Scalable Crowd-Sourcing of Video from Mobile Devices

Pieter Simoens
Ghent University - iMinds
Gaston Crommenlaan 8/201
9095 Gent, Belgium
psimoens@intec.ugent.be

Yu Xiao
Aalto University
Konemiehenkatu 2
02150 Espoo, Finland
yu.xiao@aalto.fi

Padmanabhan Pillai
Intel Labs
4720 Forbes Avenue, Suite 410
Pittsburgh, PA 15213, USA
padmanabhan.s.pillai@intel.com

Zhuo Chen
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213, USA
zhuoc@cs.cmu.edu

Kiryong Ha
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213, USA
krha@cmu.edu

Mahadev Satyanarayanan
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213, USA
satya@cs.cmu.edu

ABSTRACT

We propose a scalable Internet system for continuous collection of crowd-sourced video from devices such as Google Glass. Our hybrid cloud architecture, GigaSight, is effectively a Content Delivery Network (CDN) in reverse. It achieves scalability by decentralizing the collection infrastructure using cloudlets based on virtual machines (VMs). Based on time, location, and content, privacy sensitive information is automatically removed from the video. This process, which we refer to as denaturing, is executed in a user-specific VM on the cloudlet. Users can perform content-based searches on the total catalog of denatured videos. Our experiments reveal the bottlenecks for video upload, denaturing, indexing, and content-based search. They also provide insight on how parameters such as frame rate and resolution impact scalability.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Systems; I.4.0 [Image Processing and Computer Vision]: Image processing software; I.5.4 [Pattern Recognition]: Applications

Keywords

mobile computing, cloud computing, denaturing, cloudlet, computer vision, virtual machines, Google Glass, smartphone

1. INTRODUCTION

Head-up displays (HUDs) have been used for more than a decade in military and maintenance tasks. In these challenging domains, the primary design goal was to provide hands-free user assistance. Comfort and style were only second order design considerations, hence limiting mainstream adoption by the public. Today, we are on the verge of a disruptive generation of HUDs that target daily use by the general public. Google Glass is the most well-known example, but others are also being developed. For example, the NSF Quality of Life Technology Center has created a first-person vision system for disabled veterans [25].

When equipped with a front-end camera, HUDs enable near-effortless capture of first-person viewpoint video. Recording a video will merely require you to press a button on the shank of your glasses, rather than taking your smartphone out of your pocket and performing a number of touch screen interactions. Easy video capture will greatly increase the number of videos shared with the world (e.g. by uploading to YouTube). A good example of the videos we might expect was recently provided by designer Diane von Furstenberg, who wore Google Glass to capture and share her experience at the Spring 2013 Fashion Show in New York City [4].

As of today, YouTube already contains thousands of first-person videos captured with less elegant commercial products such as the Contour+2 [10]. Integrating video capture with correlated sensor information such as gaze tracking, audio, geolocation, acceleration, and biodata (e.g., heart rate) is only a matter of time.

In this paper, we focus on the gathering, cataloging, and access of first-person video from many contributors. By automatic tagging of this rich data collection, and by enabling deep content-based search of any subset of that data, we create a valuable public resource much like the Web itself. Even simple uses of this resource can transform today’s applications in imaginative ways:

Imagine Google Street View Live, allowing you to see live video that was recently captured by someone walking down that street. You see the same things that the user saw, and linger over the scenes that caught the user’s attention. You are effectively reliving his walk down the street. Parts of some scenes are blurred because the user did not want to share them with you. You can click on “Winter”, and the video stream changes to one captured by a user walking down that street last winter. You can click on “multiview” and see the street from the viewpoints of multiple users simultaneously.

Figure 1 speculates on many other use cases that could be enabled by a large-scale searchable video repository.

Enabling this futuristic vision poses technical challenges at many levels. It also creates many policy-related challenges, such as those pertaining to privacy and user incentives. Our focus is on technical issues, but policy issues are relevant to the extent that they require supporting mechanisms in the implementation. This paper makes the following contributions:
Marketing and Advertising: Crowd-sourced videos can provide observational data for questions that are difficult to answer today. For example, which are the billboards that attract the most user attention? How successful is a new store window display in attracting interest? Which are the clothing colors and patterns that attract most interest in viewers? How regional are these preferences?

Locating people, pets and things: A missing child was last seen walking home from school. A search of crowd-sourced videos from the area shows that the child was near a particular spot an hour ago. The parent remembers that the child has a friend close to that location. She is able to call the friend’s home and locates the child there.

Public safety: Which are the most dangerous intersections, where an accident is waiting to happen? Although no accident has happened yet, it is only a matter of time before a tragedy occurs. Crowd-sourced videos can reveal dangerous intersections, for timely installation of traffic lights.

Fraud detection: A driver reports that his car was hit while it was parked at a restaurant. However, his insurance claims adjuster finds a crowd-sourced video in which the car is intact when leaving the restaurant.

Figure 2: Theft captured in photo (Source: CNN [12])

Figure 1: Example Use Cases

- It describes the potential benefits of crowd-sourced first-person video collection, offers an incentive model for such a system, identifies the key challenges in realizing such a capability at global scale, and derives the technical requirements for a viable implementation.
- It presents GigaSight, a hybrid cloud architecture for scalable crowd-sourcing of video from mobile devices. This architecture is effectively a Content Distribution Network (CDN) in reverse, and achieves scalability by decentralizing the cloud computing infrastructure using VM-based cloudlets at the edges of the Internet.
- It introduces the concept of denaturing for privacy, and shows how contributor-specific privacy policies can be automatically enforced on captured video through contributor-specific algorithms.
- It shows how captured video content can be automatically tagged for future searches, both using meta-data such as location and time, as well as image content tags extracted by computer vision algorithms. For image content that is not tagged, we also show how to perform interactive content search of video segments.
- It evaluates a proof-of-concept prototype implementation of the GigaSight architecture to expose its scalability bottlenecks. Based on these measurements, the paper proposes mechanisms to improve scalability in future implementations.
- It presents a model for the scalability of GigaSight, based on cloudlet capacity and location.

It is important to keep in mind that this work describes a proof of concept rather than a mature, fully-deployed system with a large user base. There are many technical challenges in realizing this vision, as discussed in the rest of this paper. Our goal is to expose and quantify the design tradeoffs in building such a system. This work also exposes new public policy challenges in areas such as privacy. A full understanding of these issues will have to await real experience from a deployed system.

