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Through foreign function interfaces (FFIs), software components in different

programming languages interact with each other in the same address space. Recent years

have witnessed a number of systems that analyze FFIs for safety and reliability.

However, lack of formal specifications of FFIs hampers progress in this endeavor. We

present a formal operational model, JNI Light (JNIL), for a subset of a widely used

FFI—the Java Native Interface (JNI). JNIL focuses on the core issues when a high-level

garbage-collected language interacts with a low-level language. It proposes abstractions

for handling a shared heap, cross-language method calls, cross-language exception

handling, and garbage collection. JNIL can directly serve as a formal basis for JNI tools

and systems. We demonstrate its utility by proving soundness of a system that checks

native code in JNI programs for type-unsafe use of JNI functions. The abstractions in

JNIL are also useful when modeling other FFIs, such as the Python/C interface and the

OCaml/C interface.

1. Motivation

Most modern programming languages support foreign function interfaces (FFIs) for in-

teroperating with program modules developed in other programming languages. Recent

years have witnessed a string of systems that analyze and improve FFIs for safety and

reliability [Furr and Foster, 2006, Tan et al., 2006, Hirzel and Grimm, 2007, Tan and

Morrisett, 2007, Tan and Croft, 2008, Kondoh and Onodera, 2008, Li and Tan, 2009,

Lee et al., 2010]. However, lack of formal semantics of FFIs hampers progress in this

domain. The available specifications of FFIs are in prose. Relying on prose specifications

has at least two unpleasant consequences. First, prose specifications are often ambigu-

ous and sometimes incomplete. The situation is especially acute for an FFI, whose two

sides involve different programming models and language features. For instance, Lee et

al. reported that Sun’s HotSpot and IBM’s J9 behave differently for four out of ten JNI

test cases [Lee et al., 2010, Table 1]. In such situations, the best an FFI user can do is to

perform experiments on particular implementations and make an educated guess. This

may cause inconsistencies and unsoundness. Second, without formal semantics, tools and

analyzers cannot provide rigorous claims about their strength. As a result, previous sys-
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tems that target FFIs have to argue their hypotheses and claims informally. This leaves

their strength in doubt.

While there have been many efforts in formalizing the semantics of programming lan-

guages, almost all have ignored the FFI aspect. The work by Matthews and Findler

[2007] formalizes the interoperation between two high-level functional languages, one

typed and the other untyped. While this formalism represents significant progress in

modeling language interoperation, it does not apply to FFIs. Most FFIs are about the

interaction between a high-level language and a low-level language (assembly languages,

C, and C++) in a shared memory.

This paper presents the first formal operational model, named JNI Light (JNIL), for a

subset of a shared-memory foreign function interface—the JNI interface. The major chal-

lenge for the modeling effort is to have the right abstractions to accommodate differences

between the programming models of Java and native code, without unduly complicating

the model. This is challenging because Java is a high-level OO language with a man-

aged runtime and provides automatic garbage collection and exception handling. Native

code, on the other hand, operates at a much lower level. It manually manages the heap

and has no built-in exception-handling mechanism. JNIL proposes a set of abstractions

to handle these differences. The abstractions make the JNIL model concise and largely

straightforward.

We proceed as follows. We highlight key issues and abstractions in JNIL in Sec. 2.

The formal semantics of JNIL is presented in Sec. 3. Java bytecode checking and Java

safety theorems are in Sec. 4. In Sec. 5, we discuss applications of the JNIL model; we

also present and prove soundness of a system that performs extended safety checking

of native code. We sketch extensions of JNIL in Sec. 6 and future work in Sec. 7. We

present related work in Sec. 8 and conclude in Sec. 9.

A preliminary version of this article was published in the Proceedings of the Eighth

Asian Symposium on Programming Languages and Systems (APLAS 2010) [Tan, 2010].

The differences between the conference version and this article are described as follows.

First, to demonstrate how JNIL can be used as a foundation to provide rigorous claims

of JNI tools and systems, we have added the formalization and proof of soundness of a

system that performs extended static checking of native code to catch errors of incorrect

JNI function calls (in Sec. 5). Second, due to space limitation, the conference version

does not include the full semantics and proofs of the safety theorems. In this version, we

have added the full semantics and major lemmas used in the proofs.

2. Informal Discussion of JNIL

In this section, we informally discuss major challenges of modeling the JNI and highlight

JNIL’s solutions; formal treatment is left to Sec. 3. We also present examples that help

understand the key aspects.

Background. The JNI [Liang, 1999] is Java’s mechanism for interfacing with native

code. A native method is declared in a Java class by adding the native modifier. Fig. 1

presents an Item class that contains a native double method, which doubles the quantity
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Java code

class Item {

private int quantity = 17;

private native int double();

public int quadruple() {int old = double(); double(); return old;}

static {System.loadLibrary("Item");}

}

Native code

// a reference to an Item object is at the top of the operand stack

SLd r1, sp[0] // load the reference to r1

GetField 〈“Item”, “quantity”, Int〉 // Get the value of the quantity field

Pop r2 // pop the quantity value to r2

Add r3, r2, r2

Push r1

Push r3 // set up the stack for SetField

SetField 〈“Item”, “quantity”, Int〉

Push r2

Ret

Fig. 1. A Java class with a native method and an implementation of the native method

in JNIL; it assumes arguments and results are passed on the stack.

field and returns the old value. Once declared, native methods are invoked in Java in

the same way as how Java methods are invoked. In the example, the quadruple Java

method invokes the double method.

A native method is implemented in a low-level language such as C, C++, or an as-

sembly language. Native code can use all the features provided by the native language.

In addition, native code can interact with Java through a set of JNI interface functions

(called JNI functions hereafter). For instance, the implementation of double can invoke

GetField to get the value of the quantity field, and SetField to set the field to double

the old value. Through JNI functions, native methods can inspect, modify, and create

Java objects, invoke Java methods, catch and throw Java exceptions, and so on.

Two sides of JNIL. A model of the JNI needs both a Java-side language and a

native-side language. The Java-side language of JNIL is a subset of the Java Virtual

Machine Language (bytecode [Lindholm and Yellin, 1999]). The native-side language

is a RISC-style assembly language augmented with a set of JNI functions (such as

GetField/SetField). We choose to model an assembly language because native methods

in C or C++ are compiled before loaded and linked into the JVM. Furthermore, there is

less modeling overhead for an assembly language, allowing JNIL to concentrate on the

interaction between Java and native code.

Many bytecode and JNI functions in JNIL work with field IDs and method IDs. For

example, “GetField fd” gets the value of the field represented by fd . A field ID identifies

a field by specifying three elements: a class name that the field belongs to, a field name,
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and its type. For example, the ID for the quantity field is 〈“Item”, “quantity”, Int〉. A

method ID has similar information as a field ID. A method ID may identify either a Java

method (implemented in bytecode) or a native method (implemented in native code).

Fig. 1 presents an implementation of the native double method in the example Item

class, where both GetField and SetField use the field ID of quantity to access the

field.

Heap model. In the JNI, Java and native code reside in the same address space to avoid

costly context switches. Consequently, JNIL needs to model a shared heap. However,

modeling the shared heap poses challenges because Java’s and native code’s views of the

heap are at different levels.

Being a high-level language, Java takes a high-level view: a heap is mathematically

a map from labels to objects. The use of abstract labels hides many complexities of

memory management. If a heap is rearranged and labels are renamed, the new heap is

considered to be equivalent to the old one as long as the “graph” of the heap is preserved.

Furthermore, in the high-level view, objects are storable values. There is no need to

consider how objects are represented in memory. Previous Java models [Drossopoulou

and Eisenbach, 1999, Flatt et al., 1999, Freund and Mitchell, 2003, Klein and Nipkow,

2006] adopt the high-level view. By contrast, native code takes a low level view: a heap

is mathematically a map from addresses to primitive values. An object is represented in

memory as a sequence of primitive values according to an object-layout strategy. Native

code can perform address arithmetic, for example, to access elements of a Java array.

JNIL adopts an unusual block model : (1) a heap is a map from labels to blocks; (2) a

block is a map from addresses (natural numbers) to primitive values. A block may hold

the representation of a Java object, or may be a memory region allocated and owned by

native code.

Heap ::= Label ⇀
〈

blk : Block , own : Owner
〉

Block ::= N ⇀ Value

A reference value, written as ℓ[i], identifies a location in block ℓ with offset i.

There are two major benefits of the block model. First, using abstract labels instead

of addresses in the heap preserves the major benefit of the high-level heap model. It

simplifies the specification of garbage collection (GC). In particular, there is no need

to worry about whether GC moves objects because the resulting heap after moving is

equivalent to the previous heap.† The second benefit of the block model is that it also

accommodates the low-level view of native code. Values stored in blocks are primitive

values. Address arithmetic is allowed within one block. Suppose a block with label ℓ holds

the representation of a Java integer array, then Java may pass to native code a reference

ℓ[i] that identifies where array elements are stored. Adding an offset n to ℓ[i] results in a

new reference ℓ[i + n], which native code can use to access the n-th element of the array.

† We can imagine that there is a flatten function that maps a heap in the block model to a flat heap.
A flat heap is just a map from addresses to values. Then a moving GC will change only the flatten
function.
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Fig. 2. An example of ping-pong behavior.

Object representation and ownership. Since JNIL’s heap holds only primitive val-

ues, it is necessary to represent Java objects in the heap. JNIL is parametrized by a

representation function, Rep : Object → Block , for the desire of not committing to any

particular object-representation strategy. The representation function maps a Java ob-

ject to a block. For instance, one representation can represent Java class instances and

arrays in the following way:
Rep(〈〈fd1 = v1, . . . , fdn = vn〉〉φ) = {0 7→ TypeRep(φ), 1 7→ v1, . . . , n 7→ vn}

Rep(Jv0, . . . , vn−1Kτ [n]) = {0 7→ TypeRep(τ), 1 7→ n, 2 7→ v0, . . . , n + 1 7→ vn−1}

In the above, 〈〈fd1 = v1, . . . , fdn = vn〉〉φ is a Java instance of class φ with fields fd1 to

fdn; Jv0, . . . , vn−1Kτ [n] is a Java array of size n with element type τ ; TypeRep(−) is a

function for representing types as primitive values.

Each block in the heap has an owner: ω ∈ {J,N}. A heap H is conceptually divided into

a subheap owned by Java (J), written as H|J, and a subheap owned by native code (N),

written as H|N. The reason for adding ownership is twofold. First, it helps specify Java’s

GC, which recollects locations only in the Java heap. Second, ownership information

could be used to define a safety policy. For instance, if the policy is that native code

should not access the Java heap, then the semantics of native load/store instructions

could have the ownership checking built-in.

Cross-language method calls. Java and native code may engage in the so-called

“ping-pong” behavior. Fig. 2 shows a graphical depiction of a sequence of method calls:

a Java method with ID md1 may invoke a native method with ID md2, which in turn

calls back another Java method with ID md3. It is possible that md3 invokes a second

native method (not shown in the figure) and therefore the control can bounce back and

forth between the Java and native sides.

To model cross-language method calls, we introduce in JNIL a multi-language method-

call stack whose frames are either Java frames or native frames:

F ∈ Frame ::= 〈md , pc, s, a〉J | 〈md , pc, s, vx, L〉N

A Java frame holds information for a Java-method execution, and a native frame for a

native-method execution. Both kinds of frames include a method ID (md), a program
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counter (pc), and an operand stack (s). The operand stack is used for storing intermediate

results and possibly for passing arguments and results of function calls. A Java frame

also includes a local variable map (a), which holds values of local variables. A native

frame also includes an exception reference (vx) and a root set (L); we will discuss their

uses shortly.

