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Abstract Dependent type systems are promising tools programmers can use to increase
the reliability and security of their programs. Unfortunately, dependently-typed
programming languages require programmers to annotate their programs with
many typing specifications to help guide the type checker. This paper shows
how to make the process of programming with dependent types more palatable
by defining a language in which programmers have fine-grained control over
the trade-off between the number of dependent typing annotations they must
place on programs and the degree of compile-time safety. More specifically,
certain program fragments are markeddependent, in which case the programmer
annotates them in detail and a dependent type checker verifies them at compile
time. Other fragments are markedsimple, in which case they may be annotation-
free and dependent constraints are verified at run time.

1 Introduction

Dependent type systems are powerful tools that allow programmers to specify and
enforce rich data invariants and guarantee that dangerous or unwanted program be-
haviors never happen. Consequently, dependently-typed programming languages are
important tools in global computing environments where users must certify and check
deep properties of mobile programs.

While the theory of dependent types has been studied for several decades, re-
searchers have only recently begun to be able to integrate these rich specification
mechanisms into modern programming languages. The major stumbling block in this
enterprise is how to avoid a design in which programmers must place so many typing
annotations on their programs that the dependent types become more trouble than they
are worth. In other words, how do we avoid a situation in which programmers spend
so much time writing specifications to guide the type checker that they cannot make
any progress coding up the computation they wish to execute?

The main solution to this problem has been to explicitly avoid any attempt at full
verification of program correctness and to instead focus on verification of safety prop-
erties in limited but important domains. Hence, Xi and Pfenning [12] and Zenger [13]
have focused on integer reasoning to check the safety of array-based code and also on



simple symbolic constraints for checking properties of data types. Similarly, in their
language Vault [5], DeLine and Fahndrich use a form of linear type together with de-
pendency to verify properties of state and improve the robustness of Windows device
drivers.

These projects have been very successful, but the annotations required by program-
ming languages involving dependent types can still be a burden to programmers, par-
ticularly in functional languages, where programmers are accustomed to using com-
plete type reconstruction algorithms. For instance, one set of benchmarks analyzed
by Xi and Pfenning indicates that programmers can often expect that 10-20 percent of
their code will be typing annotations1.

In order to encourage programmers to use dependent specifications in their pro-
grams, we propose a language design and type system that allows programmers to add
dependent specifications to program fragments bit by bit. More specifically, certain
program components are markeddependent, in which case the type checker verifies
statically that the programmer has properly maintained dependent typing annotations.
Other portions of the program are markedsimpleand in these sections, programmers
are free to write code as they would in any ordinary simply-typed programming lan-
guage. When control passes between dependent and simple fragments, data flowing
from simply-typed code into dependently-typed code is checked dynamically to en-
sure that the dependent invariants hold.

This strategy allows programmers to employ a pay-as-you-go approach when it
comes to using dependent types. For instance, when first prototyping their system,
programmers may avoid dependent types since their invariants and code structure may
be in greater flux at that time or they simply need to get the project off the ground as
quickly as possible. Later, they may add dependent types piece by piece until they
are satisfied with the level of static verification. More generally, our strategy allows
programmers to achieve better compile-time safety assurance in a gradual and type-
safe way.

The main contributions of our paper are the following: First, we formalize a source-
level dependently-typed functional language with a syntax-directed type checking al-
gorithm. The language admits programs that freely mix both dependently-typed and
simply-typed program fragments.

Second, we formalize the procedure for inserting coercions between higher-order
dependently-typed and simply-typed code sections and the generation of intermediate-
language programs. In these intermediate-language programs, all dynamic checks
are explicit and the code is completely dependently typed. We have proven that the
translation always produces wellformed dependently-typed code. In other words, we
formalize the first stage of a certifying compiler for our language. Our translation
is also total under an admissibility requirement on the dependently-typed interface.
Any simply-typed code fragment can be linked with a dependently-typed fragment
that satisfies this requirement, and the compiler is able to insert sufficient coercions to
guarantee safety at run-time.