2. INCENTIVE MODEL AND PRIVACY

2.1 Continuous Capture and Sharing

Today, users manually select and tag the video fragments they upload to YouTube. Their videos are typically of personal achievements (e.g., first person viewpoint sports), or special occasions that they want to share. The content thus has enough personal value to serve as an incentive for the user to spend time on editing, selection, and tagging. This self-interest is absent in continuously captured scenes of everyday life. The value of sharing such scenes lies in the fact that they may have high value to someone else. For example, a recent CNN news article [12] reported the arrest of a thief whose act of stealing appeared in the background of the photo shown in Figure 2. The tiny figure in the background would normally be ignored by anyone who views this image. It is only the context of a theft that makes it relevant. This is only one of many real-world examples in which an image captured for one reason proves valuable to someone else in a completely different context. Stieg Larsson’s fictional work “The Girl with the Dragon Tattoo” embodies exactly this theme: a clue to the murderer’s identity is embedded in the backgrounds of old crowd-sourced photographs [18]. While individual frames from continuous video capture can substitute for photographs in these examples, use of video segments can lead to even richer insights. In the use cases of Figure 1, the public safety example requires video: humans find it easy to detect a near-miss in the motion captured by a video segment, but hard to detect it from a single photograph or frame. More generally, content-based video search algorithms from the computer vision community have greatly increased in sophistication and accuracy in the past decade [15, 27]. They are now capable of reliably detecting human-meaningful actions such as clapping, hugging, bending down to pick up an object, tripping, falling, slipping, and sliding.

These examples reveal two different requirements. First, in the absence of personal motivation, there needs to be an explicit incentive model for sharing continuously captured videos. We believe that any realistic incentive model must be accompanied by a privacy preserving mechanism that is as effortless as the capturing of the video itself. No economically viable incentive will be high enough to convince large numbers of users to go through their continuously-captured videos and manually remove sensitive scenes. Second, tags added by the user who captured a video are unlikely to be sufficient as the basis of search. Content-based search using computer vision algorithms that embody a search query will be needed. This processing can be done in advance for frequently-searched objects, thus producing an index for the video collection. However, some searches may involve queries about objects or scenes that were not anticipated during indexing. For these, a search mechanism that is better than brute force viewing of video segments is required.

2.2 Author-Publisher Model

Our goal here is only to describe a plausible incentive model. We recognize that a pilot deployment of the proposed system will
be necessary to validate the proposed model and to explore other incentive models. We propose that crowd-sourced video be treated as **authored content**. What you see and capture effortlessly through your Google Glass is yours. By looking at some people rather than others, by gazing longer at some window displays rather than others, by averting your gaze from a street scene, and so on, you are implicitly exercising taste and judgment. A video capture embodies that taste and judgment. Good will or peer recognition may suffice to encourage sharing in some use cases (e.g. Google Streetview Live), but they are fragile incentives. A more robust and scalable approach is to create a business relationship with the service provider that invests in the video capture infrastructure. Like a book publisher, the service provider monetizes your authored content and shares the revenue with you. This leads to a simple incentive model: you reap financial rewards for capturing and sharing scenes that others find to be of value.

2.3 Denaturing

Unfortunately, always-on video capture is much less deliberate and controlled than authoring text. You can’t help capturing scenes, but specific objects/people in them may not be what you (or they) want published. It is therefore crucial to edit out frames and/or blur individual objects in scenes. What needs to be removed is highly user-specific, but no user can afford the time to go through and edit video captured on a continuous basis. One therefore needs a process that continuously performs this editing as video is submitted for sharing. If a user is confident that the editing process accurately reflects his personal preferences, he is likely to share his captured video without further review. We refer to this user-specific lowering of fidelity as **denaturing**.

Denaturing has to strike a balance between privacy and value. At one extreme of denaturing is a blank video: perfect privacy, but zero value. At the other extreme is the original video at its capture resolution and frame rate. This has the highest value for potential customers, but also incurs the highest exposure of privacy. Where to strike the balance is a difficult question that is best answered individually, by each user. This decision will most probably be context-sensitive.

Denaturing is a complex process that requires careful analysis of the captured frames. From a technical viewpoint, state-of-the-art computer vision algorithms enable face detection, face recognition, and object recognition in individual frames. In addition, activity recognition in video sequences is also possible [27].

However, preserving privacy involves more than blurring (or completely removing) frames with specific faces, objects, or scenes. From other objects in the scene, or by comparing with videos taken at the same place and/or time from other users with different privacy settings, one might still deduce which object was blurred and is hence of value to the person who captured the video. In its full generality, denaturing may not only involve content modification but may also involve meta-data modification. For example, the accuracy of location meta-data associated with a sequence of video frames may be lowered to meet the needs of *k-anonymity* in location privacy [28, 36]. Whether the contents of the video sequence will also have to be blurred depends on its visual distinctiveness — a scene with the Eiffel Tower in the background is obviously locatable even without explicit location meta-data.

Guidance for denaturing may also be conveyed through social mores that deprecate video capture in certain locations and of certain types of scenes. In addition, a system of tagging locations or objects with visual markers (such as QR codes) could indicate that video capture is unwelcome. One can imagine video capture devices that automatically refrain from recording when they recognize an appropriate QR code in the scene. In addition, denaturing algorithms on a cloudlet may also strip out scenes that contain such a code. In the long run, one can envision the emergence of an ethics of video capture in public. A starting point might be the work of Kelly et al. [16] on an ethical framework for image capture in health care contexts. Many broader societal issues, such as the ability to subpoena captured but encrypted video, add further complexity.

Clearly, denaturing is a very deep concept that will need time, effort and deployment experience to fully understand. We restrict the scope of this paper to understanding the architectural and performance implications of denaturing, and leave the development of widely-accepted denaturing algorithms as future work. For evaluating the impact of denaturing on scalability in Section 5, we use conceptually simple but compute-intensive denaturing algorithms such as blurring all faces or blurring only a subset of faces from a user-specific list.

3. ARCHITECTURE: A CDN IN REVERSE

A key challenge is the high cumulative data rate of incoming videos from many users. Without careful design, this could easily overwhelm the capacity of metro area networks or the ingress Internet paths into centralized cloud infrastructure such as Google’s large data centers or Amazon’s EC2 sites. Today, 1 hour of video is uploaded to YouTube each second [35], which is the equivalent of only 3600 users simultaneously streaming. When the usage of HUDs becomes mainstream, this number will rapidly increase. Verizon recently announced an upgrade to 100 Gbps links in their metro area networks [24], yet one such link is capable of supporting 1080p streams from only 12000 users at YouTube’s recommended upload rate of 8.5 Mbps. Supporting a million users will require 8.5 Tbps.