For the example in Fig 2, the shape of the method-call stack when the control is in

md3 is represented as follows (only method IDs are shown).

〈md3, . . .〉J · 〈md2, . . .〉N · 〈md1, . . .〉J · ǫ (1)

The top of the stack is on the left. We treat a stack as a list of frames and use “F · S”

for the concatenation of frame F and stack S and ǫ for the empty stack.

Cross-language exception handling. The JVM has a built-in mechanism for excep-

tion handling. We define Java exceptions to be those that are pending in a Java method.

For a Java exception, the JVM checks if there is an enclosing try/catch statement that

matches the exception type in the method. If not, it pops the method off the method-call

stack and checks the next method.

An exception may also be pending on the native side; we call such exceptions JNI

exceptions. For example, if the Java method md3 in Fig. 2 throws an exception that is not

handled by md3, then it is a JNI exception pending in native method md2. Native code

itself may also throw exceptions by calling JNI functions such as JNIThrow. Furthermore,

many JNI functions throw exceptions to indicate failures.

In contrast to how an exception is handled in a Java method, a JNI exception does not

immediately disrupt the native method execution. The exception is recorded in the JVM,

but the native method will keep executing. After the native method finishes execution

and returns to a Java method, the exception becomes pending in the Java method and

then the JVM mechanism for exceptions starts to take over.

Given this difference, the question is how to model the operational semantics when an

exception becomes pending in a method-call stack that contains mixed Java and native

frames. JNIL handles this issue by having different modes for indicating the presence

of Java and JNI exceptions. A Java exception is indicated by a special exception frame

〈ℓ〉X at the top of the method-call stack, where ℓ is a reference to a Throwable object.

A JNI exception is recorded in a native frame 〈md , pc, s, vx, L〉N: the value vx is null

when no exception is pending and is ℓ with a pending JNI exception ℓ. JNIL’s abstract

machine proceeds differently for the two modes. Briefly, JNIL unwinds the stack for a

Java exception and continues the execution of a native method for a JNI exception; we

will discuss the details in the next section.

Registration of references. Java’s GC is aware of only those references on the Java

side. When native code retains references to Java objects, it has to register those ref-

erences so that the GC will not collect the underlying objects. JNIL records the set of

Java references available to a native method in a root set L. A root set is associated with

a native frame so that its references are automatically “freed” when the native method
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finishes its execution. This semantics effectively models the so-called local references in

the JNI.‡

3. Formal Operational Semantics of JNIL

We next present the core calculus of JNIL. A few simplifications are made to the model.

First, arrays are not included. Second, it assumes a calling convention where arguments

and results are passed on the operand stack when Java invokes native methods. Sec. 6

briefly discusses how to generalize the model to add arrays and to parametrize over

calling conventions. The bytecode language is also simplified. Following Featherweight

Java [Igarashi et al., 2001], we avoid the object initialization problem by having a single

instruction for creating and initializing an object. There is also no modeling of interfaces,

subroutine calls and returns, and various other Java features. They are orthogonal to the

multilingual issues we are concerned with in FFIs. A notable missing feature in JNIL

is concurrency. We believe it should be straightforward to formulate an interleaving

semantics for multithreaded JNI programs based on a model of concurrent bytecode

(e.g., [Petri and Huisman, 2008]).

Notation conventions. We write e for a list (or sequence) of elements e. The empty

list is ǫ, and e · s is the concatenation of e with list s. Appending two lists is written as

s1 • s2. We write [e1, . . . , en] for a finite list.

Given a function f , we write f [x 7→ v] for an updated function that agrees with f

except that x is mapped to v. We write f [x 7→ v] for a function after a sequence of

updates from x to v. We write “X Option” for an option domain of X (analogous to

ML’s option types). We write None for the none value, and ⌊x⌋ for some x. We use ⊤ for

an arbitrary value.

3.1. JNIL Programs

A JNIL program is modeled as an environment that records information for classes and

methods (Fig. 3). A program P includes maps from class names and method IDs to

their respective definitions. In particular, P (φ).super is the superclass of class φ, or None;

P (φ).fields is the list of fields declared in φ. We write Fields(P, φ) for the list of all fields

of φ, including the ones of its superclasses.

Java method and native method information are separated into two maps: PJM for

Java methods and PNM for native methods. We write JavaMD(P ) for the set of Java

method IDs in P , and NativeMD(P ) for the set of native method IDs. PJM(md) contains

a list of Java instructions (the code field), a list of exception handlers, and also type

‡ The JNI also provides global and weak-global references. Global references are valid across multi-
ple invocations of native methods and multiple threads. Weak global references are similar to global
references except that the underlying objects can be garbage collected. These references are straight-

forward to model. Global references can be modeled as a global set of labels. Weak-global references
have no impact on GC, although a JNI function for testing the validity of references needs to be
exposed to native code. We omit their modeling in JNIL for brevity.
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P = PJC ∪ PJM ∪ PNM

PJC : ClassName ⇀
D

super : ClassName Option, fields : FID List
E

PJM : MID ⇀

*

code : JInstr List , handlers : Handler List ,

stype :CodeAddr ⇀Type List , vtype :CodeAddr ⇀JVarID → Type

+

PNM : MID ⇀ 〈code : NInstr List〉

fd ∈ FID ::= 〈φ, α, τ〉 md ∈ MID ::= 〈φ, α, [τ1, . . . , τn] → τr〉

τ ∈ Type ::= Int | Cls φ | Top η ∈ Handler ::= 〈nb, ne, nt, φ〉

φ ∈ ClassName = String α ∈ String n ∈ CodeAddr = N d ∈ JVarID = N

Fig. 3. JNIL programs.

I ∈ JInstr ::= arith | cond n | push v | pop | localload d | localstore d | goto n

| getfield fd | putfield fd | new φ | invokevirtual md | returnval | throw

arith ∈ JArith ::= add | sub | mul | . . . cond ∈ JCond ::= ifeq | ifne | ifgt | . . .

ι ∈ NInstr ::= jfun | aop rd, rs, op | bop rs, rt, op | Mov rd, op | Jmp op

| Ld rd, rs[rt] | St rd[rt], rs | Alloc rd, n | Free rs[n]

| SLd rd, sp[n] | SSt sp[n], rs | SAlloc n | SFree n | Ret

jfun ∈ JNIFun ::= GetField fd | SetField fd | NewObject φ | CallMethod md

| IsInstanceOf τ | JNIThrow | ExnClear | ExnOccurred

aop ∈ NArith ::= Add | Sub | Mul | . . . bop ∈ NCond ::= Beq | Bneq | Bgt | . . .

op ∈ Operand ::= r | n r ∈ Register ::= r1 | r2 | . . . | r32

Fig. 4. Bytecode and native instruction sets.

information (stype and vtype). The type information is used when type checking Java

methods and is irrelevant for operational semantics. PNM(md) simply contains a list of

native instructions. We abbreviate P (md).code[pc] to P (md)@pc, the instruction at pc

in md .

Java types include Int type, class type (Cls φ), and Top type. For simplicity, JNIL

omits types such as void and float. Two special class names, object and throwable, are

assumed. We write Object and Throwable for “Cls object” and “Cls throwable”, respec-

tively. An exception handler, 〈nb, ne, nt, φ〉, catches exceptions of class φ by transferring

the control to address nt, if the program counter is in the range [nb, ne − 1].

Fig. 4 presents the syntax of bytecode and native instructions. The bytecode instruc-

tion set is modeled after the Java Virtual Machine Language (JVML [Lindholm and

Yellin, 1999]); we refer readers to the specification for a detailed discussion. The native

instruction set includes instructions for manipulating the heap (load, store, allocation,

and deallocation), a set of instructions for manipulating the operand stack (those in-

structions whose operators begin with S), a Ret instruction for returning, and a set of

JNI functions. We use r for a register and op for an operand, which is either a register

or a constant. Finally, we note that instructions for pushing to and popping from the



JNI Light: An Operational Model for the Core JNI 9

S ∈ Stack ::= F | 〈ℓ〉X · F

F ∈ Frame ::= 〈md , pc, s, a〉J
| 〈md , pc, s, vx, L〉N

s ∈ OpStack ::= v

a ∈ JVarMap ::= {0 7→ v0, 1 7→ v1, . . .}

L ∈ RootSet ::= {ℓ1, . . . , ℓn}

H ∈ Heap ::= Label ⇀

*

blk : Block ,

own : Owner

+

b ∈ Block ::= N ⇀ Value

v ∈ Value ::= n | null | ℓ[i]

ω ∈ Owner ::= J | N

o ∈ Object ::= 〈〈fd1 = v1, . . . , fdn = vn〉〉φ

R ∈ RegFile ::= {r1 7→ v1, . . . , r32 7→ v32}

Fig. 5. JNIL runtime states (S; H; R).

operand stack can be synthesized: “Push op” is “SAlloc 1;SSt sp[0], op” and “Pop r” is

“SLd r, sp[0];SFree 1”.

Fig. 4 also includes a set of common JNI functions. Note that GetField, SetField,

and CallMethod take field and method IDs as arguments. The JNI interface actually

uses a two-step process to access a field (or call a method): first convert a string that

represents the field (or method) to a field (or method) ID; the resulting ID is then used in

operations such as GetField. JNIL omits the first step to avoid the need to axiomatize

the conversion from strings to IDs.

Both the bytecode and native instruction sets include arithmetic and conditional

branching instructions. Since their semantics is uninteresting, we will ignore those in-

structions hereafter. But we will feel free to include them in examples.

3.2. Runtime states

A runtime state is a triple (S;H;R), where S is a method-call stack, H a shared heap,

and R a register file. Its format is shown in Fig. 5. We have discussed the format of the

method-call stack and the heap in the previous section. Recall that the heap holds only

primitive values; objects are mapped to primitive values and stored in blocks. A value is

either an integer n, a null value, or a reference value ℓ[i]. We abbreviate ℓ[0] to ℓ.

3.3. Operational semantics

We will discuss only a subset of the rules to highlight JNIL’s features; the full operational

semantics is included in Appendix A. Overall, the operational semantics is modeled as a

transition relation:

P ⊢ (S;H;R) 7−→ (S′;H ′;R′).

Fig. 6 presents evaluation rules at the top level. A state steps forward because of a Java

step, a native step, or a GC step.

Fig. 7 presents a few Java heap operations that are used in the operational semantics.

ReadFd, UpdFd, and AllocInst read a field, update a field, and allocate a new class

instance, respectively. Blank(P, φ) returns an instance of class φ with its fields initialized

to default values. Tag(H, ℓ) returns the runtime tag of a Java object at ℓ in H. If τ is a

reference type, IsRefType(τ) holds.
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P ⊢ (S; H; R)
J

7−→ (S′; H ′; R′)

P ⊢ (S; H; R) 7−→ (S′; H ′; R′)

P ⊢ (S; H; R)
N

7−→ (S′; H ′; R′)

P ⊢ (S; H; R) 7−→ (S′; H ′; R′)

(S; H)
GC
7−→ (S′; H ′)

P ⊢ (S; H; R) 7−→ (S′; H ′; R)

Fig. 6. JNIL’s top evaluation rules.

