V8 inserts extra code to each function’s
prologue and each loop to interrupt the execution to support opti-
mization and deoptimization). Therefore, even if the JITted code is
running in a loop, its execution can be interrupted.

Code modification. If the new code region has the same internal
pseudo-instruction boundaries and native instruction boundaries as
the old code region and the new code passes verification, Rock-
JIT follows NaCl-JIT’s approach to replace the old code with the
new code. Otherwise, code modification is implemented as a code
deletion followed by a code installation.

5.3 Modification to a JIT compiler
An existing JIT compiler needs to be modified to work with

RockJIT. We next report our experience of adapting Google’s V8
JavaScript engine (v3.25.28.3). To adapt V8’s x86-64 source, we
modified only 811 lines of its source code: 801 lines were changed
to make it generate MCFI-compatible code and invoke RockJIT’s
services for runtime code manipulation; 10 lines were added for
CFG generation, which will be discussed in the next section. This
experience partly demonstrates that modifying an existing JIT com-
piler to work with RockJIT requires only modest effort. Most of the
changes to V8 were in its code-emission logic to make the gener-
ated code compatible with MCFI:

• Code-emission functions that generate indirect branches were
modified to generate checked indirect branches. A checked
indirect branch in MCFI requires two scratch registers to
hold intermediate values. Since V8 reserves r10 for its in-
ternal use, r10 is used as one scratch register. In addition,
V8 reserves r12 to always hold a constant representing in-
teger one. We use r12 as the second scratch register and
restore its constant value after a checked indirect branch.

• Code-emission functions for indirect memory writes were
modified to generate masked memory writes. The sandbox
resides in the [0, 4GB) memory. Therefore, an indirect mem-
ory write is turned into two instructions: the first loads the
target address into a scratch register r and clears the upper
32 bits; the second writes data to the address in r.

• Code-emission functions for procedure calls were modified
to align the addresses immediately following the calls to four-
byte aligned addresses. All indirect branch targets need to be
four-byte aligned to allow atomic table access. The address
alignment is achieved by inserting multi-byte no-op instruc-
tions before call instructions.



Another part we modified was to accommodate online code patch-
ing. When V8 emits certain optimized native code, it reserves some
bytes in the code in anticipation of future code patching (for a pro-
cess called deoptimization). The original V8 reserves 13 bytes for
such purpose. RockJIT needs more bytes because of extra MCFI
checks; we had to reserve 44 bytes instead.

Finally, changes were made to V8 to invoke code installation,
deletion, and modification services provided by RockJIT at appro-
priate places.

RockJIT changes much less code than NaCl-JIT, which changed
over 5,000 lines of code for the x86-64 version of V8. NaCl-JIT
requires more changes because: (1) it disallows the mix of code
and data in V8’s code and V8 has to be changed to separate code
and data; RockJIT’s CFI allows the mix of code and data as long
as data cannot be reached from code in control flow; (2) NaCl-JIT
uses the ILP32 programming model on x86-64, while the native
V8 uses LP64 model; therefore, it has to change nearly the entire
code-emission logic.

6. C++ CFG GENERATION
RockJIT secures a JIT compiler’s code by enforcing fine-grained

CFI. Since all JIT compilers are developed in C/C++ for perfor-
mance, we need a general methodology for generating fine-grained
CFGs from C/C++ programs. The MCFI work presents such a
method for C programs, but not C++ programs. SafeDispatch [22]
performs Class Hierarchy Analysis (CHA [14]) to identify all pos-
sible targets of virtual method calls in C++ programs, but it does not
cover other control-flow features including exceptions and indirect
calls via function pointers. We next discuss RockJIT’s method for
generating high precision CFGs, which covers all C++ control-flow
features.

In CFI, a binary-level CFG is enforced. In such a CFG, nodes
represent machine instructions and there is a directed edge between
two instructions if the control can possibly reach the second instruc-
tion after the execution of the first. The edges out of non-indirect-
branch instructions can be statically computed. The difficulty is
about indirect branches. However, we can statically compute a su-
perset of their possible targets for approximation. In a C++ pro-
gram, indirect branches are compiled from code that uses features
such as virtual method calls and exceptions. We next discuss those
C++ features and how RockJIT approximates the resulting indi-
rect branches’ targets by static analysis. It should be noted that
C++ compilation is ABI-dependent, and our CFG generation tar-
gets binaries conforming to the mainstream Itanium C++ ABI [2]
supported by LLVM and GCC. The approach has been tested using
a modified LLVM compiler (version 3.3).