To solve this problem, we propose GigaSight, a **hybrid cloud architecture** that is effectively a CDN in reverse. This architecture, shown in Figure 3, uses decentralized cloud computing infrastructure in the form of VM-based *cloudlets* [29]. A cloudlet is a new architectural element that arises from the convergence of mobile computing and cloud computing. It represents the middle tier of a 3-tier hierarchy: mobile device – cloudlet – cloud. A cloudlet can be viewed as a “data center in a box” that “brings the cloud closer.” While cloudlets were originally motivated by reasons of end-to-end latency for interactive applications, our use of cloudlets...
here is based solely on bandwidth considerations. Today, “micro data centers” from companies such as Myoone [22] and AOL [21] are already available for repurposing as cloudlets. To achieve good performance and extend battery life, tasks such as image processing for denaturing are offloaded from mobile devices to cloudlets. Zhu et al. [37] propose a media-edge cloud architecture in which storage, CPUs, and GPU clusters are presented at the edge of the network to provide sufficient QoS and QoE. This architecture aligns with our cloudlet-based 3-tier approach.

It is important to note in Figure 3 that cloudlets are not just temporary staging points for denatured video data en route to the cloud. With a large enough user base and continuous video capture, the constant influx of data at the edges will be a permanent stress on the ingress paths to the cloud. Just buffering data at cloudlets for later transmission to the cloud won’t do — because users will be streaming 24/7, there will never be a “later” when ingress paths are unloaded. The potential bandwidth bottleneck is in the access and aggregation network, and not in the core network with its high-speed links. Preprocessing videos on cloudlets also offers the potential of using content-based storage optimization algorithms to retain only one of many similar videos from co-located users.

Cloudlets are the true home of denatured videos. Only meta-data about these videos (such as owner (anonymized), location of capture, start and end time of capture, cloudlet where stored, and index terms) is stored in a global catalog in the cloud. In a small number of cases, based on popularity or other metrics of importance, some videos may be copied to the cloud for archiving or replicated in the cloud and other cloudlets for scalable access. But most videos reside only at a single cloudlet. How long they are kept around depends on the storage reclamation and replication policy.

Although denaturing directly on smartphones may be more reassuring to users, our results in Section 6.1 show that the negative impact on battery life is unacceptable. We therefore perform denaturing on a cloudlet as video is being streamed into it. For each mobile user who is currently associated with a cloudlet, there is a “personal” VM that performs the customdenateduring for that user. When a user moves a significant distance, this VM migrates to another cloudlet that is now closer. This process is analogous to Wi-Fi handoff. Although the use of VMs incurs additional overhead relative to denaturing by a cloudlet-wide process, our approach supports user-specific denaturing and is likely to give the user greater confidence in the process.

Other cloudlet VMs (not shown in Figure 3) encapsulate image processing code to perform background indexing of recently-captured videos. Users can also manually add tags to their videos. To handle searches that are time-sensitive (such as locating a lost child) or to search for content that is not indexed, custom search code encapsulated in a VM can directly examine denatured videos.

Notice that Figure 3 is agnostic regarding the exact positioning of the cloudlets in the network. One option could be to place numerous small cloudlets at the very network edge. An alternative is to place fewer but larger cloudlets deeper in the network, e.g., at metropolitan scale. Our analysis in Section 6.2 suggests that placement close to the edge is preferable.

4. PROTOTYPE IMPLEMENTATION

We have implemented a complete prototype of the GigaSight architecture presented in Figure 4. The prototype comprises the complete chain of functionality from uploading video, over denaturing and indexing to the final step of searching through the available video segments.

4.1 Mobile client

Given the stringent limitations on weight and size to keep HUDs comfortable, it can be expected that their storage and processing power will be limited. We therefore use a smartphone as a HUD proxy that buffers video segments en route to the rest of the GigaSight framework. Our GigaSight mobile app was developed for Android Ice Cream Sandwich (4.0.4). Its functionality includes the configuration of user-specific privacy rules and the buffering of video segments. Figure 5 shows two screenshots of our app. In our current prototype, the mobile device camera acts as a complete surrogate for the HUD, including the actual video capture.

The user defines a default policy to publish or to blank all of his video segments. He can specify rules to deviate from this policy. Each rule is a chain of filters that scope time, location or objects. We apply a logical OR between rules, and a logical AND between the filters of a single rule, giving the user sufficient semantic possibilities to specify privacy settings. Time filters allow the user to specify, for example, that no video captured between 9 AM and 5 PM can be shared. Location conditions allow the user to specify geographical regions by simply tapping on a map. The object-based filters are currently limited to the faces present in the training set of our face recognition algorithms.

Captured videos are cached and uploaded as soon as a Wi-Fi connection becomes available. Through a REST-based API, the mobile device registers new segments and updates the associated metadata...
The LBP classifier we use [1] was trained from the PUT portion. The second frontal face detector uses the Local Binary Pattern detectors are based on Haar-like features [19, 34]. The classifiers the bounding boxes of the detected faces.

For each frame, the algorithm gives an array with improve the contrast of the frame in order to increase the face de-

Histogram equalization is applied to

Denaturing is implemented as a multi-step pipeline. In the first step, a subset of the video frames is selected for actual denaturing, As the results presented in section 5.2.2 will clearly indicate, video denaturing is too compute-intensive to perform at the native video frame rate. Then, metadata-based filters with low computational complexity are applied. This early-discard step is a binary process: based on the time and location, the frame is either completely blanked or passed through unmodified. In the third step, we apply more complex content-based filters. Currently, our prototype only supports face detection: any detected face will be blurred, as shown in Figure 6. The video frames are first decoded to raw RGB frames and converted to gray scale. Histogram equalization is applied to improve the contrast of the frame in order to increase the face detection accuracy. For each frame, the algorithm gives an array with the bounding boxes of the detected faces.

We combined a profile face detector with two variants of frontal face detection. The profile face detector and one of the frontal face detectors are based on Haar-like features [19, 34]. The classifiers for these algorithms are both included in the OpenCV distribution. The second frontal face detector uses the Local Binary Pattern (LBP) [6]. The LBP classifier we use [1] was trained from the PUT Vein Pattern Database [2].

Figure 6: Example of a denatured video frame.

As a proof of concept, we use a Python-based implementation of Shotton et al.'s image categorization and segmentation algorithm [30] with classifiers trained on the MSRC21 data set mentioned in that work. This enables us to identify, with acceptable levels of false positives and false negatives, the 21 classes of common objects.
such as aeroplanes, bicycles, birds, etc., that are listed in the first column of Table 2.