ReadFd(H, ℓ, fd) =

8

>

<

>

:

o(fd) if H(ℓ) = 〈Rep(o), J〉,

and o = 〈〈. . .〉〉φ, and fd ∈ dom(o)

undefined otherwise

UpdFd(H, ℓ, fd , v) =

8

>

<

>

:

H[ℓ 7→ 〈Rep(o[fd 7→ v]), J〉]

if H(ℓ) = 〈Rep(o), J〉, and o = 〈〈. . .〉〉φ, and fd ∈ dom(o)

undefined otherwise

AllocInst(H, P, φ) = (H ⊎ {ℓ 7→ 〈Rep(o), J〉}, ℓ)

where ℓ 6∈ dom(H) and o = Blank(P, φ)

Blank(P, φ) = 〈〈fd1 = Zero(τ1), . . . , fdn = Zero(τn)〉〉φ,

where Fields(P, φ) = [fd1, . . . , fdn], and fd i = 〈φi, αi, τi〉, i ∈ [1..n]

Zero(Int) = 0 Zero(Cls φ) = null

Tag(H, ℓ) =

(

φ if H(ℓ) = 〈Rep(〈〈. . .〉〉φ), J〉

undefined otherwise

IsRefType(τ) = ∃φ. τ = Cls φ

Fig. 7. Java heap operations.

The semantics of all instructions are included in Appendix A. We reproduce some rules

in the main text to illustrate typical cases. Fig. 8 reproduces the rules for “getfield fd”

(a bytecode instruction) and its counterpart JNI function “GetField fd” (used in native

code). The semantics of “getfield fd” is deliberately partial. The abstract machine does

not have a next state (that is, “getting stuck”), if block ℓ in H is not owned by Java, does

not hold an object representation, or field fd is not in the domain of the representation (in

these cases, ReadFd(H, ℓ, fd) is undefined). The bytecode type system ensures such cases

will not happen for well-typed bytecode programs when running in well-typed states.

The semantics of “GetField fd” is similar to “getfield fd”, except for a couple of differ-

ences. First, no JNI exceptions should be pending. Recall that in a native stack frame

〈md , pc, s, vx, L〉N the value vx records a pending JNI exception. The JNI manual speci-

fies that “calling most JNI functions with a pending exception may lead to unexpected

results”. Consequently, most JNI functions requires vx be null as a precondition. On this

aspect, JNIL follows the specification of the JNI standard. JVM implementations, how-

ever, may implement different semantics. The experiments by Lee et al. [2010] showed

that in such cases Sun’s HotSpot continues running, while IBM’s J9 crashes.

Second, some JNI functions may give native code extra references to Java objects.

Since these references need to be registered with Java’s GC, they are recorded in the

root set of a native frame. The semantics of “GetField fd” adds the value of the field into

the root set L, if that value is a reference value.

Cross-language method calls. The “invokevirtual md” instruction may invoke a Java
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P ⊢ (〈md , pc, s, a〉J · S; H; R)
J

7−→ (S′; H ′; R), if

P (md)@pc = and conditions hold, then S′; H ′=

getfield fd
fd = 〈φ, α, τ〉 s = ℓ · s1
ReadFd(H, ℓ, fd) = v

〈md , pc + 1, v · s1, a〉J · S; H

P ⊢ (〈md , pc, s, vx, L〉N · S; H; R)
N

7−→ (S′; H ′; R), if

P (md)@pc = and conditions hold, then S′; H ′ =

GetField fd
fd = 〈φ, α, τ〉 s = ℓ · s1
ReadFd(H, ℓ, fd) = v vx = null

〈md , pc + 1, v · s1, null, L′〉N · S; H,

where L′ = L ∪ Roots(v)

Fig. 8. Operational semantics of “getfield fd” and “GetField fd”.

Fig. 9. Boundary-crossing instructions.

or a native method, depending on what kind of method md represents. If it invokes a

native method, the execution context switches to the native side. returnval may return to

a Java, or a native method. JNI function “CallMethod md” and native Ret are analogous,

except they appear in native code. Fig. 9 presents a diagram depicting how contexts may

switch as a result of method-call and return instructions.

Fig. 10 includes rules related to method calls and returns. If ′′invokevirtual md” invokes

a Java method, a new Java frame is constructed and parameters are copied to the local

variable map of the new frame (following the JVML specification). If it invokes a native

method, a native frame is constructed and arguments are put in its operand stack (recall

the calling convention). The auxiliary function NewFrame constructs either a Java frame
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P ⊢ (〈md , pc, s, a〉J · S; H; R)
J

7−→ (S′; H ′; R), if

P (md)@pc = and cond. hold, then S′, H ′=

invokevirtual

md1

md1 = 〈φ, α, [τ1, . . . , τn] → τr〉

s = vn · . . . · v1 · ℓ · s1 Tag(H, ℓ) = φ′

md ′ = 〈φ′, α, [τ1, . . . , τn] → τr〉

NewFrame(P,md ′, [ℓ, v1, . . . , vn])·

〈md , pc, s, a〉J · S; H

returnval

md = 〈φ, α, [τ1, . . . , τn] → τr〉

S = 〈md ′, pc′, vp · ℓ · s ′, a′〉J · S1

|vp| = n s = vr · s1

〈md ′, pc′ + 1, vr · s ′, a′〉J · S1; H

returnval

md = 〈φ, α, [τ1, . . . , τn] → τr〉

S = 〈md ′, pc′, vp · v · s ′, vx, L〉N · S1

|vp| = n s = vr · s1

〈md ′, pc′ + 1, vr · s ′, vx, L′〉N · S1;

H, where L′ = L ∪ Roots(vr)

P ⊢ (〈md , pc, s, vx, L〉N · S; H; R)
N

7−→ (S′; H ′; R), if

P (md)@pc = and conditions hold, then S′, H ′ =

CallMethod

md1

md1 = 〈φ, α, [τ1, . . . , τn] → τr〉

s = vn · . . . v1 · ℓ · s1
Tag(H, ℓ) = φ′ vx = null

md ′ = 〈φ′, α, [τ1, . . . , τn] → τr〉

NewFrame(P,md ′, [ℓ, v1, . . . , vn])·

〈md , pc, s, vx, L〉N · S; H

Ret

md = 〈φ, α, [τ1, . . . , τn] → τr〉

S = 〈md ′, pc′, vp · v · s ′, a′〉J · S1

|vp| = n s = vr · s1 vx = null

〈md ′, pc′ + 1, vr · s ′, a′〉J · S1; H

Ret

md = 〈φ, α, [τ1, . . . , τn] → τr〉

S = 〈md ′, pc′, vp · v · s ′, v′
x, L〉N · S1

|vp| = n s = vr · s1 vx = null

〈md ′, pc′ + 1, vr · s ′, v′
x, L〉N · S1; H,

where L′ = L ∪ Roots(vr)

Fig. 10. Operational semantics of method calls and returns.

or a native frame:

NewFrame(P,md , [v1, . . . , vn]) =

8

>

>

>

<

>

>

>

:

〈md , 1, ǫ, a⊤[0 7→ v1, . . . , n − 1 7→ vn]〉J,

if md ∈ JavaMD(P ),

〈md , 1, [vn, . . . , v1], null, Roots([v1, . . . , vn])〉N,

if md ∈ NativeMD(P )

The semantics of returnval has two cases: returning to a Java method call or a native

method call. Similar to “invokevirtual md”, “CallMethod md” may invoke either a Java

or a native method. The JNI manual does not make it clear whether a native method

is allowed to invoke another native method through “CallMethod md”. Our experiments

confirmed that JVM implementations allow this behavior. Both rules for Ret are for the

case of no pending exceptions; a different rule for Ret with a pending exception will be

presented.
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P ⊢ (〈md , pc, s, a〉J · S; H; R)
J

7−→ (S′; H ′; R), if

P (md)@pc = and conditions hold, then S′; H ′=

throw s = ℓ · s1 〈ℓ〉X · 〈md , pc, s, a〉J · S; H

P ⊢ S; H; R
J

7−→ S′; H ′; R, if

S= and conditions hold, then S′, H ′=

〈ℓ〉X · 〈md , pc, s, a〉J · S1

Tag(H, ℓ) = φ P (md).handlers = η

CorrectHandler(η, P, pc, φ) = None
〈ℓ〉X · S1; H

〈ℓ〉X · 〈md , pc, s, a〉J · S1

Tag(H, ℓ) = φ P (md).handlers = η

CorrectHandler(η, P, pc, φ) = ⌊nt⌋
〈md , nt, ℓ · ǫ, a〉J · S1; H

〈ℓ〉X · 〈md , pc, s, vx, L〉N ·

S1

〈md , pc + 1, s, ℓ, L〉N·S1; H

CorrectHandler(ǫ, P, pc, φ) = None

CorrectHandler(〈nb, ne, nt, φ
′〉 · η, P, pc, φ) =

(

⌊nt⌋ if nb ≤ pc < ne and P ⊢ Cls φ <: Cls φ′

CorrectHandler(η, P, pc, φ) otherwise

P ⊢ (〈md , pc, s, vx, L〉N · S; H; R)
N

7−→ (S′; H ′; R), if

P (md)@pc = and conditions hold, then S′, H ′ =

JNIThrow s = ℓ · s1 vx = null 〈md , pc + 1, s1, ℓ, L〉N · S; H

ExnClear 〈md , pc + 1, s, null, L〉N · S; H

ExnOccurred

〈md , pc + 1, v · s, vx, L〉N · S; H

where v = 0 if vx = null,

or 1 if vx = ℓ

Ret vx = ℓ 〈ℓ〉X · S; H

Fig. 11. Raising exceptions and exception handling in JNIL.

Exception handling. Fig. 11 shows rules that are related to exceptions. The throw

instruction pushes an exception frame onto the method-call stack. Other bytecode in-

structions may also generate a Java exception. For instance, “getfield fd” generates an

exception when the object reference on the operand stack is null. When such cases hap-

pen, a Throwable object is allocated and an exception frame is placed onto the stack.

The formal definition of these cases are listed in Fig. 20 of the appendix. Real imple-

mentations create Throwable objects of different classes to indicate different kinds of
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exceptions. Our model simplifies this aspect by always allocating a Throwable object;

this does not fundamentally affect program behavior.

When a Java exception is pending, JNIL unwinds the stack as shown in the second

table of Fig. 11. There are three cases. If the next frame is a Java frame and there is no

matched handler for the exception, the Java frame is removed. If the Java frame has a

matched handler, then the control transfers to the handler. If the next frame is a native

frame, the Java exception is recorded in the native frame (i.e., conceptually converted

into a JNI exception) and the execution continues as normal from the next instruction

in native code.

The last table in Fig. 11 shows how JNI exceptions are generated and handled. A

JNI exception thrown by JNIThrow is recorded in the current native frame. Other JNI

functions may also generate JNI exceptions and these cases are in Fig. 20 of the appendix.

Native code can either clear the exception by ExnClear or return with the exception

pending, in which case an exception frame is pushed onto the stack.

We present an example below showing how the method-call stack unwinds assuming

1) Java method md1 calls native method md2, which calls Java method md3; 2) md3

throws an exception; 3) md3 and md2 do not handle the exception, but md1 handles the

exception. Notice how md3 and md2 treat the exception differently.