Virtual method calls. C++ supports multiple inheritance and vir-
tual methods. A virtual method call through an object is compiled
to an indirect call (or an indirect jump with tail call optimization).
A virtual call on an object is resolved during runtime through dy-
namic dispatch. Which method it invokes depends on the actual
class of the object. Similar to SafeDispatch, RockJIT performs
CHA on C++ code. This analysis tracks the class hierarchy of a
C++ program and determines, for each class C and each virtual
method of C, the set of methods that can be invoked when call-
ing the virtual method through an object of class C; these meth-
ods might be defined in C’s subclasses. RockJIT simply allows a
virtual method call to target all methods determined by the CHA
analysis.

It should be pointed out that CHA is usually a whole-program
analysis. To support separate compilation, our implementation emits

1 typedef int (*Fp)();

2 Fp fp = &getpagesize;

3 std::cout << (*fp)();

4 ...

5 typedef int (Animal::*memFp)() const;

6 Animal *animal = new Pigeon();

7 memFp memfp = &Animal::age;

8 std::cout << (animal->*memfp)();

Figure 3: An example about C++ function pointers.

Ltry:
...

call __cxa_throw
Lcatch:
...

call printf

libc++abi

libunwind

(1): __cxa_throw

(2): _Unwind_RaiseException(3): __gxx_personality_v0

(4): Lcatch

Figure 4: Control transfers during C++ table-based exception

handling.

a class hierarchy for each module and combines modules’ class hi-
erarchies at link time.

Function pointers. C++ supports two kinds of function pointers:
(1) those that point to global functions or static member methods;
(2) those that point to non-static member methods. Function point-
ers in these two kinds have different static types. Their target sets
are disjoint and they are handled differently by compilers. Figure 3
shows a code example about the two kinds of function pointers.

Function pointer fp is of the first kind. It is assigned to the ad-
dress of a global function getpagesize at line 2. At line 3, the
function pointer is invoked via an indirect call (or indirect jump
if it is a tail call). To identify its targets, RockJIT adopts a type-
matching method that is similar to our previous MCFI work: an in-
direct branch via a function pointer of type τ∗ can target any global
function or static member method whose static type is equivalent to
τ and whose address is taken in the code.

Function pointer memfp at line 7 is of the second kind. The
code assumes Pigeon is a subclass of Animal. According to
the C++ semantics, we allow an indirect branch through such a
function pointer of type τ∗ to target any member method defined
in the same class whose type is equivalent to τ and whose address is
taken. Further, for each matched virtual member method, we search
the class hierarchy to find in derived classes all virtual methods
whose types match and add those functions to the target set.

Exception handling. We first discuss how C++ exceptions are
handled by LLVM that implements the Itanium C++ ABI. In this
ABI, C++ exception handling is a joint work of the compiler, a
C++-specific exception handling library such as libc++abi and
a C++-agnostic stack-unwinding library such as libunwind.

When a compiler compiles a C++ program, it emits sufficient
information for stack unwinding, since every stack frame needs to
be searched to find a matching catch clause for a thrown exception
object. Such data is emitted as metadata (e.g., the eh_frame and
gcc_except_table sections in an ELF file) during compila-
tion. Figure 4 depicts the runtime control flow when an exception
object is thrown. It assumes libc++abi and libunwind are
used; the control flow would be the same when other libraries are
used as long as they obey the Itanium C++ ABI.



The left box in Figure 4 shows some assembly code, where the
Ltry label starts a C++ try statement and Lcatch implements
a catch statement. A C++ throw statement is translated to a di-
rect call to libc++abi’s __cxa_throw, which takes three ar-
guments: the heap-allocated exception object, its type information,
and destructor. It performs initialization and invokes _Unwind_-
RaiseException in libunwind, which extracts the code ad-
dress where the exception is thrown and walks through each stack
frame by consulting the eh_frame section. In each stack frame,
_Unwind_RaiseException uses an indirect call to invoke a
C++-specific routine called __gxx_personality_v0. It is de-
fined in libc++abi and searches for catch clauses in that frame
by consulting gcc_except_table. Two cases can happen. If
a type-matching catch clause is found in the current frame, then
control is transferred to the catch clause via an indirect branch,
which we call CatchBranch. If a type-matching catch is not
found, the stack unwinding should be resumed. However, if there
is a clean-up routine that is used to deallocate objects allocated in
try statements, then the clean-up routine needs to execute before
the unwinding continues. It turns out that the same indirect branch
(CatchBranch) is used to transfer the control to the clean-up
routine, but with a different target address.