1Table 1 from Xi and Pfenning [12] shows ratios of total lines of type annotations/lines of code for eight
array-based benchmarks to be 50/281, 2/33, 3/37, 10/50, 9/81, 40/200, 10/45 and 3/18.



Finally, we extend our system with references. We ensure that references and de-
pendency interact safely and prove the correctness of the strategy for mixing simply-
typed and dependently-typed code. Proof outlines for all our theorems can be found
in our companion technical report [9].

2 Language Syntax and Overview
At the core of our system is a dependently-typed lambda calculus with recursive

functions, pairs and a set of pre-defined constant symbols. At a minimum, the con-
stants must include booleanstrue and false as well as conjunction (∧), negation
(¬),and equality(=). We useλx : τ1. e to denote the functionfix f(x : τ1) : τ2.e
whenf does not appear free ine andlet x = e1 in e to denote(λx : τ. e) e1.2

τ : : = τb | Πx : τ.τ | τ × τ | {x : τb | e}
e : : = c | x | fix f(x : τ1) : τ2.e | e e

| 〈e, e〉 | π1e | π2e | if e then e else e

The language of types includes a collection of base types (τb), which must include
boolean type and unit type, but may also include other types (like integer) that are
important for the application under consideration. Function types have the formΠx :
τ1.τ2 andx, the function argument, may appear inτ2. If x does not appear inτ2,
we abbreviate the function type asτ1 → τ2. Note that unlike much recent work
on dependent types for practical programming languages, herex is a valid run-time
object rather than a purely compile-time index. The reason for this choice is that the
compiler will need to generate run-time tests based on types. If the types contain
constraints involving abstract compile-time only indices, generation of the run-time
tests may be impossible.

To specify interesting properties of values programmers can useset typeswith the
form {x : τb | e}, wheree is a boolean term involvingx. Intuitively, the type contains
all valuesv with base typeτb such that[v/x]e is equivalent totrue. We use{e} as
a shorthand for the set type{x : unit | e} whenx does not appear free ine. The
essential typeof τ , JτK, is defined below.

J{x : τb | e}K = τb JτK = τ (τ is not a set type)

The type-checking algorithm for our language, like other dependently-typed lan-
guages, involves deciding equivalence of expressions that appear in types. Therefore,
in order for our type system to be both sound and tractable, we cannot allow just
any lambda calculus term to appear inside types. In particular, allowing recursive
functions inside types makes equivalence decision undecidable, and allowing effect-
ful operations such as access to mutable storage within types makes the type system
unsound. To avoid these difficulties, we categorize a subset of the expressions aspure
terms. For the purposes of this paper, we limit the pure terms to variables whose essen-
tial type is a base type, constants with simple typeτb1 → · · · → τbn , and application
of pure terms to pure terms. Only a pure term can appear in a valid type. Note this ef-
fectively limits dependent functions to the formΠx : τ1.τ2 whereJτ1K = τb

3. A pure

2The typing annotationsτ2 andτ are unnecessary in these cases.
3Non-dependent functionτ1 → τ2 can still have arbitrary domain type.



term in our system is also a valid run-time expression, as opposed to a compile-time
only object.

As an example of the basic elements of the language, consider the following typing
context, which gives types to a collection of operations for manipulating integers (type
int) and integer vectors (typeintvec).

... -1, 0, 1, ... : int
+, -, * : int -> int -> int
<, <= : int -> int -> bool
type nat = {x:int | 0 <= x}
length : intvec -> nat
newvec : Πn:nat.{v:intvec | length v = n}
sub : Πi:nat.({v:intvec | i < length v} -> int)

Thenewvec takes a natural numbern and returns a new integer vector whose length
is equal ton, as specified by the set type. The subscript operationsub takes two
arguments: a natural numberi and an integer vector, and returns the component of the
vector at indexi. Its type requiresi must be within the vector’s bound.