〈ℓ〉X · 〈md3, . . .〉J · 〈md2, . . . , null, . . .〉N · 〈md1, . . .〉J · ǫ //md3 throws an exception

→ 〈ℓ〉X · 〈md2, . . . , null, . . .〉N · 〈md1, . . .〉J · ǫ //md3 does not handle the exception

→ 〈md2, . . . , ℓ, . . .〉N · 〈md1, . . .〉J · ǫ //md2 records ℓ and continues execution

→ 〈ℓ〉X · 〈md1, . . .〉J · ǫ //md2 returns with a pending exception

→ 〈md1, . . .〉J · ǫ //md1 handles the exception

GC Step. The GC rule is presented below. A set of blocks can be removed from the

heap if they are part of the Java heap, their labels are disjoint from the roots of the

stack, and they are unreachable from the rest of the Java heap.

L ⊆ dom(H|J) L ∩ Roots(S) = ∅ L ∩ Reachable((H|J) \ L) = ∅

(S;H)
GC
7−→ (S;H \ L)

Definition 1. The reachable set of labels from H is defined as all labels stored in the

heap:

Reachable(H) = {ℓ | ∃ℓ1, i, j. H(ℓ1).blk(i) = ℓ[j]}
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Definition 2. (Computing roots)

Roots(S) =







∅ if S = ǫ

{ℓ} ∪ Roots(S′) if S = 〈ℓ〉X · S′

Roots(F ) ∪ Roots(S′) if S = F · S′

Roots(〈md , pc, s, a〉J) = (
⋃

v∈s

Roots(v)) ∪ (
⋃

d

Roots(a(d)))

Roots(〈md , pc, s, vx, L〉N) = Roots(vx) ∪ L

Roots(v) =

{

∅ if v = n or null

{ℓ} if v = ℓ[i]

Notice that when computing the roots of a native frame the set of labels registered with

GC (i.e., L) is included in the set. This is to ensure that GC will not recollect references

registered by native code.

Note that the rule is nondeterministic and L can be as small as the empty set. It is

also abstract and hides the implementation details of GCs. In fact, it accommodates all

garbage collectors that are based on tracing, reference counting, or combinations of both;

any such garbage collector computes a set of unreachable locations [Bacon et al., 2004].

Finally, recall that JNIL’s heap model allows the rule to ignore the moving aspect of

garbage collection.

4. Bytecode safety and GC safety

The JVM always performs bytecode verification before running a bytecode program.

Therefore, type checking of bytecode can be considered an essential part of the JNI.

The JNIL model also performs type checking of bytecode. The process largely follows a

previous JVML model by Freund and Mitchell [2003]; we will highlight its main judgments

and the safety theorems, but leave details to Appendix B.

Type checking JNIL programs. Judgment ⊢ P prog checks if a JNIL program P

is well-typed. It ensures all classes and methods in P are well typed. Fig. 12 lists all

judgments that are used in checking the well-typedness of programs (their rules are in

Fig. 22 and 23 of the appendix).

We abuse the notation for subtyping and type checking values and will write P ⊢ τ1 <:

τ2 for the subtyping between sequences of types, and P,H ⊢ v : τ for checking sequences

of values. Their rules are straightforward and therefore omitted.

The judgment for checking a Java method, “P ⊢ md jmethod”, utilizes the type in-

formation associated with the method; recall a Java method is associated with type

information for the operand stack and local variables (see the fields stype and vtype in

Fig. 3). We note that bytecode type checking does not infer these type information, but

use them to check type consistency.

Suppose PJM(md) = 〈I, η, Ts , Ta〉. Then Ts(i) is the operand-stack type at address i

and Ta(i) is the type information for local variables at i. An operand-stack type is a list
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⊢ P prog P is a well-typed JNIL program

P ⊢ φ class φ is a well-typed Java class

P ⊢ md jmethod md is a well-typed Java method

P ⊢ md nmethod md is a well-typed native method

P,md , Ts , Ta ⊢ I@i The i-th instruction in I is well typed under typing anno-

tation Ts and Ta

P ⊢ τ1 <: τ2 τ1 is a subtype of τ2

P, H ⊢ v : τ v has type τ

P ⊢ fd fid fd is a well-formed field ID

P ⊢ md mid md is a well-formed method ID

P, Ts , Ta ⊢ η handles I η is a valid handler in I

P ⊢ τ ty τ is a valid type that can appear in a JNIL program

(excluding the top type)

Fig. 12. Judgments used in type checking JNIL programs.

of types for values in the current operand stack. A local-variable type is a map from local

variable IDs to types.

A well-typed Java method requires each bytecode instruction in the method be well

typed; this is checked through the judgment “P,md , Ts , Ta ⊢ I@i”. The following rule

for getfield 〈φ, α, τ1〉 is a typical case. It requires a reference of type Cls φ at the top of

the stack; after the instruction, the top of the stack is replaced by a value of the field’s

type. Types of local variables remain unchanged.

if I[i] = Conditions on Ts Conditions on Ta Other conditions

getfield

〈φ, α, τ1〉

P ⊢ Ts(i) <: Cls φ · τ

P ⊢ τ1 · τ <: Ts(i + 1)
P ⊢ Ta(i) <: Ta(i + 1)

i + 1 ∈ dom(I)

〈φ, α, τ1〉 ∈ Fields(P, φ)

Type checking a runtime state. Judgment “P ⊢ (S;H;R) state” checks if runtime

state (S;H;R) is well typed. It checks if (1) H|J is a well-typed Java heap, and (2) S

is a well-typed stack under P and the Java heap. The following table lists all judgments

that are used to check the well-typedness of a runtime state (their rules are in Fig. 24 of

the appendix). Checking well-typed Java heaps requires each heap object be well typed

according to its runtime tag, as customary in such kind of type systems. Checking well-

typed stacks not only requires every frame be well typed, but also requires the chain of

frames be a well-typed call chain—each frame is the result of a call instruction in the

caller method.
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P ⊢ (S;H;R) state (S;H;R) is a well-typed state

P ⊢ H jheap H is a well-typed Java heap

P,H ⊢ o : g Object o in H is consistent with runtime tag g

P,HJ , S ⊢ (R;HN ) nstate (R;HN ) is a well-formed native state

P,H ⊢ S stack S is a well-typed method-call stack

P,H ⊢ F frame F is a well-typed frame

P ⊢ S callchain S is a stack with a valid call chain

Safety theorems. Type soundness of bytecode is expressed in the standard form of

progress and preservation theorems.

Definition 3. (S;H;R) is a terminal state if

(1) either S = 〈md , pc, vr · s, a〉J · ǫ and P (md)@pc = returnval,

(2) or S = 〈md , pc, vr · s, null, L〉N · ǫ and P (md)@pc = Ret,

(3) or S = 〈ℓ〉X · ǫ.

Theorem 1 (Java Progress). If ⊢ P prog, and P ⊢ (S1;H1;R1) state, then

(1) either (S1;H1;R1) is a terminal state,

(2) or ∃S2,H2, R2. P ⊢ S1;H1;R1
J

7−→ S2;H2;R2,

(3) or S1 = 〈. . .〉N · S′
1.

Theorem 2 (Java Preservation). If ⊢ P prog, and P ⊢ (S1;H1;R1) state, and P ⊢

S1;H1;R1
J

7−→ S2;H2;R2, then P ⊢ (S2;H2;R2) state.

By the progress theorem, a well-typed state will be either a terminal state, a state

that can take a Java step, or a state where native code is in control. It will never get

stuck when bytecode is in control. By the preservation theorem, a well-typed state steps

to another well-typed state when taking Java steps.

The proofs of Java progress and preservation are mostly standard. The first is by case

analysis over the derivation of P ⊢ (S1;H1;R1) state, and the second by case analysis

over the Java step relation. Appendix C lists the major lemmas used in the proofs.

A GC step does not affect the type safety of bytecode, as the following theorem asserts:

Theorem 3 (GC Safety). If ⊢ P prog, P ⊢ (S;H;R) state, and (S;H)
GC
7−→ (S′;H ′),

then P ⊢ (S′;H ′;R) state.

As a final note, these safety theorems make no guarantee when a state takes a native

step, reflecting the fact that native code is not checked by Java’s type system and can

cause havoc. Our formalization does include judgments for native code. However, their

rules are vacuous in the sense that they allow any native code. For instance, the rule for

“P ⊢ md nmethod” accepts any native method.
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5. Applications of the JNIL model

The JNI specification does not mandate any checking of native methods. Native methods

are notoriously unsafe and a rich source of software errors. Recent studies have reported

hundreds of interface bugs in JNI programs [Furr and Foster, 2006, Tan and Croft, 2008,

Kondoh and Onodera, 2008]. We list the most common kinds of pitfalls as follows:

— Violations of Java’s type safety. Native code may pass parameters of wrong types

when invoking JNI functions. For instance, GetField fd expects a Java object reference

that contains a field corresponding to fd ; but native code may pass in an incompatible

reference. Another case of violating Java’s type safety is that native code may perform

direct reads and writes on memory that is part of the Java heap, destroying its

invariants.

— Mishandling exceptions. When an exception is pending in native code, calling most

JNI functions may lead to unexpected results.

— Mishandling JNI resources. The JNI interface resorts to manual management of cer-

tain resources (in the malloc/free style). One such example arises when managing

pointers to primitive arrays. The scheme of manual mangement of resources has well-

known problems such as double frees and using already released resources.

A number of systems have been designed and implemented to improve and find misuses

of the JNI interface. They have overall improved the JNI’s safety and security. We classify

them into three broad categories:

— New interface languages. Jeannie [Hirzel and Grimm, 2007] is a language design that

allows programmers to mix Java with C code using quasi-quoting. A Jeannie program

is then compiled into JNI code by the Jeannie compiler. Jeannie helps programmers

reduce errors. For instance, programmers can raise Java exceptions directly in Jeannie,

avoiding the error-prone process of exception handling in native code.

— Static checking. Several recent systems employ static analysis to identify specific

classes of errors in JNI code [Furr and Foster, 2006, Tan and Morrisett, 2007, Kon-

doh and Onodera, 2008, Li and Tan, 2009]. These bug finders have found hundreds

of errors in real JNI programs.

— Dynamic checking. SafeJNI [Tan et al., 2006] combines Java with CCured [Necula

et al., 2002] and inserts dynamic tests that check for safety violations. Going one

step further, Jinn [Lee et al., 2010] automatically generates dynamic checks based on

safety specifications in terms of finite-state machines.

We argue that it would be valuable to formalize the claims of these systems in JNIL

and thus provide a rigorous foundation for their strength. We envision JNIL would be

useful in the following ways:

— Formal semantics of Jeannie. We discussed Jeannie, a language that mixes Java with

C code and is translated to JNI code. Jeannie does not come with formal semantics.

An interesting way of defining Jeannie’s semantics would be to map Jeannie programs

to JNIL programs.

— Soundness of JNI static checking. JNIL can serve as a basis for proving that a JNI

bug finder does not miss any errors of a certain kind. One way to show the soundness
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is to structure the system into two components: inference and verification. The first

part infers annotations (e.g., in the form of types) and the second part performs

verification with annotations as hints. Then the soundness theorem is to show that

programs (with annotations) that pass the verification do not incur the kind of errors

in question.

— Soundness of JNI dynamic checking. JNIL can also serve as a basis for showing the

soundness of systems that insert dynamic checks for safety (e.g., SafeJNI [Tan et al.,

2006]). One way to proceed is to have an “instrumented” semantics of JNIL in which

dynamic checks are embedded into its transition rules. If a dynamic check fails, the

system transits to an error state. The soundness theorem expresses that a state is

either a terminal state, an error state, or a state that can progress. A more ambitious

attempt to formalize dynamic checking is to treat the insertion of dynamic checks as a

source-to-source rewriting system. The safety theorem would then show the resulting

program is safe according to the vanilla semantics of JNIL.