All control-flow edges in Figure 4, except for the edges out of
CatchBranch, can be handled using the strategies we have dis-
cussed (CHA analysis and the type-matching method). For the
CatchBranch, our implementation connects it to all catch clauses
and cleanup routines. To support separate compilation, RockJIT’s
modified LLVM compiler emits a table recording addresses of all
catch clauses and cleanup routines in each module, and these tables
are combined during linking.

If an exception object is caught, but not rethrown, libc++abi
also invokes the object’s destructor, which is registered when call-
ing __cxa_throw. The invocation is through an indirect call.
Possible targets of this call in a module can be statically computed
by tracking __cxa_throw invocations. As a result, RockJIT’s
C++ compiler also remembers these target addresses for each mod-
ule and combines them at link time.

Global constructors and destructors. The constructors of global
and local static objects’ are invoked before the main function of a
C++ program, and their destructors are called after the main func-
tion returns. LLVM handles such cases by generating stub code
for each such object. The stub code directly invokes the construc-
tor and registers the destructor using either __cxa_atexit or
atexit defined in libc. The addresses of the stub code are ar-
ranged in the binary and iterated through by an indirect call (called
CtorCall) in libc before main. After main, another libc indi-
rect call (called DtorCall) iterates through the registered destructors
to destroy objects. Both CtorCall and DtorCall’s targets are stati-
cally computable by analyzing the compiler-generated stub code.

Other control-flow features. Return instructions are handled in
the same way as MCFI. By analyzing the targets of call instruc-
tions, we first construct a call graph. Then a return instruction in
a function can return to any address immediately following a call
that can invoke the function according to the call graph.

Switch and indirect goto statements are typically compiled to
jump-table based indirect jumps; their targets can be statically ex-
tracted from read-only jump tables. These indirect jumps are sub-
ject to static verification and do not need instrumentation.

Lambda functions are available in C++11, whose related control-
flow edges are also supported by our CFG generation. Compil-
ers automatically convert lambda functions to functors, which are
classes with operator()methods. Therefore, control-flow edges

related to the operator() methods in such structures can be ap-
proximated using our discussed CFG generation method.

Conditions for our C++ CFG-generation method. Our method
for CFG generation is largely type based. Indirect calls through a
function pointer to a global function is allowed to call any global
function whose type matches the function pointer’s type. The class
hierarchy analysis, which is used to resolve virtual method calls, is
also based on static types. As a result, if a C++ program misuses
types using features such as arbitrary type casts, then our CFG-
generation method may construct a CFG whose edges do not cover
all dynamic control flow of the program; enforcement of such a
CFG would break the program’s execution. On the other hand, we
believe our method will not break a C++ program’s execution if the
following conditions are met: (1) no type cast to or from function
pointer types; (2) no C-style type cast or reinterpret_cast
from or to classes with virtual member methods; (3) no inlined
assemblies. These conditions are similar to the ones in MCFI’s
CFG construction for C programs.

We have built in Clang, LLVM’s front-end, a static checker to
catch violations of the above conditions in C++ programs. Viola-
tions reported by the checker on a C++ program can be straight-
forwardly fixed to be compatible with our CFG-generation method
using the wrapper approach described in MCFI. For V8, which has
over 555,000 lines of code, we modified only 10 lines of code us-
ing the wrapper approach to make it compatible with our CFG-
generation method. We also tried our approach on the seven C++
programs in SPECCPU2006 as well as libc++, libc++abi,
and libunwind for a total over 620,000 lines of code, only 35
lines of code (all in SPECCPU2006 benchmark 453.povray) need
to be changed to generate CFGs using our method. In addition, all
the generated CFGs have been tested on data sets that come with
those benchmarks and the results are summarized in the appendix.

CFG statistics for C++ programs. Table 1 shows CFG genera-
tion statistics for V8 and the C++ benchmarks in SPECCPU2006.
They are compiled with the O3 optimization3 and are statically
linked with dependent libraries including libc++, libc++abi,
libunwind, and MUSL libc. For each program, the table lists
its source lines of code (SLOC) and the number of indirect branches
(IB). The table also presents statistics for the CFGs generated us-
ing RockJIT’s CFG-generation method. The column IBT lists the
number of indirect-branch targets in the CFGs. It is the number
of functions whose addresses are taken, plus the number of return
addresses, plus the number of catch clauses and clean-up routines.