Simple and Dependent Typing. To allow programmers to control the precision
of the type checker for the language, we add three special commands to the surface
language:

e : : = · · · | simple{e} | dependent{e} | assert(e, τ)

Informally, simple{e} means expressione is only simply well-typed and there is
no sufficient annotation for statically verifying all dependent constraints. The type
checker must insert dynamic checks to ensure dependent constraints when control
passes to a dependent section. For instance, supposef is a variable that stands for
a function defined in a dependently-typed section that requires its argument to have
set type{x : int | x ≥ 0}. At application sitesimple{f e} the type checker must
verify e is an integer, but may not be able to verify that it is nonnegative. To guarantee
run-time safety, the compiler automatically inserts a dynamic check fore ≥ 0 when
it cannot verify this fact statically. At higher types, these simple checks become more
general coercions from data of one type to another.

On the other hand,dependent{e} directs the type checker to verifye is well-typed
taking all of the dependent constraints into consideration. If the type checker cannot
verify all dependent constraints statically, it fails and alerts the user. We also provide
a convenient utility functionassert(e, τ) that checks at run time that expressione
produces a value with typeτ .

Together these commands allow users to tightly control the trade-off between the
degree of compile-time guarantee and the ease of programming. The fewersimple
or assertcommands, the greater the compile-time guarantee, although the greater the
burden to the programmer in terms of type annotations. Also, programmers have good
control over where potential failures may happen — they can only occur inside a
simplescope or at anassertexpression.

For instance, consider the following function that computes dot-product:



simple{
let dotprod = λv1.λv2. let f = fix loop n i sum

if (i = n) then sum
else loop n (i+1) (sum + (sub i v1) * (sub i v2))

in f (length v1) 0 0
in dotprod vec1 vec2 }

Functiondotprod takes two vectors as arguments and returns the sum of multiplica-
tion of corresponding components of the vectors. The entire function is defined within
a simple scope so programmers need not add any typing annotations. However, the
cost is that the type checker infers only thati is some integer andv1 andv2 are inte-
ger vectors. Without information concerning the length of the vectors and size of the
integer, the checker cannot verify that thesub operations are in bound. As a result,
the compiler will insert dynamic checks at these points.

As a matter of fact, without these checks the above program would crash if the
length ofvec1 is greater than that ofvec2! To prevent clients of thedotprod func-
tion from calling it with such illegal arguments, a programmer can givedotprod a
dependent type while leaving the body of the function simply-typed:

dependent {
let dotprod = λv1:intvec, v2:{v2:intvec | length v1 = length v2}.

simple { ... }
in dotprod vec1 vec2 }

The advantage of adding this typing annotation is that the programmer has formally
documented the condition for correct use of thedotprod function. Now the type
checker has to prove that the length ofvec1 is equal to that ofvec2. If this is not the
case the error will be detected at compile time.

Even though the compiler can verify the function is called with valid arguments, it
still needs to insert run-time checks for the vector accesses because they are inside a
simplescope. To add an extra degree of compile-time confidence, the programmer can
verify the function body by placing it completely in thedependentscope and adding
the appropriate loop invariant annotation as shown below.

dependent {
let dotprod = λv1:intvec, v2:{v2:intvec | length v1 = length v2}.

let f = fix loop (n:{n:nat|n = length(v1)})
(i:{i:nat|i <= n}) (sum:int).

if (i = n) then sum
else loop n (i+1) (sum + (sub i v1) * (sub i v2))

in f (length v1) 0 0
in dotprod vec1 vec2 }

With the new typing annotations and some simple integer arithmetic reasoning, our
type checker can verify that all the dependent function applications within the function
body are well-typed. Once the above code type checks, there can be no failure at run
time.