In the above examples, JNIL alone would not be sufficient; we would also need formal

models of other parts (e.g., a model of static checking). But JNIL provides a common

foundation for such formal development to proceed. With additional constraints on the

native code, JNIL makes it possible to prove properties of a multilingual system.

5.1. Extended checking of native code

As a concrete example demonstrating JNIL’s utility, we next formalize a static checking

system in JNIL that checks native code for violations of Java’s type safety due to in-

correct invocation of JNI functions. Also included is a soundness theorem showing that

such errors will not occur in JNIL programs that pass the extended checking.

As we have discussed, native code mainly interacts with Java through JNI functions.

These JNI functions require well-typed arguments for their correct functioning. For in-

stance, if native code calls back a Java method through CallMethod, then Java expects the

number of arguments and the types of arguments to match the method’s type signature.

A mismatch will likely crash the JVM and more severely result in security vulnerabilities;

previous work [McGraw and Felten, 1999] demonstrated such kind of type confusion may

allow attackers to control the JVM completely.

To prevent type confusion due to incorrect JNI function calls, the extended-checking

system statically tracks Java types of object references in native code and ensures argu-

ments of JNI function calls are of correct types. The system starts by augmenting native

methods with extra type annotations:

PNM : MID ⇀

〈 code : NInstr List ,

stype : CodeAddr ⇀ Type List ,

rtype : CodeAddr ⇀ Register → Type

〉

If PNM(md) = 〈ι, Ts , TR〉, type Ts(i) is the type of the operand stack at address i and

TR(i) is the type of registers at i. Similar to bytecode checking, the extended checking of

native code takes type annotations as input to check type consistency, but does not per-
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〈[Cls “Item”], {r1 : Top, r2 : Top, r3 : Top}〉

SLd r1, sp[0]

〈[Cls “Item”], {r1 : Cls “Item”, r2 : Top, r3 : Top}〉

GetField 〈“Item”, “quantity”, Int〉

〈[Int], {r1 : Cls “Item”, r2 : Top, r3 : Top}〉

Pop r2

〈[], {r1 : Cls “Item”, r2 : Int, r3 : Top}〉

Add r3, r2, r2

〈[], {r1 : Cls “Item”, r2 : Int, r3 : Int}〉

Push r1

〈[Cls “Item”], {r1 : Cls “Item”, r2 : Int, r3 : Int}〉

Push r3

〈[Int, Cls “Item”], {r1 : Cls “Item”, r2 : Int, r3 : Int}〉

SetField 〈“Item”, “quantity”, Int〉

〈[], {r1 : Cls “Item”, r2 : Int, r3 : Int}〉

Push r2

〈[Int], {r1 : Cls “Item”, r2 : Int, r3 : Int}〉

Ret

Fig. 13. The native-method example in Fig. 1 with type annotations.

form type inference. Other systems such as J-Saffire [Furr and Foster, 2006] can perform

type inference in native code.

Before presenting the checking rules, we use an example to demonstrate how the ex-

tended checking tracks Java types in native code’s operand stack and registers. Fig. 13

presents type annotations for the example native method in Sec 2. Recall that it is an im-

plementation of the native double method, which doubles the quantity field of the Item

class. At each address i, the figure includes both the stack type Ts(i) and the register-file

type TR(i) in the format of 〈Ts(i), TR(i)〉. Initially, the stack contains only one item of

type Cls “Item”. After loading from the stack (i.e., SLd r1, sp[0]), register r1 gets type

Cls “Item”. Next operation is a JNI function call (GetField); as a result, the top of the

stack type is removed and the type of the field is pushed onto the stack type. The effects

of other instructions on types are also straightforward.

Rules for checking native methods and states. In the extended checking system,

we change the rules of those judgments that are related to native methods and native

states. These judgments include:

(1) P ⊢ md nmethod, which checks that md is a well-formed native method.

(2) P,HJ , S ⊢ (R;HN ) nstate, which checks (R;HN ) is a well-formed native state.

(3) P,H ⊢ 〈md , pc, s, vx, L〉N frame, which checks 〈md , pc, s, vx, L〉N is a well-formed

native frame.

The new rules are presented as follows. To distinguish between the system of extended

checking and the basic bytecode checking, all judgments in this section will use ⊢∗ to

replace ⊢.
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md = 〈φ, α, [τ1, . . . , τn] → τn+1〉 P (md) = 〈ι, Ts , TR〉

Ts(1) = [τn, . . . , τ1,Cls φ] TR(1) = {r1 7→ Top, . . . , r32 7→ Top}

∀i ∈ dom(ι). P,md , Ts , TR ⊢∗ ι@i

P ⊢∗ md nmethod

TopFrame(S) = 〈md , pc, s, vx, L〉N
P (md) = 〈ι, Ts , TR〉

P,HJ ⊢ R : TR(pc)

P,HJ , S ⊢∗ (R;HN ) nstate

TopFrame(S) = 〈md , pc, s, a〉J or 〈ℓ〉X

P,HJ , S ⊢∗ (R;HN ) nstate

md ∈ NativeMD(P ) pc ∈ dom(ι)

P (md) = 〈ι, Ts , TR〉 P,H ⊢ s : Ts(pc) P,H ⊢ vx : Throwable

P,H ⊢∗ 〈md , pc, s, vx, L〉N frame

The rule for P ⊢∗ md nmethod sets up the initial stack type according to the type

signature of the method, sets the types of all registers to be Top, and checks each in-

struction (its rules will be presented shortly). The rules for P,HJ , S ⊢∗ (R;HN ) nstate

check that registers are of the specified types in the current register-file type and the rule

for checking native frames ensures that the operand stack is of the specified stack type.

Fig. 14 and 15 present rules for checking native instructions. These rules are straightfor-

ward. For instance, the rule for “GetField fd” checks that there is a Java object reference

at the top of the stack and the class of the reference must be a subtype of the one spec-

ified in the field ID. The new stack type after the instruction has the field’s type at the

top. The register-file type is unchanged as “GetField fd” does not modify registers.

Native-code safety theorem. To characterize what kind of errors the extended check-

ing can capture, we add a distinguishing error state JTypeError (JNI type errors) to

JNIL’s operational semantics. We also add rules that specify when the abstract machine

steps to the error state; these rules are in Fig. 16. For instance, GetField 〈φ, α, τ〉 steps

to the error state (1) when the operand stack is empty, (2) or when the top of the stack

is an integer value, (3) or when the Java reference at the top of the stack is not of the

class specified in the field ID, (4) or when the read-field operation fails (happens when,

e.g., the field is not in the object being accessed).

The safety theorem expresses that a JNIL program that passes the extended checking

will not result in a JNI type error. The proof of the theorem is by a straightforward case

analysis over the instruction at the current program counter.

Theorem 4. If ⊢∗ P wf, and P ⊢∗ (S1;H1;R1) state, then ¬(P ⊢ S1;H1;R1 7−→

JTypeError).

We stress that the extended checking is meant to demonstrate the utility of the JNIL

model and does not eliminate every possible JNI error. For instance, a native memory-

store instruction can still change the Java state and cause havoc. In the presence of
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P,md , Ts , TR ⊢∗ ι@i, if

ι[i] = and the following conditions hold

GetField fd
fd = 〈φ, α, τ1〉 ∈ Fields(P, φ) i + 1 ∈ dom(ι)

P ⊢ Ts(i) <: Cls φ · τ P ⊢ τ1 · τ <: Ts(i + 1) P ⊢ TR(i) <: TR(i + 1)

SetField fd
fd = 〈φ, α, τ1〉 ∈ Fields(P, φ) i + 1 ∈ dom(ι)

P ⊢ Ts(i) <: τ1 · Cls φ · Ts(i + 1) P ⊢ TR(i) <: TR(i + 1)

NewObject φ

Fields(P, φ) = [〈φ1, α1, τ1〉, . . . , 〈φn, αn, τn〉] i + 1 ∈ dom(ι)

P ⊢ Ts(i) <: τn · . . . · τ1 · τ P ⊢ Cls φ · τ <: Ts(i + 1)

P ⊢ TR(i) <: TR(i + 1)

CallMethod md1

md1 = 〈φ, α, [τ1, . . . , τn] → τr〉 i + 1 ∈ dom(ι)

P ⊢ Ts(i) <: τn · . . . · τ1 · Cls φ · τ P ⊢ τr · τ <: Ts(i + 1)

TR(i + 1) = {r1 7→ Top, . . . , r32 7→ Top}

IsInstanceOf τ
IsRefType(τ) i + 1 ∈ dom(ι) P ⊢ Ts(i) <: τ1 · τ IsRefType(τ1)

P ⊢ Int · τ <: Ts(i + 1) P ⊢ TR(i) <: TR(i + 1)

JNIThrow
i + 1 ∈ dom(ι) P ⊢ Ts(i) <: Throwable · Ts(i + 1)

P ⊢ TR(i) <: TR(i + 1)

ExnClear i + 1 ∈ dom(ι) P ⊢ Ts(i) <: Ts(i + 1) P ⊢ TR(i) <: TR(i + 1)

ExnOccurred i + 1 ∈ dom(ι) P ⊢ Int · Ts(i) <: Ts(i + 1) P ⊢ TR(i) <: TR(i + 1)

Fig. 14. Extended checking of JNI functions.

native code, a preservation theorem for well-typedness of the Java heap can only be

proved for a comprehensive protection system such as the Robusta JVM [Siefers et al.,

2010]; formalization of such systems is left for future work.

6. Extensions

Th extension of JNIL to support Java arrays is mostly standard and we omit its formal

presentation. The only complication in the extension is that the JNI treats arrays with

primitive types differently from arrays of reference types. For instance, the GetIntArray-

Elements function returns a pointer to the first element of the array and native code can

then perform address arithmetic to access array elements. JNIL can accommodate direct

pointers to Java arrays since its heap model allows address arithmetic within blocks.

Another simplification in JNIL is that it assumes a calling convention that passes

arguments and results through the operand stack when Java interfaces with native code.

However, the calling convention varies greatly in reality, depending on compilers and ar-

chitectures. We next sketch how to extend JNIL to parametrize over calling conventions.