The column EQC presents the number of equivalence classes

of addresses in the CFG. RockJIT follows the original CFI [3] of
using equivalence classes: two addresses are equivalent if there is
an indirect branch that can jump to both targets according to the
CFG. If the target sets of two indirect branches are not disjoint in
the CFG, then the two sets are merged into one equivalence class
and the two indirect branches are allowed to jump to any target in
the equivalence class. This process results in some loss of CFG
precision. However, as we can see from Table 1, V8 still has over
10k equivalence classes of target addresses (note that EQC is upper
bounded by IB). This is much stronger than coarse-grained CFI,
which enforces only one or several equivalence classes.

7. EVALUATION
We have evaluated RockJIT’s security and performance using

Google’s V8 JavaScript engine. We conducted all experiments on

3On V8, tail call optimization is turned off for more equivalence classes of
return instructions and yet performance overhead is negligible.



Program SLOC IB IBT EQC
V8 555,383 34,279 100,497 10,452
444.namd 3,886 598 4,694 287
447.dealII 94,384 11,426 58,930 2,529
450.soplex 28,277 4,554 17,944 1,387
453.povray 78,705 2,247 15,477 1,048
471.omnetpp 19,991 5,672 30,781 1,494
473.astar 4,280 544 3,813 293
483.xalancbmk 267,399 27,397 94,103 6,490

Table 1: CFG statistics for V8 and SPECCPU2006 C++ bench-

marks.

a system with x86-64 Ubuntu 14.04, an Intel Core i7-3770 CPU,
and 8GB physical memory. All programs tested were compiled to
64-bit binaries at optimization level three.

7.1 Security evaluation
By enforcing fine-grained CFI on V8’s code, RockJIT improves

its security. ROP attacks are restricted in terms of both the available
gadgets and how gadgets can be chained to form an attack. To test
the first aspect, we used a ROP-gadget finding tool, rp++4, to find
the number of unique gadgets that can be found in the native V8
and RockJIT-hardened V8. In the hardened V8, a potential gadget
has to start at a valid indirect branch target (e.g., a return address).
Our result shows that RockJIT can eliminate nearly 98.5% gadgets
from V8’s code base. We also tried the tool on those SPEC C++
benchmarks and RockJIT can eliminate 98.3% gadgets from those
benchmarks. A caveat about these numbers is that they depend
on a specific gadget-finding tool. Other tools might use different
definitions of gadgets.

Fine-grained CFI further improves security by eliminating many
more functionality-irrelevant control-flow edges and therefore re-
stricting how gadgets can be chained. The execution of gadget g
can be followed by only those gadgets whose start addresses can
be targeted by the indirect branch at the end of g. By contrast,
coarse-grained CFI allows gadget g to be followed by all other gad-
gets (assuming only one equivalence class is enforced). As a con-
crete comparison, the following table lists the number of edges for
indirect branches in NaCl-JIT V8’s CFG, which enforces coarse-
grained CFI, and the number in RockJIT V8’s CFG.

V8 defenses NaCl-JIT V8 RockJIT V8

Total # of indirect-branch edges 7,976,474,777 2,051,600

Since NaCl-JIT allows an indirect branch to target any 32-byte
aligned address, the number of indirect-branch edges for NaCl-JIT
V8 is computed by IB ∗ CodeSize/32, where IB is the number of
indirect branches in V8 and CodeSize is the size of V8’s code. The
number for RockJIT V8 is computed by summing the out degrees
of indirect-branch nodes in its CFG.

As we can see, RockJIT eliminates 99.97% more edges for indi-
rect branches in V8 compared to NaCl-JIT. Therefore, we believe
fine-grained CFI improves security significantly. However, the se-
curity evaluation of fine-grained CFI needs much further investiga-
tion. It would be ideal to have a metric for fine-grained CFI that is
directly related to security than the number of control-flow edges;
the topic goes beyond the scope of this paper.

7.2 Performance evaluation
RockJIT incurs performance overhead because of inlined checks

and JITted code verification. We ran RockJIT-hardened V8 on the

4
https://github.com/0vercl0k/rp
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Figure 5: Performance overhead imposed by RockJIT-

hardened V8 on Octane 2 benchmarks.

Octane 2 JavaScript benchmarks5 and measured the performance
overhead. Octane 2 consists of 17 tests, which measure different
aspects of a JavaScript compiler, from speed of bit operations to
compiler latency. Each benchmark was run ten times and the vari-
ance was less than 2%. Figure 5 presents the performance overhead
of the benchmarks. As a summary, RockJIT imposes 14.6% aver-
age overhead over all tests and the maximum overhead is 36.4%.