As illustrated by the example, the compiler has the freedom to insert dynamic
checks to explicitly verify dependent constraints at run-time. While the kind of run-



F(c) = τ

Γ ` c : τ
TConst

Γ(x) = τ

Γ ` x : τ
TVar

Γ ` τ valid
Γ ` fail : τ

TFail

Γ ` Πx : τ1.τ2 valid Γ, f : Πx : τ1.τ2, x : τ1 ` e : τ2

Γ ` fix f(x : τ1) : τ2.e : Πx : τ1.τ2
TFun

Γ ` e1 : Πx : τ1.τ2

Γ ` e2 : τ1 Γ `pure e2

Γ ` e1 e2 : [e2/x]τ2
TAppPure

Γ ` e1 : τ1 → τ2

Γ ` e2 : τ1

Γ ` e1 e2 : τ2
TAppImPure

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
TP

Γ ` e : τ1 × τ2

Γ ` π1e : τ1
TPL

Γ ` e : τ1 × τ2

Γ ` π2e : τ2
TPR

Γ `pure e : bool Γ, u : {e} ` e1 : τ Γ, u : {¬e} ` e2 : τ

Γ ` if e then e1 else e2 : τ
TIf

Γ ` e : τ Γ `pure e

Γ ` e : self(τ, e)
TSelf

Γ ` e : τ ′ Γ ` τ ′ ≤ τ

Γ ` e : τ
TSub

Figure 1. Type rules for the internal language

time checks in this example are simple, one has to be careful if the objects passed
between dependent and simple sections involve functions, because the dependent con-
straints may appear at both covariant and contravariant positions. We formalize the
process of inserting dynamic checks in the type coercion judgment discussed in the
next section.

3 Formal Language Semantics
We give a formal semantics to our language in two main steps. First, we de-

fine a type system for our internal dependently-typed language which contains no
dependent{}, simple{} or assertcommands. Second, we simultaneously define a
syntax-directed type system and translation from the surface programming language
into the internal language. We have proven that the translation always generates well-
typed internal language terms. Since the latter proof is constructive, our translation
always generates expressions with sufficient information for an intermediate language
type checker to verify type correctness.

Internal Language Typing. The judgmentΓ ` e : τ presented in Figure 1 de-
fines the type system for the internal language. The contextΓ maps variables to types
andF maps constants to their types. Many of the rules are standard so we only high-
light a few. First, thefail expression, which has not been mentioned before is used
to safely terminate programs and may be given any type. Dependent function intro-
duction is standard, but there are two elimination rules. In the first case, the function
type may be dependent, so the argument must be a pure term (judged byΓ `pure e),
since only pure terms may appear inside types. In the second case, the argument may
be impure so the function must have non-dependent type. When type checking an



if statement, the primary argument of theif must be a pure boolean term and this
argument (or its negation) is added to the context when checking each branch4.

The type system has aselfificationrule (TSelf), which is inspired by dependent
type systems developed to reason about modules [7]. The rule applies a “selfification”
function, which returns the most precise possible type for the term, itssingleton type.
For instance, thoughx might have typeint in the context,self(int, x) produces the
type{y : int | y = x}, the type of values exactly equal tox. Also, the constant+
might have typeint → int → int, but through selfification, it will be given the
more precise typeΠx : int.Πy : int.{z : int | z = x + y}, the type of functions
that add their arguments. Without selfification, the type system would be too weak to
do any sophisticated reasoning about variables and values. The selfification function
is defined below. Notice that the definition is only upon types that a pure term may
have.

self(τb, e) = {x : τb | x = e}
self({x : τb | e′}, e) = {x : τb | e′ ∧ x = e}
self(τb → τ, e) = Πx : τb.self(τ, e x)

Finally, the type system includes a notion of subtyping, where all reasoning about
dependent constraints occur. The technical report [9] gives the complete subtyping
rules. The interesting case is the subtype relation between set types. As stated below,
{x : τb | e1} is a subtype of{x : τb | e2} provided thate1 ⊃ e2 is true under
assumptions inΓ. Term e1 ⊃ e2 stands for the implication between two boolean
terms.

Γ ` {x : τb | e1} valid Γ ` {x : τb | e2} valid Γ, x : τb |= e1 ⊃ e2

Γ ` {x : τb | e1} ≤ {x : τb | e2}

Here,Γ |= e is a logical entailment judgment that infers truth about the application
domains. For example it may infer thatn : int |= n ≤ n + 1. We do not want to
limit our language to a particular set of application domains so we leave this judgment
unspecified but it must obey the axioms of standard classical logic. A precise set
of requirements on the logical entailment judgment may be found in the technical
report [9].