Data for native method calls are passed through machine resources, which are either

registers or slots on the operand stack.

rd ::= r | sp[n]
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P,md , Ts , TR ⊢∗ ι@i

when ι[i] = and the following conditions hold

Mov rd, op
i + 1 ∈ dom(ι) P ⊢ Ts(i) <: Ts(i + 1) P ⊢ TR(i)[rd 7→ τ ] <: TR(i + 1)

where τ = Int if op = n, and τ = TR(i)(r) if op = r

Jmp n n ∈ dom(ι) P ⊢ Ts(i) <: Ts(n) P ⊢ TR(i) <: TR(n)

Ld rd, rs[rt]
i + 1 ∈ dom(ι) P ⊢ Ts(i) <: Ts(i + 1)

P ⊢ TR(i)[rd 7→ Top] <: TR(i + 1)

St rd[rt], rs i + 1 ∈ dom(ι) P ⊢ Ts(i) <: Ts(i + 1) P ⊢ TR(i) <: TR(i + 1)

Alloc rd, n
i + 1 ∈ dom(ι) P ⊢ Ts(i) <: Ts(i + 1)

P ⊢ TR(i)[rd 7→ Top] <: TR(i + 1)

Free rs[n] i + 1 ∈ dom(ι) P ⊢ Ts(i) <: Ts(i + 1) P ⊢ TR(i) <: TR(i + 1)

SLd rd, sp[n]
i + 1 ∈ dom(ι) P ⊢ Ts(i) <: τ0 · . . . · τn · τ P ⊢ Ts(i) <: Ts(i + 1)

P ⊢ TR(i)[rd 7→ τn] <: TR(i + 1)

SSt sp[n], rs

i + 1 ∈ dom(ι) P ⊢ Ts(i) <: τ0 · . . . · τn · τ

P ⊢ τ0 · . . . · (TR(i)(rs)) · τ <: Ts(i + 1) P ⊢ TR(i) <: TR(i + 1)

SAlloc n

i + 1 ∈ dom(ι) P ⊢ Top · . . . · Top
| {z }

n

·Ts(i) <: Ts(i + 1)

P ⊢ TR(i) <: TR(i + 1)

SFree n
i + 1 ∈ dom(ι) P ⊢ Ts(i) <: τ1 · . . . · τn · Ts(i + 1)

P ⊢ TR(i) <: TR(i + 1)

Ret md = 〈φ, α, [τ1, . . . , τn] → τr〉 P ⊢ Ts(i) <: τr · τ

Fig. 15. Extended checking of native instructions.

We use sp[n] for the stack slot with offset n from the top of the operand stack.

We write GetR(s, R, rd) for a getter function that retrieves the value of resource rd

from (s, R). We write UpdR(s, R, rd , v) for the setter function; it returns the new state

(s ′, R′). We abuse the notation so that the getter and setter functions also work for a list

of resources.

A calling convention is specified by two functions: (1) Pa([τ1, . . . , τn]) tells what ma-

chine resources are used to pass n arguments that are of types τ1 to τn; (2) Pr(τr) tells

what machine resources are used to pass a result of type τr. These functions take types

as arguments because some calling conventions use types to decide what resources to use

in function calls and returns.

Suppose Pa([τ1, . . . , τn]) = ([rd1, . . . , rdn], ka). Then it specifies a convention where

the i-th argument is passed in resource rd i; in addition, ka tells the size of the extra

stack frame for holding arguments. There are two validity requirements for this function.

First, the resources should be disjoint. Second, if rd i = sp[o], then 0 ≤ o < ka. Function
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P ⊢ (〈md , pc, s, vx, L〉N · S; H; R)
N

7−→ JTypeError, if

P (md)@pc = and the following holds

GetField

〈φ, α, τ〉

(1) either |s| = 0; (2) or s = v · s1 but v = n for some integer n;

(3) or s = ℓ · s1 but P, H 6⊢ ℓ : Cls φ;

(4) or s = ℓ · s1 but ReadFd(H, ℓ, 〈φ, α, τ〉) is undefined.

SetField

〈φ, α, τ〉

(1) either |s| < 2; (2) or s = v · v′ · s1 but v′ = n for some integer n;

(3) or s = v · ℓ · s1, but P, H 6⊢ v : τ ;

(4) or s = v · ℓ · s1, but P, H 6⊢ ℓ : Cls φ;

(5) or s = v · ℓ · s1, but UpdFd(H, ℓ, 〈φ, α, τ〉, v) is undefined.

NewObject φ

Fields(P, φ) = [〈φ1, α1, τ1〉, . . . , 〈φn, αn, τn〉]

(1) either |s| < n;

(2) or s = vn · . . . · v1 · s1, but P, H 6⊢ vi : τi for some i ∈ [1..n];

CallMethod

md1

md1 = 〈φ, α, [τ1, . . . , τn] → τr〉 and

(1) either |s| < n + 1;

(2) or s = vn · . . . · v1 · v
′ · s1, but P, H 6⊢ vi : τi for some i ∈ [1..n];

(3) or s = vn · . . . · v1 · v
′ · s1 but v′ = n for some integer n;

(4) or s = vn · . . . · v1 · ℓ · s1, Tag(H, ℓ) = φ′ but P 6⊢ Cls φ′ <: Cls φ.

IsInstanceOf τ (1) either |s| = 0; (2) or s = v · s1 but v = n for some integer n.

JNIThrow
(1) either |s| = 0; (2) or s = v · s1 but v = n for some integer n;

(3) or s = ℓ · s1, but P, H 6⊢ ℓ : Throwable

Ret

vx = null and md = 〈φ, α, [τ1, . . . , τn] → τr〉

(1) either |s| = 0; (2) or s = v · s ′, but P, H 6⊢ v : τr;

(3) or S = 〈md ′, pc′, s ′, a′〉J · S1 and |s ′| < n + 1;

(4) or S = 〈md ′, pc′, s ′, v′
x, L〉N · S1 and |s ′| < n + 1

Ret vx = ℓ and P, H 6⊢ ℓ : Throwable

Fig. 16. JNI type errors.

Pr(τr) is similar. Suppose Pr(τr) = (rdr, kr). It specifies a convention where the result

is in rdr and the size of the extra stack frame for holding the result is kr.

Since JNIL passes all arguments and results on the stack in a left-to-right order, it

effectively uses the following calling convention:

Pa([τ1, . . . , τn]) = ([sp[n − 1], . . . , sp[0]], n)

Pr(τr) = (sp[0], 1)

As another example, the cdecl convention passes arguments on the stack in a right-to-left

order and the return value in r1. It can be specified by the following:

Pa([τ1, . . . , τn]) = ([sp[0], . . . , sp[n − 1]], n)

Pr(τr) = (r1, 0)

With this calling-convention specification, JNIL’s operational semantics can be modi-
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fied to parametrize over the calling convention. For instance, the following rule is for the

case when a native method is invoked through invokevirtual. The calling convention is

used to put the arguments at the appropriate places. Note the notation (⊤)sz stands for

an operand stack with sz number of uninitialized values.

P (md)@pc = invokevirtual md1 md1 = 〈φ, α, [τ1, . . . , τn] → τr〉 ∈ NativeMD(P )

s = vn · . . . · v1 · ℓ · s1 Tag(H, ℓ) = φ′ md ′ = 〈φ′, α, [τ1, . . . , τn] → τr〉

Pa([Cls φ′, τ1, . . . , τn]) = ([rd0, rd1, . . . , rdn], sz)

V = [ℓ, v1, . . . , vn] UpdR((⊤)sz, R, [rd0, rd1, . . . , rdn], V ) = (s ′, R′)

P ⊢ (〈md , pc, s, a〉J · S;H;R)
J

7−→ (〈md ′, 1, s ′, null,Roots(V )〉N · 〈md , pc, s, a〉J · S;H;R′)

7. Discussions and future work

JNIL is designed to be a minimal formalism to capture the core language-interoperation

issues in the JNI. The relationship between JNIL and the JNI is similar to that between

Featherweight Java [Igarashi et al., 2001] and Java. Consequently, JNIL’s design aims

to follow the JNI standard, not a specific implementation. For instance, representation

of Java objects is abstract in the semantics. In the same vein, Java’s GC is specified ab-

stractly using reachability. On the other hand, there are places where the JNI standard is

unclear or ambiguous. For instance, it is unclear what happens if a native method invokes

another native method through the JNI call-back functions. Such cases were resolved by

a careful consideration of the semantics and also experiments in real implementations.

To stay minimal, it is necessary for JNIL to make simplifications. We believe most

of these do not affect the claims that are made about the semantics. Nevertheless, it is

important to list the major simplifications:

— JNI uses specific functions to construct field and method IDs from strings and class

objects, while JNIL uses field and method IDs directly. Related is the issue of class

objects. JNI provides FindClass for converting a class name to an object that rep-

resents the class. By contrast, JNIL uses class names directly in functions such as

IsInstanceOf.
— JNI provides different methods for processing data of different types. For instance,

GetIntField accesses an integer field and GetFloatField accesses a float field. This

is the case for many other operations, including Java method invocation and array

processing. Therefore, one type of mistakes in JNI programming is calling wrong

methods; for instance, it is wrong to call GetFloatField with a field ID that repre-

sents an integer field. JNIL hides this problem by using polymorphic operators; for

example, “GetField fd” takes a field ID of any type.
— There is only one exception class in JNIL, while real JNI implementations creates

objects of different classes to indicate different kinds of exceptions.
— JNIL models only local references. JNI also provides global and weak-global refer-

ences.

Another notable missing feature in JNIL is concurrency. There have been several

attempts at modeling Java concurrency at the bytecode level (see BicolanoMT [Petri

and Huisman, 2008] for a recent attempt). Based on a model of concurrent bytecode,
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it should be straightforward to formulate an interleaving semantics for multithreaded,

mixed bytecode and native code. A more ambitious attempt is to consider the effect of

memory models on the semantics. It is unclear how to reconcile differences between the

Java Memory Model [Manson et al., 2005] and the memory model of a native architecture.

Related to concurrency is the use of JNIEnv pointers. JNI functions are invoked indirectly

through a JNIEnv pointer, which is thread local. Since JNIL includes only sequential

semantics, it omits the JNIEnv pointer.

One future work is to develop methodology to evaluate JNIL. We plan to develop

machine-checked semantics of JNIL in Coq. The native-side language of JNIL will use

our recently built Coq model of the Intel x86-32 machine code [Morrisett et al., 2011]. In

this model, the semantics of x86 instructions is defined by a translation to a small RTL

(register transfer list) intermediate language. It has an operational, small-step semantics

based on which we extracted an executable OCaml emulator. Using the emulator, we

have performed extensive model validation by comparing it against real x86 processors;

over 10 million instruction instances have been tested and verified in about 60 hours. The

same methodology for model construction and validation will be used when constructing

the JNIL Coq model. Building on top of the high-fidelity native x86 language, it will need

to add machine-checked semantics of Java bytecode and JNI functions. Several projects

have developed machine-checked semantics of Java bytecode [Moore and Porter, 2002,

Klein and Nipkow, 2006, Pichardie, 2006]. We plan to build upon Bicolano [Pichardie,

2006], a recent formalization of Java bytecode semantics in Coq. Bicolano builds on an

extensible framework [Czarnik and Schubert, 2007], which will make our development of

JNIL modular by reusing much of the sequential semantics of bytecode. Same as our

x86 model, the formalized JNIL model will be executable so that it will be possible

to run benchmark programs to compare against implementations. This will serve as an

important step to validate the JNIL model.

Although this paper targets the JNI, the abstractions in JNIL apply broadly when

modeling other foreign function interfaces, including the CLR, the Python/C interface,

and the OCaml/C interface. All these interfaces share the same core issues as the JNI: a

shared heap, cross-language method calls, cross-language exceptions, and others.

8. Related work

The block heap model in JNIL takes inspiration from Leroy and Blazy’s block memory

model in the CompCert project [Leroy and Blazy, 2008]. They use the block memory

model to specify the semantics of C-like languages and verify correctness of program

transformations. We use the block model to reconcile differences between a high-level,

garbage-collected OO language and a low-level language. The bytecode language in JNIL

bears many similarities to the JVMLf model by Freund and Mitchell [2003]; the na-

tive language is similar to Morrisett et al.’s stack-based typed assembly language [Mor-

risett et al., 2002]. JNIL’s emphasis is on proposing abstractions for modeling language-

interoperation issues in FFIs.