An additional source of information about image content can come from the denaturing step. Since denaturing is performed before indexing, some important features of an image may not be available to downstream image processing algorithms. For example, a face detection algorithm may not correctly tag an image with faces because they are blurred. The obvious solution of indexing before denaturing is not acceptable because users expect their videos to be denatured first, before they are exposed to the cloudlet’s image processing code. We, therefore, allow the denaturing step to export tags that are discovered in the course of denaturing. In the example above, the tag “face” would have been exported as an attribute of a frame with faces. Thus, the tags for a frame are the union of those obtained during denaturing by the user’s image processing code within his personal VM, and those obtained during indexing by the cloudlet’s image processing code.

4.5 Search Workflow

GigaSight uses a two-step hierarchical workflow to help a user find video segments relevant to a specific context. First, the user performs a conventional SQL search on the cloud-wide catalog. His query may involve metadata such as time and location, as well as tags extracted by indexing. Our prototype uses a Django-based webserver that supports these queries on a MySQL database. A production version of GigaSight would likely use a distributed cloud database such as BigTable to ensure a scalable global service. The result of this step is a list of video segments and their denatured fragments allow user-defined classifiers to examine video segments and to discard irrelevant parts of them, thus reducing the volume of data presented to the user. We provide a suite of filters for common search attributes such as color patches and texture patches. For more complex image content (such as the 21 classes shown in Table 2) the user can train his own STF filters offline and insert them into the result stream.

To illustrate this two-step workflow, consider a search for “any images taken yesterday between 2pm and 4pm during a school outing to the Carnegie Science Center in Pittsburgh, showing two children in a room full of yellow balls and one of the children wearing his favorite blue plaid shirt.” The first step of the search would use the time and location information and the “face” tag to narrow the search. The result is a potentially large set of thumbnails from denatured videos that cover the specified location. From a multi-hour period of video capture by all visitors, this may only narrow the search to a few hundred or few thousand thumbnails. Using a color filter tuned to yellow, followed by a composite color/texture filter tuned to blue and plaid, most of these thumbnails may be discarded. Only the few thumbnails that pass this entire bank of filters are presented to the user. From this (hopefully) small set of thumbnails, it is easy for the user to pick the result shown in Figure 6.

5. EVALUATION

In exploring the limits to scaling GigaSight, we seek to identify the key bottlenecks in the system through experiments on our prototype. After the description of our experimental testbed in Section 5.1, we characterize separately the load incurred by video upload, denaturing and indexing in Section 5.2. Based on the insights gathered, we study in Section 5.3 how the available compute capacity on a cloudlet should be allocated between the personal VMs and the indexer in a set-up with multiple users.

5.1 Experimental Setup

To evaluate our prototype, we built a set-up consisting of smartphones and quad-core desktop machines emulating cloudlet and cloud hardware. Table 1 lists the details of this hardware. The state-of-the-art dual-core smartphones were connected to the cloudlets over a private 5 GHz 802.11n access point (AP), to minimize interference and collisions caused by other devices not participating in the experiment. The AP was connected via a private 1 Gbps LAN network to the cloudlet. The results reported in this section are used in Section 6.2 to study the scaling of GigaSight with larger infrastructures.

Lacking HHDs representative of devices such as Google Glass, we manually captured 10 minute videos with a smartphone while walking in downtown Pittsburgh. The videos were captured with resolutions set to 480p@30fps and 1080p@24fps, the representative formats available on action cameras such as the Contour+2, and encoded through an H.264 codec in a MP4 container.

To expand and diversify our video database, especially for the denaturing and indexing performance evaluation, we crawled 36 videos from YouTube, in the resolutions 360p (including 8 at 480x360 and 4 at 640x360), 720p (1080x720), and 1080p (1920x1080). When selecting the videos on YouTube, we ensured that they represented first-person viewpoints, and excluded music clips and other professionally edited content. We classified the selected YouTube videos into 4 categories: first-person viewpoint sport, in-vehicle viewpoint, public events (e.g., street parades), and public places (including holiday reports).

5.2 Scaling and Throughput

The scalability of this architecture, in terms of the number of users that can be served relative to cloudlet compute capacity and wireless network bandwidth, is the most important question that we explore. Our system performs video collection, denaturing, and indexing. Our goal is to understand which of these steps poses the scalability bottleneck with our current hardware.

5.2.1 Video Upload: The Cost of Capture

The goal of our first experiment is to quantify the capacity of the Wi-Fi channel in terms of the number of concurrent video uploads by multiple phones in GigaSight. Furthermore, we evaluate the individual throughput and energy consumption of each phone.
Figure 8: Energy consumption of video upload from Nexus I9250 via 802.11n.
Face Detection and Blurring

AES Encryption

Figure 9: Performance of Video Denaturing.

Figure 10: Overall throughput of the personal VM.

channel throughput (approx. 40 Mbps) is reached. The bitrate of
video upload is around 5 Mbps for 480p@30fps and 10 Mbps for
1080p@24fps. We observed that the throughput per phone starts
to drop when there were more than 8 phones uploading 480p videos
or 5 phones uploading 1080p videos at the same time.

The overall throughput does not increase significantly with the
use of slotted transmission mechanism. We attribute this to the fact
that the transmission speed of a smartphone is limited. Even when
a phone has the full channel capacity at its disposal, it will not reach
the maximum theoretical bitrate. As a result, the duration of the up-
load of a single segment overspills the length of the slot even with
few other phones and relatively long segment sizes. We expect that
the performance of the slotted transmission will increase with bet-
ter hardware and software implementations. Notably, the Android
4.2 update to the Google Nexus phone might bring improvements.

Another observation is that uploading shorter segments results in
a lower average individual throughput, due to some discrepancies
in the bitrates produced by FFmpeg when dividing videos into very
short segments. The cumulative size of six 5 s-long video segments
is smaller than when the same 30 s are encoded as a single segment.

Figure 8 shows how much energy it takes for a phone to send
one unit of data. We measured the energy by means of the Mon-
soon Power Monitor [5]. In general, the energy consumption in-
creases drastically when the Wi-Fi channel is saturated, and it is
more energy efficient to upload larger video segments.