Surface Language Typing and Translation. We give a formal semantics to
the surface language via a type-directed translation into the internal language. The
translation has the formΓ `w e ; e′ : τ wheree is a surface language expression and
e′ is the resulting internal language expression with typeτ . w is a type checking mode
which is eitherdep or sim. In modedep every dependent constraint must bestatically
verified, whereas in modesim if the type checker cannot infer dependent constraints
statically it will generate dynamic checks. It is important to note that this judgment is
a syntax-directed function withΓ, w ande as inputs ande′ andτ uniquely determined
outputs (if the translation succeeds). In other words, the rules in Figure 2 defines the
type checking and translation algorithm for the surface language.

4Γ `pure e : τ is the same asΓ `pure e except that it also returns the simple type of the pure term



Γ `pure c F(c) = τ

Γ `w c ; c : self(τ, c)
ATConstSelf

Γ 6`pure c F(c) = τ

Γ `w c ; c : τ
ATConst

Γ `pure x Γ(x) = τ

Γ `w x ; x : self(τ, x)
ATVarSelf

Γ 6`pure x Γ(x) = τ

Γ `w x ; x : τ
ATVar

Γ ` Πx : τ1.τ2 valid Γ′ = Γ, f : Πx : τ1.τ2, x : τ1

Γ′ `w e ; e′ : τ ′
2 Γ′ `w e′ : τ ′

2 −→ e′′ : τ2

Γ `w fix f(x : τ1) : τ2.e ; fix f(x : τ1) : τ2.e
′′ : Πx : τ1.τ2

ATFun

Γ `w e1 ; e′
1 : Πx : τ1.τ2

Γ `w e2 ; e′
2 : τ ′

1 Γ `w e′
2 : τ ′

1 −→ e′′
2 : τ1 Γ `pure e′′

2

Γ `w e1 e2 ; e′
1 e′′

2 : [e′′
2/x]τ2

ATAppPure

Γ `w e1 ; e′
1 : Πx : τ1.τ2 Γ `w e′

1 : Πx : τ1.τ2 −→ e′′
1 : τ1 → [τ2]x

Γ `w e2 ; e′
2 : τ ′

1 Γ `w e′
2 : τ ′

1 −→ e′′
2 : τ1 Γ 6`pure e′′

2

Γ `w e1 e2 ; e′′
1 e′′

2 : [τ2]x
ATAppImPure

Γ `w e1 ; e′
1 : τ1 Γ `w e2 ; e′

2 : τ2

Γ `w 〈e1, e2〉 ; 〈e′
1, e′

2〉 : τ1 × τ2
ATProd

Γ `w e ; e′ : τ1 × τ2

Γ `w π1e ; π1e
′ : τ1

ATProjL
Γ `w e ; e′ : τ1 × τ2

Γ `w π2e ; π2e
′ : τ2

ATProjR

Γ `pure e : bool
Γ, u : {e} `w e1 ; e′

1 : τ1 Γ, u : {e} `w e′
1 : τ1 −→ e′′

1 : τ1 t τ2

Γ, u : {¬e} `w e2 ; e′
2 : τ2 Γ, u : {¬e} `w e′

2 : τ2 −→ e′′
2 : τ1 t τ2

Γ `w if e then e1 else e2 ; if e then e′′
1 else e′′

2 : τ1 t τ2
ATIfPure

Γ 6`pure e Γ `w let x = e in if x then e1 else e2 ; e′ : τ

Γ `w if e then e1 else e2 ; e′ : τ
ATIfImPure

Γ `dep e ; e′ : τ ′ Γ ` τ valid Γ `sim e′ : τ ′ −→ e′′ : τ

Γ `dep assert(e, τ) ; e′′ : τ
ATAssert

Γ `sim e ; e′ : τ

Γ `dep simple{e} ; e′ : τ
ATDynamic

Γ `dep e ; e′ : τ

Γ `sim dependent{e} ; e′ : τ
ATStatic

Figure 2. Surface language type checking and translation



Constants and variables are given singleton types if they are pure via the selfifica-
tion function (ATConstSelfandATVarSelf), but they are given less precise types oth-
erwise (ATConstandATVar). To translate a function definition (ATFun), the function
bodye is first translated intoe′ with type τ ′

2. Since this type may not match the an-
notated result typeτ2, thetype coercion judgmentis called to coercee′ to τ2, possibly
inserting run-time checks if the type checking mode issim.