Previous work proposed preliminary formalisms that capture certain aspects of the

JNI. Furr and Foster justified J-Saffire’s soundness on a formalization of a subset of
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the JNI [Furr and Foster, 2008]. It models only the native side, and treats Java objects

opaquely. Jinn [Lee et al., 2010] describes safety constraints of the JNI using finite-state

machines. JNIL models both sides of the interface and proposes abstractions that address

issues including a shared heap, cross-language method calls, exception handling, and the

impact of garbage collection; these issues have not been addressed by previous efforts.

There have been a few systems for modeling various aspects of the interoperation of two

safe high-level languages. Already mentioned in the introduction, the work by Matthews

and Findler [2007] formalizes the interoperation between simply typed lambda calculus

(as a stand-in for ML) and untyped lambda calculus (as a stand-in for Scheme). Their

formalization focuses on high-level interoperation issues such as value conversion and

abstracts away low-level details. The work by Trifonov and Shao [1999] presents a type

and effect system for reasoning about the interoperation of two safe languages when they

have different systems of computational effects. Compared to these models, JNIL is at a

much lower level and exposes details including stack frame layout and garbage collection.

These low-level details cannot be ignored when modeling the interaction between high-

level and low-level languages.

More remotely related is the work of modeling general multi-language systems. This

includes the formalization of COM [Pucella, 2002], a language-neutral binary standard

for the interaction of component-based software, and the formalization of a subset of the

intermediate language of .NET [Gordon and Syme, 2001], which is specially designed to

be compatible with multiple languages.

9. Conclusions

Most real software systems are multilingual. A safe software system depends on its build-

ing blocks and their interoperation. Even if each building block is safe in some language

model with respect to some safety policy, without safe interoperation between languages

there would be no safety guarantee on the whole system. Therefore, modeling and rea-

soning about language interoperation is critical to the safety and security of software

systems. JNIL is a formal model that covers the core JNI. Its abstractions elegantly

reconcile the differences between a high-level OO language and a low-level language. It

can directly be used to provide a formal foundation for systems that analyze the JNI.

We believe its concepts can be generalized to model other FFIs.
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Appendix A. JNIL operational semantics

P ⊢ (S; H; R)
J

7−→ (S′; H ′; R′)

P ⊢ (S; H; R) 7−→ (S′; H ′; R′)

P ⊢ (S; H; R)
N

7−→ (S′; H ′; R′)

P ⊢ (S; H; R) 7−→ (S′; H ′; R′)

(S; H)
GC
7−→ (S′; H ′)

P ⊢ (S; H; R) 7−→ (S′; H ′; R)

L ⊆ dom(H|J) L ∩ Roots(S) = ∅ L ∩ Reachable((H|J) \ L) = ∅

(S; H)
GC
7−→ (S; H \ L)

P ⊢ (〈md , pc, s, a〉J · S; H; R)
J

7−→ (S′; H ′; R), if

P (md)@pc = and conditions hold, then S′; H ′=

push v v = n or null 〈md , pc + 1, v · s, a〉J · S; H

pop s = v · s1 〈md , pc + 1, s1, a〉J · S; H

localload d 〈md , pc + 1, a(d) · s, a〉J · S; H

localstore d s = v · s1 〈md , pc + 1, s1, a[d 7→ v]〉J · S; H

goto n 〈md , n, s, a〉J · S; H

getfield fd
fd = 〈φ, α, τ〉 s = ℓ · s1
ReadFd(H, ℓ, fd) = v

〈md , pc + 1, v · s1, a〉J · S; H

putfield fd
fd = 〈φ, α, τ〉 s = v · ℓ · s1
UpdFd(H, ℓ, fd , v) = H1

〈md , pc + 1, s1, a〉J · S; H1

new φ

Fields(P, φ) = [fd1, . . . , fdn]

s = vn · . . . · v1 · s1
AllocInst(H, P, φ) = (H1, ℓ)

UpdFd(H1, ℓ, [fd1, . . . , fdn], [v1, . . . , vn])

= H2

〈md , pc + 1, ℓ · s1, a〉J · S; H2

invokevirtual

md1

md1 = 〈φ, α, [τ1, . . . , τn] → τr〉

s = vn · . . . · v1 · ℓ · s1 Tag(H, ℓ) = φ′

md ′ = 〈φ′, α, [τ1, . . . , τn] → τr〉

NewFrame(P,md ′, [ℓ, v1, . . . , vn])·

〈md , pc, s, a〉J · S; H

returnval

md = 〈φ, α, [τ1, . . . , τn] → τr〉

S = 〈md ′, pc′, vp · ℓ · s ′, a′〉J · S1

|vp| = n s = vr · s1

〈md ′, pc′ + 1, vr · s ′, a′〉J · S1; H

returnval

md = 〈φ, α, [τ1, . . . , τn] → τr〉

S = 〈md ′, pc′, vp · v · s ′, vx, L〉N · S1

|vp| = n s = vr · s1

〈md ′, pc′ + 1, vr · s ′, vx, L′〉N · S1;

H, where L′ = L ∪ Roots(vr)

throw s = ℓ · s1 〈ℓ〉X · 〈md , pc, s, a〉J · S; H

Fig. 17. JNIL operational semantics: GC and Java steps.
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P ⊢ 〈md , pc, s, vx, L〉N · S; H; R
N

7−→ 〈md , pc′, s, vx, L〉N · S; H ′; R′, if

P (md)@pc = then pc′; H ′; R′ =

Mov rd, op pc + 1; H; R[rd 7→ R̂(op)]

Jmp op R̂(op); H; R

Ld rd, rs[rt] pc + 1; H; R[rd 7→ H(ℓ).blk(n + n′)], if R(rs) = ℓ[n], and R(rt) = n′

St rd[rt], rs

pc + 1; H[ℓ 7→ 〈b′, ω〉]; R

if R(rd) = ℓ[n], R(rt) = n′, H(ℓ) = 〈b, ω〉, and b′ = b[n + n′ 7→ R(rs)]

Alloc rd, n
pc + 1; H ⊎ H ′; R[rd 7→ ℓ], where

b = {0 7→ ⊤, . . . , n − 1 7→ ⊤}, and H ′ = {ℓ 7→ 〈b, N〉}

Free rs[n] pc + 1; H \ ℓ[n′ + n]; R, if R(rs) = ℓ[n′] and n′ + n ∈ dom(H(ℓ).blk)

P ⊢ 〈md , pc, s, vx, L〉N · S; H; R
N

7−→ 〈md , pc + 1, s ′, vx, L〉N · S; H; R′, if

P (md)@pc = then s ′; R′ =

SLd rd, sp[n] s; R[rd 7→ vn], if s = v0 · v1 · . . . · vn · s1

SSt sp[n], rs v1 · . . . · R(rs) · s1; R, if s = v0 · v1 · . . . · vn · s1

SAlloc n ⊤ · . . . · ⊤
| {z }

n

·s; R

SFree n s1; R, if s = v0 · . . . · vn−1 · s1

where R̂(r) = R(r) and R̂(n) = n

Fig. 18. JNIL operational semantics: native instructions (part 1).
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P ⊢ (〈md , pc, s, vx, L〉N · S; H; R)
N

7−→ (S′; H ′; R), if

P (md)@pc = and conditions hold, then S′; H ′ =

GetField fd
fd = 〈φ, α, τ〉 s = ℓ · s1
ReadFd(H, ℓ, fd) = v vx = null

〈md , pc + 1, v · s1, null, L′〉N · S; H,

where L′ = L ∪ Roots(v)

SetField fd
fd = 〈φ, α, τ〉 s = v · ℓ · s1
UpdFd(H, ℓ, fd , v) = H1 vx = null

〈md , pc + 1, s1, null, L〉N · S; H1

NewObject φ

Fields(P, φ) = [fd1, . . . , fdn]

s = vn · . . . v1 · s1
AllocInst(H, P, φ) = (H1, ℓ)

UpdFd(H1, ℓ, [fd1, . . . , fdn],

[v1, . . . , vn] = H2

vx = null

〈md , pc + 1, ℓ · s1, null, L ∪ {ℓ}〉N ·

S; H2

CallMethod

md1

md1 = 〈φ, α, [τ1, . . . , τn] → τr〉

s = vn · . . . v1 · ℓ · s1
Tag(H, ℓ) = φ′ vx = null

md ′ = 〈φ′, α, [τ1, . . . , τn] → τr〉

NewFrame(P,md ′, [ℓ, v1, . . . , vn])·

〈md , pc, s, vx, L〉N · S; H

IsInstanceOf

τ

s = ℓ · s1 Tag(H, ℓ) = φ′

vx = null

〈md , pc + 1, v · s1, null, L〉N · S; H,

where v = 1 if P ⊢ Cls φ′ <: τ

or 0 otherwise.

JNIThrow s = ℓ · s1 vx = null 〈md , pc + 1, s1, ℓ, L〉N · S; H

ExnClear 〈md , pc + 1, s, null, L〉N · S; H

ExnOccurred
〈md , pc + 1, v · s, vx, L〉N · S; H

where v = 0 if vx = null or 1 if vx = ℓ

Ret

md = 〈φ, α, [τ1, . . . , τn] → τr〉

S = 〈md ′, pc′, vp · v · s ′, a′〉J · S1

|vp| = n s = vr · s1 vx = null

〈md ′, pc′ + 1, vr · s ′, a′〉J · S1; H

Ret

md = 〈φ, α, [τ1, . . . , τn] → τr〉

S = 〈md ′, pc′, vp · v · s ′, v′
x, L〉N · S1

|vp| = n s = vr · s1 vx = null

〈md ′, pc′ + 1, vr · s ′, v′
x, L〉N · S1; H,

where L′ = L ∪ Roots(vr)

Ret vx = ℓ 〈ℓ〉X · S; H

Fig. 19. JNIL operational semantics: native instructions (part 2).
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P ⊢ 〈md , pc, s, a〉J · S; H; R
J

7−→ 〈ℓ〉X · 〈md , pc, s, a〉J · S; H ′; R

if o = Blank(P, throwable), ℓ 6∈ dom(H), H ′ = H ⊎ {ℓ 7→ (o, J)}, and one of the following

holds:

— P (md)@pc = getfield fd , and s = null · s1;

— P (md)@pc = putfield fd , and s = v · null · s1;

— P (md)@pc = invokevirtual 〈φ, α, [τ1, . . . , τn] → τr〉, and s = vn · . . . · v1 · null · s1;

— P (md)@pc = throw, and s = null · s1.

P ⊢ 〈md , pc, s, null, L〉N · S; H; R
N

7−→ 〈md , pc + 1, s, ℓ, L〉N · S; H ′; R

if o = Blank(P, throwable), ℓ 6∈ dom(H), H ′ = H ⊎ {ℓ 7→ (o, J)}, and one of the following

holds:

— P (md)@pc = GetField fd , and s = null · s1.

— P (md)@pc = SetField fd , and s = v · null · s1.

— P (md)@pc = CallMethod 〈φ, α, [τ1, . . . , τn] → τr〉, and s = vn · . . . · v1 · null · s1.

— P (md)@pc = IsInstanceOf τ , and s = null · s1.

— P (md)@pc = JNIThrow, and s = null · s1.

Fig. 20. JNIL operational semantics: raising exceptions.