Uploading longer segments requires the device to wake up less
frequently from the sleep state, while the total number of bytes
transmitted remains constant. Interestingly, the energy consump-
tion per byte for 5 s 480p video upload decreases with the number
of nodes until the Wi-Fi channel is saturated. Careful analysis of
the power measurement traces indicated that the smartphone ap-
plies two power states for transmission. In the experiments with
one and two smartphones, the transmission starts in the highest
power state before switching to the lower power state. When more
smartphones are involved in the experiment, the smartphone im-
mediately starts in the lower power state, presumably because it
senses more collisions on the network. Transmitting in a lower
power state results in longer transmission durations. In the 5 s 480p
case, the increased energy cost of the longer transmission duration
does not exceed the energy savings realized by sending at a lower
rate because there is relatively little data to send. In all other cases,
the longer transmission duration results in an increase in the aver-
age power consumption. Also note that the smartphone requires
less energy per byte for 1080p resolution, presumably because the
smartphone sends at lower rates. Overall, the slotted approach re-
sults in significant energy gains only for low-traffic scenarios.

5.2.2 Denaturing: The Cost of Preserving Privacy

In this section, we provide answers to two questions with respect
to the scalability of denaturing. First, what is the throughput of each
step of the denaturing pipeline presented in Figure 4, expressed in
terms of video frames processed per second? Second, what is the
overhead of virtualization in terms of the degradation of the
throughput of the denaturing process?

As listed in Table 1, each cloudlet machine has 4 cores. By
enabling hyperthreading, each machine can provide up to 8 vir-
tual CPUs (vCPUs) that must be distributed between the VMs run-
ning on the host. We used KVM as the VMM. The video denatur-
ing pipeline consists of 4 stages: video decoding, early-discard of
frames based on metadata and sampling rate, content-based blur-
ing, and video encoding. Along with a denatured, low-framerate
version, the entire original video is stored in encrypted form on the
cloudlet. To measure the individual throughput of each step, we
ran each stage individually, either on the host or inside a VM with
8 vCPUs. The results are shown in Figure 9. We omitted the re-
sults of the early-discard, since this is a computationally trivial step.
Note that the content-based filtering is the only step in the pipeline
that can be parallelized: decoding, encoding and encryption rely
on the sequential order of the frames. Hence, to obtain the results
we ran 8 threads for face detection and blurring, while we used one
thread for each of the other steps. The tests were conducted with
the 36 videos crawled from YouTube, representing a wide diversity
in content.

As shown in Figure 9, the throughput decreases with the video
resolution for each step in the denaturing pipeline. Even for the
highest resolution (1080p), a personal VM with 8 virtual CPUs can
decode/encode over 300 fps and encrypt over 2200 fps. This is
much higher than the load that can be expected on a single personal
VM: users will typically upload not more than 30 fps. However, the
throughput of face detection is much lower. In our experiments, we
combined the HAAR-based profile detector with both the LBP and
the HAAR frontal face detector. Clearly, the HAAR frontal face
detector is more computationally intensive: the throughput drops
from 21.93 fps to 1.61 fps when the resolution increases from 360p
to 1080p. The LBP-based frontal face detector achieves relatively
higher throughput: it processes up to 27.42 fps for 360p videos and 5.04 fps for 1080p videos. Obviously, the major bottleneck is the computer vision algorithms used for face detection.

In practice, the decoding, encoding, and denaturing routines are running in parallel. Upon the arrival of a video segment, the decoding thread converts the video into raw frames and pushes them into a shared queue. Meanwhile, a number of parallel denaturing threads fetch the raw frames and apply the meta-data and content-based filtering. The processed frames are forwarded to an encoding thread to be written into a new MP4 video file. This new video file contains only denatured frames and is indexable. Its framerate depends on the number of frames selected per second of video for denaturing. Typically, this selection rate will be much lower than the original frame rate because of computational constraints. As explained in Section 4, the video at original frame rate can be denatured on an ad-hoc basis.

We measured the overall throughput of the personal VM in three scenarios: running as a native process, inside a personal VM with 8 vCPUs, or running in 2 personal VMs with 4 vCPUs each. The latter scenario reflects the case with two users. The number of parallel denaturing threads is equal to 8 in the native scenario, and equal to the number of vCPUs in the virtualized scenarios.

The results are shown in Figure 10, including the cumulative throughput of both VMs in the 2-Guests scenario. Denaturing the video in a native process on the host results in an overall throughput of 4.06 fps for 1080p videos, 7.16 fps for 720p and up to 23.61 fps for 360p. This processing throughput drops by 1 % to 6 % when using virtualization. Due to scheduling overhead, the cumulative throughput of the cloudlet drops by an additional 7 % to 8 % in the scenario with 2 VMs. We can conclude that given the computational requirements of denaturing, the penalty of virtualization on the total throughput is limited.

Reducing the resolution is a clear path to increasing the throughput of the personal VM, but might negatively impact the detection accuracy of the denaturing process. We are convinced that the privacy-preserving algorithms must be close to perfect for users to trust the system. To investigate this trade-off between throughput and accuracy, we selected one 1080p video from each of the 4 categories in our YouTube video database and created lower-resolution copies. We randomly chose 50 frames of the complete video and manually counted the number of detected faces in each of the resolutions. The results shown in Figure 11(a) are relative to the number of correctly detected faces we counted in the original resolution, while the results shown in Figure 11(b) are relative to the throughput when processing at the original resolution.

Scaling down the resolution prior to denaturing results in a higher throughput but has a clear impact on the accuracy. Interestingly, scaling down from 1080p to 720p does not result in a significant decrease in detection accuracy, but neither does it significantly improve throughput. For some videos, the accuracy is even higher than in the original, 1080p resolution. Further lowering the resolution, however, is detrimental to accuracy, mainly because relatively small faces in a video are no longer detectable. Note that the classifiers we used were trained with images of faces no larger than 20x20 pixels, and should in principle be able to detect such small faces.

Our results suggest that denaturing should be performed at resolutions of at least 720p, otherwise users may lose their trust in the denaturing process. On the other hand, one might argue that small faces are already unrecognizable at lower resolutions even without denaturing. More in-depth study of this trade-off is required.

5.2.3 Indexing: The Cost of Content Search

The process of content-based indexing is conceptually very similar to denaturing: it involves running computer vision algorithms inside a VM on the cloudlet. Hence, the main research questions involving the indexer are similar to the ones posed in the previous section: what is the throughput of the indexer in frames per second, and what is the penalty of virtualization? To evaluate the impact of the resolution on the accuracy, we indexed 12 YouTube videos in 1080p resolution and their scaled-down versions.