The type coercion judgment has the formΓ `w e : τ −→ e′ : τ ′. It is a function,
which given type checking modew, contextΓ, expressione with typeτ , and a target
typeτ ′, generates a new expressione′ with typeτ ′. The output expression is equivalent
to the input expression aside from the possible presence of run-time checks. We will
discuss the details of this judgment in a moment.

There are two function application rules, distinguished based on whether the argu-
ment expression is judged pure or not. If it is pure, ruleATAppPureapplies and the
argument expression is substituted into the result type. If the argument expression is
impure, ruleATAppImpurefirst coerces the function expression that has a potentially
dependent typeΠx : τ1.τ2, to an expression that has a non-dependent function type
τ1 → [τ2]x. [τ ]x returns the type with all occurrences of variablex removed. It is
defined on set types as follows and recursively defined according to the type structures
for the other types.

[{y : τb | e}]x = τb (x ∈ FV (e))
[{y : τb | e}]x = {y : τb | e} (x 6∈ FV (e))

Note that in both application rules the argument expression’s typeτ ′
1 may not match

the function’s argument type so it is coerced to an expressione′′
2 with the right type.

In type checking anif expression, the two branches may be given different types.
So they are coerced to a common typeτ1 t τ2 (ATIfPure). Informally, τ1 t τ2 recur-
sively applies disjunction operation on boolean expressions in set types that appear in
covariant positions and applies conjunction operation on those on contravariant posi-
tions. For example,

{x : int | x < 3} t {x : int | x > 10} = {x : int | x < 3 ∨ x > 10}
and

({x : int | x > 3} → int) t ({x : int | x < 10} → int)
= {x : int | x > 3 ∧ x < 10} → int

The precise definition forτ1 t τ2 can be found in the technical report [9].
The rules for checking and translatingdependent{e} andsimple{e} expressions

simply switch the type checking mode fromsim to dep and vice versa. The rule for
assert(e, τ) uses the type coercion judgment to coerce expressione to typeτ . Note
that the coercion is called withsimmode to allow insertion of run-time checks.

Type coercion judgment. The complete rules for the type coercion judgment
can be found in Figure 3. When the source type is a subtype of the target type, no
conversion is necessary (CSub). The remaining coercion rules implicitly assume the
subtype relation does not hold, hence dynamic checks must be inserted at appropriate
places. Note that those rules require the checking mode besim; when called with
modedep the coercion judgment is just the subtyping judgment and the type checker
is designed to signal a compile-time error when it cannot statically prove the source is
a subtype of the target.



Γ ` τ ≤ τ ′

Γ `w e : τ −→ e : τ ′ CSub

τ = τb or τ = {x : τb | e′
1}

Γ `sim e : τ −→ let x = e in if e1 then x else fail : {x : τb | e1}
CBase

Γ ` τ ′
1 ≤ τ1 Γ, y : Πx : τ1.τ2, x : τ ′

1 `sim y x : τ2 −→ eb : τ ′
2

Γ `sim e : Πx : τ1.τ2 −→ (let y = e in λx : τ ′
1. eb) : Πx : τ ′

1.τ
′
2

CFunCo

Γ 6` τ ′
1 ≤ τ1 Γ, x : τ ′

1 `sim x : τ ′
1 −→ ex : τ1

Γ, y : τ1 → τ2, x : τ ′
1 `sim y ex : τ2 −→ eb : τ ′

2

Γ `sim e : (τ1 → τ2) −→ (let y = e in λx : τ ′
1. eb) : (τ ′

1 → τ ′
2)