P ⊢ S; H; R
J

7−→ S′; H ′; R, if

S= and conditions hold, then S′, H ′=

〈ℓ〉X · 〈md , pc, s, a〉J · S1

Tag(H, ℓ) = φ P (md).handlers = η

CorrectHandler(η, P, pc, φ) = None
〈ℓ〉X · S1; H

〈ℓ〉X · 〈md , pc, s, a〉J · S1

Tag(H, ℓ) = φ P (md).handlers = η

CorrectHandler(η, P, pc, φ) = ⌊nt⌋
〈md , nt, ℓ · ǫ, a〉J · S1; H

〈ℓ〉X · 〈md , pc, s, vx, L〉N ·

S1

〈md , pc + 1, s, ℓ, L〉N·S1; H

CorrectHandler(ǫ, P, pc, φ) = None

CorrectHandler(〈nb, ne, nt, φ
′〉 · η, P, pc, φ) =

(

⌊nt⌋ if nb ≤ pc < ne and P ⊢ Cls φ <: Cls φ′

CorrectHandler(η, P, pc, φ) otherwise

Fig. 21. JNIL operational semantics: exception handling.
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Appendix B. Bytecode type checking and safety

⊢ P prog object, throwable ∈ dom(P ) ∀φ ∈ dom(P ). P ⊢ φ class

∀md ∈ JavaMD(P ) ∪ NativeMD(P ). P ⊢ md mid

∀md ∈ JavaMD(P ). P ⊢ md jmethod ∀md ∈ NativeMD(P ). P ⊢ md nmethod

⊢ P prog

P ⊢ φ class P (object) = 〈None, ∅〉

P ⊢ object class

P (throwable) = 〈⌊object⌋, ∅〉

P ⊢ throwable class

P (φ) = 〈⌊φ′⌋, [〈φ, α1, τ1〉, . . . , 〈φ, αn, τn〉]〉
φ′ ∈ dom(P ) ¬(P ⊢ Cls φ′ <: Cls φ) no cycles

∀j ∈ [1..n]. P ⊢ 〈φ, αj , τj〉 fid

∀α, τ, τr. 〈φ′, α, τ → τr〉 ∈ dom(P ) ⇒ 〈φ, α, τ → τr〉 ∈ dom(P ) inherit/override all methods

P ⊢ φ class

P ⊢ md jmethod

md = 〈φ, α, [τ1, . . . , τn] → τn+1〉 P (md) = 〈I, η, Ts , Ta〉 |I| ≥ 1

Ts(1) = ǫ P ⊢ {0 7→ Cls φ, 1 7→ τ1, . . . , n 7→ τn, n + 1 7→ Top, . . .} <: Ta(1)

∀i ∈ dom(I). P,md , Ts , Ta ⊢ I@i ∀η ∈ η. P, Ts , Ta ⊢ η handles I

P ⊢ md jmethod

P ⊢ md nmethod
P ⊢ md nmethod

P ⊢ τ1 <: τ2

P ⊢ τ <: Top P ⊢ Int <: Int P ⊢ Cls φ <: Cls φ

P ⊢ Cls φ1 <: Cls φ2

P (φ2).super = ⌊φ3⌋

P ⊢ Cls φ1 <: Cls φ3

P, H ⊢ v : τ P, H ⊢ v : τ P ⊢ τ <: τ ′

P, H ⊢ v : τ ′ P, H ⊢ v : Top

P, H ⊢ n : Int

Tag(H, ℓ) = φ

P, H ⊢ ℓ : Cls φ P, H ⊢ null : Cls φ

P ⊢ fd fid

φ ∈ dom(P ) P ⊢ τ ty

P ⊢ 〈φ, α, τ〉 fid

P ⊢ md mid

φ ∈ dom(P ) φ 6= object ∀i ∈ [1..n + 1]. P ⊢ τi ty

P ⊢ 〈φ, α, [τ1, . . . , τn] → τn+1〉 mid

P, Ts , Ta ⊢ η handles I

P ⊢ Cls φ <: Throwable 1 ≤ nb < ne nb, ne − 1, nt ∈ dom(I)
P ⊢ [Cls φ] <: Ts(nt) ∀i ∈ [nb, ne − 1]. P ⊢ Ta(i) <: Ta(nt)

P, Ts , Ta ⊢ 〈nb, ne, nt, φ〉 handles I

P ⊢ τ ty

P ⊢ Int ty

φ ∈ dom(P )

P ⊢ (Cls φ) ty

Fig. 22. Bytecode verification, part 1.
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P,md , Ts , Ta ⊢ I@i

if I[i] = Conditions on Ts Conditions on Ta Other conditions

push n P ⊢ Int · Ts(i) <: Ts(i + 1) P ⊢ Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

push null
P ⊢ τ · Ts(i) <: Ts(i + 1)

IsRefType(τ)
P ⊢ Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

pop
Ts(i) = τ1 · τ

P ⊢ τ <: Ts(i + 1)
P ⊢ Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

localload d P ⊢ Ta(i)(d) · Ts(i) <: Ts(i + 1) P ⊢ Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

localstore d
Ts(i) = τ1 · τ

P ⊢ τ <: Ts(i + 1)
P ⊢ Ta(i)[d 7→ τ1] <:

Ta(i + 1)

i + 1 ∈ dom(I)

goto n P ⊢ Ts(i) <: Ts(n) P ⊢ Ta(i) <: Ta(n) n ∈ dom(I)

getfield

〈φ, α, τ1〉

P ⊢ Ts(i) <: Cls φ · τ

P ⊢ τ1 · τ <: Ts(i + 1)
P ⊢ Ta(i) <: Ta(i + 1)

i + 1 ∈ dom(I)

〈φ, α, τ1〉 ∈ Fields(P, φ)

putfield

〈φ, α, τ1〉
P ⊢ Ts(i) <: τ1 · Cls φ · Ts(i + 1) P ⊢ Ta(i) <: Ta(i + 1)

i + 1 ∈ dom(I)

〈φ, α, τ1〉 ∈ Fields(P, φ)

new φ

Fields(P, φ) =

[〈φ1, α1, τ1〉, . . . , 〈φn, αn, τn〉]

P ⊢ Ts(i) <: τ1 · . . . · τn · τ

P ⊢ Cls φ · τ <: Ts(i + 1)

P ⊢ Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

invokevirtual

md1

md1 = 〈φ, α, [τ1, . . . , τn] → τr〉

P ⊢ Ts(i) <: τn · . . . · τ1 · Cls φ · τ

P ⊢ τr · τ <: Ts(i + 1)

P ⊢ Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

returnval
md = 〈φ, α, τ1 → τr〉

P ⊢ Ts(i) <: τr · τ

throw P ⊢ Ts(i) <: Throwable · τ

Fig. 23. Bytecode verification, part 2: checking instructions.
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P ⊢ (S; H; R) state

P ⊢ (H|J) jheap P, H|J ⊢ S stack P, H|J , S ⊢ (R; H|N ) nstate

P ⊢ (S; H; R) state

P ⊢ H jheap
∀ℓ ∈ dom(H). ∃o. H(ℓ) = 〈Rep(o), J〉 ∧ P, H ⊢ o : Tag(H, ℓ)

P ⊢ H jheap

P, H ⊢ o : g Fields(P, φ) = [fd1, . . . , fdn]

∀i ∈ [1..n]. fd i = 〈−,−, τi〉 ⇒ P, H ⊢ vi : τi

P, H ⊢ 〈〈fd1 = v1, . . . , fdn = vn〉〉φ : φ

P, HJ , S ⊢ (R; HN ) nstate
P, HJ , S ⊢ (R; HN ) nstate

P, H ⊢ S stack

P, H ⊢ ℓ : Throwable

P ⊢ (〈ℓ〉X · S) callchain P, H ⊢ S stack

P, H ⊢ (〈ℓ〉X · S) stack

P, H ⊢ F frame P, H ⊢ S stack

P ⊢ (F · S) callchain

P, H ⊢ F · S stack

P, H ⊢ F frame

md ∈ JavaMD(P ) P (md) = 〈I, η, Ts , Ta〉

pc ∈ dom(I) P, H ⊢ s : Ts(pc) P, H ⊢ a : Ta(pc)

P, H ⊢ 〈md , pc, s, a〉J frame

md ∈ NativeMD(P )

P, H ⊢ 〈md , pc, s, vx, L〉N frame

P ⊢ S callchain

F = 〈. . .〉J or 〈. . .〉N

P ⊢ (F · ǫ) callchain

TopFrame(S) = 〈. . .〉J

P ⊢ (〈ℓ〉X · S) callchain

TopFrame(S) = 〈md ′, pc′,−,−,−〉N
P (md ′)@pc′ = CallMethod 〈φ1, α, τ → τr〉

P ⊢ (〈ℓ〉X · S) callchain

F = 〈md , pc,−,−〉J ∨ 〈md , pc,−,−,−〉N md = 〈φ, α, [τ1, . . . , τn] → τr〉

P (md ′)@pc′ = invokevirtual 〈φ1, α, [τ1, . . . , τn] → τr〉 P ⊢ Cls φ <: Cls φ1

P ⊢ (F · 〈md ′, pc′, s ′, a′〉J · S) callchain

F = 〈md , pc,−,−〉J ∨ 〈md , pc,−,−,−〉N md = 〈φ, α, [τ1, . . . , τn] → τr〉

|s ′| ≥ n + 1 P (md ′)@pc′ = CallMethod 〈φ1, α, [τ1, . . . , τn] → τr〉 P ⊢ Cls φ <: Cls φ1

P ⊢ (F · 〈md ′, pc′, s ′, v′
x, L′〉N · S) callchain

Fig. 24. Well-typed Java states.
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Appendix C. Lemmas used in proofs of safety theorems

Lemma 1 (Canonical forms).

(1) If P,H ⊢ v : Int, then v = n.

(2) If P,H ⊢ v : Cls φ, then one of the following cases is true:

(i) v = null;

(ii) ∃ℓ, φ′. so that v = ℓ, Tag(H, ℓ) = φ′, and P ⊢ Cls φ′ <: Cls φ.

Lemma 2 (Laws of subtyping).

(1) P ⊢ τ <: τ .

(2) If P ⊢ τ1 <: τ2, and P ⊢ τ2 <: τ3, then P ⊢ τ1 <: τ3.

The first is proved by induction over τ , and the second by induction over P ⊢ τ2 <: τ3.

Lemma 3. If P,H ⊢ v : τ , then P,H|J ⊢ v : τ .

A necessary notion when proving Java preservation is a definition of Java heap exten-

sions.

Definition 4 (Java heap extensions).

H ≤ H ′ , ∀ℓ ∈ dom(H). ℓ ∈ dom(H ′) ∧ Tag(H, ℓ) = Tag(H ′, ℓ)

Note that the above definition concerns only runtime tags; H can be extended to H ′

even if there is some mutation to heap objects.

The following lemmas show that typings are not affected when extending heaps:

Lemma 4 (Monotonicity). Assume H ≤ H ′.

(1) If P,H ⊢ v : τ , then P,H ′ ⊢ v : τ .

(2) If P,H ⊢ o : g, then P,H ′ ⊢ o : g.

(3) If P,H ⊢ F frame, then P,H ′ ⊢ F frame.

(4) If P,H ⊢ S stack, then P,H ′ ⊢ S stack.

The proof of the GC-safety theorem uses the following lemma.

Lemma 5. Assume H ′ = H \ L.

(1) If P,H ⊢ v : τ , and L ∩ Roots(v) = ∅, then P,H ′ ⊢ v : τ .

(2) If P,H ⊢ F frame, and L ∩ Roots(F ) = ∅, then P,H ′ ⊢ F frame.

(3) If P,H ⊢ S stack, and L ∩ Roots(S) = ∅, then P,H ′ ⊢ S stack.