We compare the throughput of the indexing process for the same scenarios: running as a native process, or inside a VM with either 8 or 4 vCPUs. The frames are indexed using the STF filter for the MSRC21 dataset [30], generating a score for each of the 21 tags.
Figure 12 shows how the indexing throughput decreases from 4 fps for the lowest resolution to less than 1 fps for the highest resolution. Table 2 shows the trade-off between resolution and indexing accuracy for each of the 21 classes. We considered the frames detected by the filter in the original 1080p video as the ground truth (perfect accuracy) and compared how many of those frames are found in the same video at lower resolution. When compared to the denaturing, the detection accuracy of the STF filters is more robust to lowering the resolution. Overall, we can conclude that in our current prototype we can perform the indexing on the lowest (360p) resolution without sacrificing too much accuracy.

5.3 Cloudlet Capacity Allocation

The previous sections indicated how denaturing and indexing are extremely computationally intensive. In this section, we study how the available cloudlet hardware should be allocated between the indexer and the personal VMs of multiple users. Allocating more vCPUs to the personal VMs rather than to the indexer allows us to increase the number of denatured frames per second of video for each user, but the non-indexed denatured videos will keep accumulating if the indexer cannot keep up. Conversely, overdimensioning the indexer might result in idle CPU cycles because it is waiting for new denatured videos from the personal VMs.

We combined 4 quad-core machines into a larger cloudlet and dedicated two of them to the indexer. The resources on the other two machines were distributed over a number of personal VMs for the denaturing process. The Data Manager was running on one of the machines used for denaturing. Videos were uploaded in chunks of 30 s at 1080p resolution and processed through the complete GigaSight chain: registering in the database, decoding, denaturing, encryption, and indexing. We followed our conclusions of the previous sections: denaturing is performed at the original 1080p resolution for maximum accuracy, while the indexer will first transcode the denatured video to 360p before running the actual content detection algorithms.

We varied the number of vCPUs of the personal VM, the number of users, and the selection rate: the number of frames per second of video that is forwarded to the early-discard and content-based filtering steps of Figure 4. These two parameters jointly determine the load on the GigaSight system. For example, if there are two users uploading at 24fps and each personal VM selects 1 out of 24 frames for processing, the personal VMs are expected to produce 2 denatured frames every second. The indexer must operate at the same rate or higher.

Table 3 provides an overview of workable system configurations and the throughput of the denaturing and indexing VMs. The bottleneck on the overall system throughput is indicated in bold. When the indexer is indicated as the bottleneck, it means we had to reduce the selection rate of the personal VMs and hence not fully utilize the resources allocated to the personal VM. Conversely, when the denaturing is the bottleneck, it means that the indexer has spare re-

| Table 2: Accuracy of the indexing process for different resolutions. |
|-------------------------|-------------------------|-------------------------|
| Classes | Total Tags | 720p | 480p | 360p |
| | | TP (rate) | FP | TP (rate) | FP | TP (rate) | FP |
| aeroplane | 4 | 4(100.0%) | 0 | 4(100.0%) | 0 | 4(100.0%) | 0 |
| bicycle | 0 | 0 (N/A) | 2 | 0 (N/A) | 2 | 0 (N/A) | 11 |
| bird | 66 | 63 (92.6%) | 4 | 59 (86.8%) | 7 | 57 (83.8%) | 15 |
| boat | 0 | 0 (N/A) | 0 | 0 (N/A) | 0 | 0 (N/A) | 0 |
| body | 2408 | 2352 (97.7%) | 19 | 2284 (94.9%) | 24 | 2185 (90.7%) | 23 |
| building | 875 | 870 (99.4%) | 137| 856 (97.8%) | 219| 836 (95.5%) | 273|
| car | 122 | 118 (96.7%) | 52 | 111 (91.0%) | 136| 108 (88.5%) | 176|
| cat | 573 | 560 (97.7%) | 10 | 552 (96.3%) | 15 | 546 (95.3%) | 24 |
| chair | 22 | 22 (100.0%) | 1 | 20 (90.9%) | 2 | 19 (86.4%) | 5 |
| cow | 0 | 0 (N/A) | 0 | 0 (N/A) | 0 | 0 (N/A) | 0 |
| dog | 1004 | 965 (96.1%) | 14 | 921 (91.7%) | 25 | 882 (87.8%) | 35 |
| face | 523 | 504 (96.4%) | 32 | 468 (89.5%) | 59 | 464 (88.7%) | 65 |
| flower | 12 | 11 (91.7%) | 0 | 10 (83.3%) | 0 | 10 (83.3%) | 0 |
| grass | 131 | 126 (96.2%) | 0 | 120 (91.6%) | 0 | 116 (88.5%) | 0 |
| road | 370 | 351 (94.9%) | 24 | 317 (85.7%) | 41 | 291 (78.6%) | 50 |
| sheep | 2 | 2 (100.0%) | 0 | 2 (100.0%) | 0 | 1 (50.0%) | 0 |
| sign | 125 | 124 (99.2%) | 10 | 120 (96.0%) | 12 | 115 (92.0%) | 17 |
| sky | 1409 | 1338 (95.0%) | 1 | 1210 (85.9%) | 1 | 1074 (76.2%) | 3 |
| tree | 1080 | 1066 (98.7%) | 97 | 1040 (96.3%) | 189| 984 (91.1%) | 234|
| water | 1290 | 1208 (93.6%) | 4 | 1145 (88.8%) | 6 | 1102 (85.4%) | 8 |
| total | 10092 | 9758 (96.7%) | 427| 9313 (92.3%) | 798| 8868 (87.9%) | 1031|

Results are based on the indexing of 3583 frames obtained by sampling 1 frame per 2 seconds from 12 video segments scaled down to different resolutions. "Total Tags" refers to the number of frames classified to have certain tags by the indexing algorithm at 1080p, which we assume to be ground truth. The number of True Positives (TP) represents how many of those frames were found in the same video at lower resolution. The rate in parentheses is TP divided by total tags. False Positives (FP) are frames not found in the 1080p resolution. Non-denatured frames were used, as is evident from the results of the face detection.

| Table 3: Multi-user system performance. |
|-------------------------|-------------------------|-------------------------|
| vCPUs per personal VM | # users | selection rate [fps] | denaturing throughput [fps] | indexer throughput [fps] |
| 2 | 4 | 0.5 | 1.9 | 1.9 |
| | 6 | 0.5 | 2.8 | 2.2 |
| | 8 | 0.5 | 3.7 | 2.4 |
| 4 | 2 | 1.5 | 2.7 | 2.7 |
| | 3 | 1.5 | 4.2 | 3.7 |
| | 3 | 1 | 2.9 | 2.9 |
| | 4 | 1 | 3.8 | 3.5 |
| 8 | 2 | 3 | 3.9 | 3.5 |
| | 2 | 3 | 5.8 | 4.1 |
sources and that the configured selection rate is the maximum that can be achieved with the given size of the personal VMs. Note that the number of users and the number of video segments increases the overhead of virtualization and the overhead of database transactions, respectively. All of these factors must be taken into account when allocating cloudlet resources.