Note that RockJIT’s performance overhead varies over different
benchmarks. Through V8’s internal performance profiler, we found
that, the less frequently a benchmark’s execution stays in the JITted
code, the more overhead RockJIT tends to incur on the benchmark.
The reason is that the density of indirect branches in V8’s runtime
is roughly four times the density of indirect branches in its JIT-
ted code. For example, the NavierStokes benchmark (as well as
Crypto) reports nearly zero performance overhead, mainly because
96% of its execution is in the JITted code. In the JITted code, over
96% execution is in optimized loops that iterate through numeric
arrays, during which indirect branches and indirect memory writes
are rare. As an example of the other extreme, the CodeLoad bench-
mark reports the largest overhead of 36.4%. The benchmark mea-
sures the compilation latency and nearly 98% of execution is per-
formed on the V8 runtime for compilation. Other benchmarks with
big JavaScript code base such as the PdfJS, Mandreel and Type-
script also spend great portions of time in the V8 runtime, incurring
relatively large overhead.

In general, RockJIT’s performance overhead are due to three ma-
jor contributors: the inlined checks in V8 runtime’s code, the in-
lined checks in JITted code, and verification. The following table
shows the performance overhead of each contributor over Octane
2 benchmarks. These overheads were generated by disabling fac-
tors one at a time. Since they are not independent, these overheads
cannot be simply added.

Aspects
V8 Runtime JITted Code

Verification
Checks Checks

Overhead 4.3% 8.4% 1.7%

NaCl-JIT and librando tested overheads on a subset of the Octane
2 benchmarks. NaCl-JIT incurs about 51% overhead on average,
and librando 265.8%. On the same subset, RockJIT incurs 9.0%
overhead. NaCl-JIT is slower mainly because of the following
reasons: (1) NaCl-JIT emits many more no-ops for 32-byte align-
ment, whose execution consumes roughly 37% extra time; Rock-
JIT requires that indirect branch addresses are four-byte aligned
and does not insert many no-ops; (2) RockJIT’s DFA-based veri-
fication (1.7% overhead) is faster than NaCl’s disassembly-based
verification (5% overhead).

5
https://developers.google.com/octane/benchmark, re-

vision 33.
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Figure 6: Performance overhead imposed by RockJIT-

hardened V8 on Kraken 1.1 benchmarks.

We also tested RockJIT-hardened V8’s performance on Mozilla
Kraken benchmarks6, and the results (in Figure 6) show that on the
average of ten runs RockJIT incurs 10.8% overhead with less than
1% variance, similar to the results on Octane 2.

Code size increase. With all the libraries linked, the code of the
RockJIT-hardened V8 is 37.5% larger than its native counterpart,
due to the CFI checks. The execution of all Octane 2 benchmarks
generates around 9.9% more code in the code heap than the native
V8. The reason why the JITted code has less code-size increase
is that it uses less indirect branches. By contrast, V8’s code uses
virtual method calls heavily.

8. CONCLUSIONS AND FUTURE WORK
We have presented RockJIT, a general approach to securing JIT

compilers. RockJIT enforces fine-grained CFI on the JIT compiler
and coarse-grained CFI on the JITted code, resulting in much im-
proved security and lower performance overhead than other state-
of-the-art systems. The benefits of RockJIT have been empirically
demonstrated by a RockJIT-hardened JavaScript compiler. We be-
lieve RockJIT can greatly raise the bar of mounting attacks on JIT
compilers. As future work, we plan to: (1) port more JIT com-
pilers such as HotSpot, HHVM, and LuaJIT to RockJIT; (2) for-
mally prove the correctness of the verifier following the approach
of RockSalt [24]; and (3) integrate RockJIT-hardened V8 engine
into Chromium and harden all components in Chromium by MCFI
and comprehensively evaluate the security, performance, and engi-
neering cost of fine-grained CFI.
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APPENDIX

We measured MCFI’s performance overhead on SPECCPU2006
C++ benchmarks. The experiments were conducted in the same
environment as mentioned in Sec. 7. All benchmark programs
and their dependent libraries were compiled with the O3 optimiza-
tion. The results are averaged over three runs and presented in the
following figure. The x86-32 and x86-64 bars are results of bench-
marks compiled with -m32 and -m64 compiler options, respec-
tively. As can be seen, MCFI incurs around 6.8%/15.7% (average/-
maximum) performance overhead on C++ benchmarks.
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