CFunContNonDep

Γ 6` τ ′
1 ≤ τ1 τ1 = {x : τb | e1} τ ′

1 = {x : τb | e′
1} or τb

Γ, y : Πx : τ1.τ2, x : τ1 `sim y x : τ2 −→ eb : τ ′
2

e′
b = if e1 then eb else fail

Γ `sim e : Πx : τ1.τ2 −→ (let y = e in λx : τ ′
1. e′

b) : Πx : τ ′
1.τ

′
2

CFunContDep

Γ, y : τ1 × τ2 `sim π1y : τ1 −→ e′
1 : τ ′

1

Γ, y : τ1 × τ2 `sim π2y : τ2 −→ e′
2 : τ ′

2

Γ `sim e : τ1 × τ2 −→ (let y = e in 〈e′
1, e′

2〉) : τ ′
1 × τ ′

2
CPair

Figure 3. Type coercion

Coercion for the base-type case (CBase) is straightforward. Anif expression en-
sures that the invariant expressed by the target set type holds. Otherwise a runtime
failure will occur. With the help of the logical entailment judgment, our type system
is able to infer that the resultingif expression has the set type.

In general, one cannot directly check at run-time that a function’s code precisely
obeys some behavioral specification expressed by a dependent type. What we can
do is ensure that every time the function is called, the function’s argument meets the
dependent type’s requirement, and its body produces a value that satisfies the promised
result type. This strategy is sufficient for ensuring run-time safety. The coercion rules
for functions are designed to coerce a function from one type to a function with another
type, deferring checks on arguments and results until the function is called.

There are three coercion rules for function types. In all cases the expression that
generates the function is evaluated first to preserve the order of effects. Next a new
function is constructed with checks on argument and result inserted when necessary. In
the case where the new argument type is a subtype of the old one (CFunCo), we only
need to convert the function body to the appropriate result type. Otherwise checks
must be inserted to make sure the argument has the type the old function expects.
This can be done by recursively calling the coercion judgment on the argumentx to
convert it to a termex with typeτ1. When the function’s type is not dependent, it can
receiveex as an argument (CFunContNonDep). But when it is a dependent function,



it cannot receiveex as an argument sinceex contains dynamic checks and is impure5.
Consequently ruleCFunContDepuses anif statement to directly check the constraint
on the dependent argumentx. This is possible becausex must be a pure term and
hence has a base type. If the check succeeds,x is directly passed to the function. For
all the three cases, our type system is able to prove the resulting expression has the
target function type.

4 Mutable References
The addition of mutable references to our language presents a significant chal-

lenge. When sharing a reference between simple and dependent code, it is natural to
wish to assign the reference a simple type in the simple code and a dependent type in
the dependent code, for exampleint ref and{x:int|x >= 0} ref. However, the
inequivalence of these types can lead to unsoundness. Therefore, in our surface lan-
guage, we define two classes of references,τ ref andτ dref. The former is invariant
in its typing, thereby disallowing the transfer of such references between one piece
of code and another unless the supplied and assumed types are equal. The latter is
more flexible in its typing, but is dynamically checked according to the following two
principles: First, the recipient of such a reference is responsible for writing data that
maintains the invariants of the reference’s donor. Second, the recipient must protect
itself by ensuring that data it reads indeed respects its own invariants.

In the internal language, theτ dref is implemented as a pair of functions:

(unit → τ) × (τ → unit)

Intuitively, the first function reads an underlying reference and coerces the value to
the right type; the second one coerces the input value to the type of the underlying
reference and writes the coerced value into it.

We define a type translation(|τ |) to translate surface language types to internal
language types. It recursively traverses the type structure ofτ and translates any ap-
pearance of dynamic references as shown above.

The coercion rules for references allow translation from an expression ofτ ref to
an expression ofτ ′ dref, or from τ dref to τ ′ dref. But there is no coercion rule
from τ dref to τ ′ ref, because an expression withτ dref will potentially incur runtime
failures, while an expression with typeτ ref will not. Further details of our solution
can be found in our companion technical report [9].