6. ALTERNATIVE ARCHITECTURES

A key goal of GigaSight is to support a large number of geographically distributed users. Only then does a globally searchable video catalog become a truly valuable asset. Many architectural and deployment decisions can greatly affect this scalability. In this section, we explore key design alternatives for the architecture. First, we investigate the feasibility of moving denaturing from a cloudlet to mobile devices. Next, we weigh the scalability of a deployment scenario with numerous edge cloudlets against a single larger cloudlet at metropolitan scale.

6.1 Denaturing on the smartphone

With 8-core smartphones entering the market, mobile devices have enough processing power on board for compute-intensive tasks such as denaturing. Some mobile OS now natively offer an API for face detection. However, improvements in battery capacity have not followed the pace of the innovations in computing hardware. In this section, we evaluate the battery drain caused by continuous face detection, the most compute-intensive part of denaturing.

We have written two face detection applications for Android and deployed them on our Nexus smartphones. The two applications are respectively built on the OpenCV for Android SDK and the FaceDetector classifier of the Android SDK. The OpenCV implementation is identical to the one used in the personal VM, whereas the second version is included to exploit potential optimizations by directly accessing native Android API’s. We use the same videos as for the evaluation of denaturing on cloudlets.

Our results show that performing face detection in one 1080p frame using OpenCV for Android consumes on average 50.46 J, with a throughput of only 0.05 fps. The face detector provided by Android SDK is much more efficient compared with the one based on OpenCV SDK. It can produce 0.31 fps at the price of 9.0 J per frame. The energy demand of face detection drains a fully charged battery in 2.96 to 3.33 hours. Notice that the energy cost of video upload is agnostic to the location of denaturing, as the same number of frames must be uploaded.

Obviously, in terms of both throughput and battery life, denaturing on mobile devices is unattractive — offloading is the only viable option. An added benefit of uploading non-denatured video is that it can be reused by other vision-based applications on the cloudlet that are working on behalf of the user.

6.2 Cloudlet size and location

The scalability of GigaSight depends on the specific configurations of cloudlets and their locations in the network. System architects must balance the cloudlet computational capacity with the number of cloudlets, to maximize both the number N of simultaneous users per cloudlet, and the number F of (denatured and indexed) frames that each user contributes per unit of time. We build a first-order model to estimate the performance, based on cloudlet capabilities and cloudlet ingress bandwidth. We assume that neither the cloudlet storage throughput nor the wireless channel capacity is a bottleneck. The Wi-Fi bandwidth can be easily expanded by deploying more access points, and even a single hard drive provides two orders of magnitude higher bandwidth than today’s video bitrates.

The number of users supported by one cloudlet is bound either by the ingress bandwidth I to the cloudlet infrastructure, or by the number of available cores C. If each user uploads video at rate R, this trade-off is expressed as follows:

$$N \leq \min \left(\frac{I}{R}, \frac{C}{1.125 F} \right)$$

As illustrated in Figure 13, for values of $F < F_E$, the number of users supported is limited to N_F users. For values $F > F_E$, the architecture is compute bound and $N < N_F$.

Using this model, we can compare the two alternative design strategies that are illustrated in Figure 14. In the first model, many LAN-connected cloudlets are deployed at the network edge. Cloudlets may be co-located with one or more Wi-Fi access points, as initially proposed in the seminal paper on cloudlets [29], but newer mobile broadband variants are appearing. Femtocells will be gradually deployed in home networks, and Nokia Siemens Networks recently unveiled a LTE base station including service hosting infrastructure [23]. In the second model, one larger cloudlet is deployed at metropolitan scale, such as a campus or a city [3]. This model with MAN-cloudlets forms a middle ground between the first model with edge cloudlets, and the traditional clouds in the core network cloud model.

We can compare both models by estimating the evolution of video rates and hardware capabilities over the next 5 years. Our assumptions are listed in Table 4. The video captured by mobile devices is assumed to scale from HD (1080p) to Ultra-HD (4k). These cameras will capture 4 times more pixels than today, but at the same time the coding efficiency of the related H.265 codec will increase by 50% compared to H.264 [20]. Consequently, we model the video bandwidth to double between now and 2018. With respect to the network bandwidth, we assume typical local LAN ingress bandwidths for edge cloudlets. We use 1 Gbps and 10 Gbps...
For 2013 and 2018, respectively. For MAN cloudlets, we assume ingress link capacity of 100 Gbps based on a recent Verizon announcement [24], and (optimistically) project a 10 fold improvement in the future. Cloudlets are modeled as mini-datacenters, e.g. Myoonet [22]. The computational capacity of the cloudlets is expressed in terms of the number of CPU cores. We model an edge cloudlet as a single, fully populated blade chassis. For the MAN case, we assume a full rack with similarly dense servers. The 2013 figures in Table 4 are based on technical specifications of actual HP blades [13]. We assume a 16-fold increase in capacity for 2018.

Based on the hardware specifications of Table 4 and Equation 2, we can calculate the number of users \(N_E \) and the framerate per user \(F_E \) at which computational and network resources are balanced. The results are presented in Table 5. Since our models were based on hyperthreaded cores, we account for this by assuming twice the virtual cores as physical cores in our calculations.

From a technical viewpoint, we can conclude that edge cloudlets perform much better than MAN cloudlets. With one larger cloudlet per MAN, both the number of users and the framerate per user is surprisingly low. Such a cloudlet should support all users in a region the size of a city or campus. Typically, this will involve at least 100k users. It is clear that transmitting all videos to a single cloudlet creates a bottleneck at the ingress of the cloudlet. However, even if we are underestimating the capacity of the MAN network, there are practical restrictions (cost, cooling) on the size of the MAN cloudlet. This model requires one data center per MAN with the size of a traditional cloud-based data center. With edge cloudlets, much higher framerates can be achieved. Given our assumptions, in 5 years one edge cloudlet is able to support 121 users with real-time denaturing and indexing at the full rate of 30 fps. Of course, this analysis only takes into account technical parameters. Managing a distributed infrastructure with edge clouds might lead to increased total cost of ownership. These parameters must be considered when designing the architecture of GigaSight.

Table 4: Technical specifications of GigaSight infrastructure.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2013</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>video bitrate</td>
<td>8.5 Mbps</td>
<td>17 Mbps</td>
</tr>
<tr>
<td>edge cloudlet ingress BW</td>
<td>1 Gbps</td>
<td>10 Gbps</td>
</tr>
<tr>
<td>MAN cloudlet ingress BW</td>
<td>100 Gbps</td>
<td>1000 Gbps</td>
</tr>
</tbody>
</table>

Table 5: Number of users and attainable framerates

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N_E)</td>
<td>(F_E)</td>
</tr>
<tr>
<td>edge cloudlet (Fig. 14a)</td>
<td>118</td>
<td>1.9</td>
</tr>
<tr>
<td>MAN cloudlet (Fig. 14b)</td>
<td>11765</td>
<td>0.2</td>
</tr>
</tbody>
</table>

7. RELATED WORK

Privacy

Computer vision algorithms have been widely used for preserving the user’s privacy in video sharing. PrivacyCam [9] is a framework developed for CCTV channels for public safety. Introducing different layers of privacy protection, it allows users with higher clearance levels to see more information than daily CCTV operators. Using the hardware contemporary at the time of writing, the authors report a throughput of approx. 4 fps of 320x240 JPEG frames. Hardware has noticeably improved since the publication of the paper, and we achieve approximately the same throughput for higher resolution frames. PrivacyCam is complementary to our work, as it aims to protect the privacy of the persons being filmed, whereas we are primarily concerned with protecting the privacy of the video creators. The creators are given full control about which scenes are made public.

The privacy risks emerging from innocuous wearable sensors have been extensively studied by [26]. The results highlight an overall lack of awareness of the actual information contained in personal data sets and the privacy threats associated with them. On the other hand, the study reveals that participants have significant concerns with sharing sensed data with the general public, especially when released with their identities. We aim to tackle this concern by our concept of denaturing in personal VMs.

Visual content tagging

A substantial amount of work has been performed on the use of metadata for automated tagging and highlight selection in video segments. This metadata is typically derived either directly from other smartphone sensors, or from social network activity. In [33], video highlights in live broadcasts of sports events are automatically selected by analyzing sudden bursts in Twitter activity. Bao et al. [7] correlate sensor information of nearby smartphones to detect event highlights, such as acoustic information (e.g., cheering) or common orientation (e.g., all people looking at the same person making a toast).

We have used purely vision-based algorithms to categorize and tag video segments. Our prototype uses Semantic Texton Forests, but other detectors have been created, typically in specific areas where the number of common concepts is more or less fixed. For example, Snoek et al. [31] proposed visual detectors for analyzing videos of rock concerts. They created detectors for 12 common concert concepts such as a guitar and the logo of the festival. By comparing an expert’s opinion with the automatically suggested labels, they report an accuracy of approximately 85%.

Crowd-sourcing of video

An interesting use case of video crowdsourcing was presented in [17]. The video captured by smartphones mounted on the windshield is analyzed to detect traffic signals ahead. The information is shared with other drivers in the vicinity. This allows the system to advise the driver on the optimal speed they should maintain so that the signal is green when they arrive at the next intersection.
8. FUTURE WORK

The work described here is only a first step towards scalable content-based search on crowd-sourced, denatured videos. There are several important directions for future research.

Performance of Computer Vision Algorithms. GigaSight relies heavily on computer vision algorithms for denaturing and content-based indexing. These algorithms are extremely resource intensive. We believe that the throughput might drastically improve when GPU virtualization matures and advanced, highly optimized GPU routines become available inside VMs.

Another challenge is the detection accuracy of computer vision algorithms. Today’s algorithms tend to work best on images captured under well-controlled lighting and exposure conditions. Our experience shows that the quality of individual frames of a video captured by a smartphone are much poorer than expected by these algorithms. Lighting variations, semi-occlusion of faces and objects, and detection of small faces are other challenges. Snoek et al. [32] have evaluated the progress of the accuracy of visual-search engines between 2006 and 2009. They conclude that the progress is substantial, with accuracy doubling in just three years.

Storage management and reclamation. We have currently left open the question of how much storage capacity a cloudlet needs to have. This capacity will be a function of the average retention period of a video segment and of the observed mobility patterns of typical users from historical traces. Many algorithms published in the context of CDNs can be reused in GigaSight, such as the distribution and duplication of popular video segments.

In contrast to YouTube, where videos are never deleted, the major goal of GigaSight is to provide a global view on the world. Hence, another interesting concept we plan to focus on is semantic deduplication: how can “largely similar” video segments, e.g. captured by two users walking next to each other, be reduced to just a single representative one? What are the storage savings that can be realized from semantic deduplication, and what is the impact of its computational cost on scalability?

Apart from storing the videos, the related metadata must also be handled properly. In our current implementation, we used off-the-shelf MySQL databases on the cloudlet and the cloud. Metadata is synchronized over a REST-interface. Although this provided enough performance for our experiments, to truly scale up the system we will look into more advanced distributed databases such as Spanner [11].

9. CONCLUSION

Having a searchable catalog of crowd-sourced videos provides a unique hindsight view on the world that potentially leverages many existing and future applications. We have presented GigaSight, a framework integrating the complete chain of processing from the initial capture of video to the visual content search. Uploaded videos are denatured inside personal VMs running on cloudlets: sensitive scenes are automatically removed based on time, location, and content. As denaturing is a near effortless way for users to protect their privacy, this effectively lowers the barrier to share first-person video. The personal VMs establish a clear demarcation line where the original videos can be processed.

We have investigated both frame rate and resolution as parameters to scale up the system. Denaturing only a subset of the video frames results in a linear reduction of the system load, and still allows the user to guess the content of a video from a limited set of frames. This measure, however, cannot be applied to an infinite extent, especially for inter-frame action detection. Our experiments indicate that the effect of scaling down the resolution depends on the specific computer vision algorithm used. In our prototype, lowering the resolution does not reduce the accuracy of object detection in our indexer, but dramatically reduces the accuracy of the face detection algorithm in the denaturing process.

As HUDs such as Google Glass enter the mainstream, people will have the ability to effortlessly and continuously capture video. GigaSight offers an approach to transforming this capability into a truly disruptive force.

10. ACKNOWLEDGEMENTS

We thank our shepherd Kamin Whitehouse and the anonymous reviewers for their valuable comments and suggestions. This research was supported by the National Science Foundation (NSF) under grant numbers CNS-0833882 and IIS-1065336, by an Intel Science and Technology Center grant, and by the Department of Defense (DoD) under Contract No. FA8721-05-C-0003 for the operation of the Software Engineering Institute (SEI), a federally funded research and development center. This material has been approved for public release and unlimited distribution (DM-0000276). Additional support for cloudlet-related research was provided by IBM, Google, and Bosch.

11. REFERENCES