5 Language Properties
In this section, we present theorems that state formal properties of our language.

We leave details of the proofs and precise definitions to the technical report [9]. First,
we proved type safety for the internal language based on a standard dynamic semantics
with mutable references:

5We also cannot simply writelet z = ex in y z since the effects inex do not allow the type system to
maintain the proper dependency betweenx andz in this case.



Theorem 1 (Type safety) If • ` e : τ , thene won’t get stuck in evaluation.

The proof is by induction on the length of execution sequence, using standard progress
and preservation theorems.

The soundness of the type-directed translation for the surface language is formal-
ized as the following theorem.

Theorem 2 (Soundness of translation of surface language)If Γ `w e ; e′ : τ ,
then (|Γ|) ` (|e′|) : (|τ |).

(|e|) is the expression with every typeτ appearing in it replaced by(|τ |), and∀x ∈
dom(Γ).(|Γ|)(x) = (|Γ(x)|).

For all source programs that are simply well-typed (judged byΓ `0 e : τ ), if the
dependent interfaceΓ satisfies an admissibility requirementco ref(Γ), the translation
is total insimmode:

Theorem 3 (Completeness of translation)Assuming coref(Γ) and coref(F), if
Γ `0 e : τ , then there existe′ andτ ′ such thatΓ `sim e ; e′ : τ ′.

Informally, co ref(Γ) states that inΓ, unchecked reference type (τ ref) can only ap-
pear in covariant positions. The reason for this restriction is that we cannot coerce a
checked reference (τ dref) to an unchecked one.

6 Related Work
In this paper, we have shown how to include fragments ofsimply-typedcode within

the context of adependently-typedlanguage. In the past, many researchers have ex-
amined techniques for includinguni-typedcode (code with one type such as Scheme
code) within the context of asimply-typedlanguage by means of soft typing ([3, 2, 4]).
Soft typing infers simple or polymorphic types for programs but not general dependent
types.

Necula et al. [8] have developed a soft typing system for C, with the goal of ensur-
ing that C programs do not contain memory errors. Necula et al. focus on the problem
of inferring the status of C pointers in the presence of casts and pointer arithmetic,
which are eithersafe(well-typed and requiring no checks),seq(well-typed and re-
quiring bounds checking) ordynamic(about which nothing is known). In contrast, we
always know the simple type of an object that is pointed to, but may not know about
its dependent refinements.

When dependent types mix with references, one has to be very careful to ensure
the system remains sound. Xi and Pfenning [12] shows how to maintain soundness
by using singleton types, and restricting the language of indices that appear in the
singleton types. Our approach is similar in that we have designated a subset of terms as
pure terms, but different in that we accommodate true dependent types. However, the
distinction is minor, and the main contribution of this work is the interaction between
the dependently-typed world and the simply-typed world.

Walker [11] shows how to compile a simply-typed lambda calculus into a dependently-
typed intermediate language that enforces safety policies specified by simple state ma-



chines. However, he does not consider mixing a general dependently-typed language
with a simply-typed language or the problems concerning mutable references.

In earlier work, Abadi et al. [1] showed how to add a specialtype dynamicto
represent values of completely unknown type and a typecase operation to the simply-
typed lambda calculus. Abadi et al. use type dynamic when the simple static type of
data is unknown, such as when accessing objects from persistent storage or exchanging
data with other programs. Thatte [10] demonstrates how to relieve the programmer
from having to explicitly write Abadi et al.’s typecase operations themselves by having
the compiler automatically insert them as we do. In contrast to our work, Thatte does
not consider dependent types or how to instrument programs with mutable references.

In contract checking systems such as Findler and Felleisen’s work [6], program-
mers can place assertions at well-defined program points, such as procedure entries
and exits. Findler and Felleisen have specifically looked at how to enforce properties
of higher-order code dynamically by wrapping functions to verify function inputs con-
form to function expectations and function outputs satisfy promised invariants. Our
strategy for handling higher-order code is similar. However, Finder and Felleisen’s
contracts enforce all properties dynamically whereas we show how to blend dynamic
mechanisms with static verification.
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