Time-domain analysis of discrete-time LTI systems

- Discrete-time signals
- Difference equation single-input, single-output systems in discrete time
- The zero-input response (ZIR): characteristic values and modes
- The zero (initial) state response (ZSR): the unit-pulse response, convolution
- System stability
- The eigenresponse and (zero state) system transfer function
Discrete-time signal by sampling a continuous-time signal

- Consider a continuous-time signal \(x : \mathbb{R} \to \mathbb{R} \) sampled every \(T > 0 \) seconds
 \[
x(kT + t_0) =: x[k] \quad \text{for } k \in \mathbb{Z},
\]
 where
 - \(t_0 \) is the sampling time of the 0\(^{th} \) sample, and
 - \(T \) is assumed less than the Nyquist sampling period of \(x \), and
 - \(x[k] \) (with square brackets) is the \(k \)\(^{th} \) sample itself.

- Here \(x[\cdot] \) is a discrete-time signal defined on \(\mathbb{Z} \).

Example of sampling with \(t_0 = 0 \) and positive signal \(x \)
Introduction to signals and systems in discrete time

- A discrete-time function (or signal) \(x : A \rightarrow B \) is one with countable (time) domain \(A \).
- We will take the range \(B = \mathbb{R} \) or \(B = \mathbb{C} \).
- Typically, we will herein take domain \(A = \mathbb{Z} \) or \(\mathbb{Z}^{\leq n} \) for some (finite) integer \(n \geq 0 \).
- Some properties of signals are as in continuous time: e.g., periodic, causal, bounded, even or odd.
- Similarly, some signal operations are as in continuous time: e.g., spatial shift/scale, superposition, time reflection, and (integer valued) time shift.

Time scaling: decimation and interpolation

- Time scaling can be implemented in continuous time prior to sampling at a fixed rate, or the sampling rate itself could be varied (again recall the Nyquist sampling rate).
- In discrete time, a signal \(x = \{ x[k] \mid k \in \mathbb{Z} \} \) can be decimated (subsampled) by an integer factor \(L \neq 0 \) to create the signal \(x_L \) defined by
 \[
 x_L[k] = x[kL], \quad \forall k \in \mathbb{Z},
 \]
 i.e., \(x_L \) is defined only by every \(L^{th} \) sample of \(x \).
- A discrete-time signal \(x \) can also be interpolated by an integer factor \(L > 0 \) to create \(x_L \) satisfying

 \[
 x_L[kL] = x[k], \quad \forall k \in \mathbb{Z}.
 \]
- For an interpolated signal \(x_L \), the values of \(x_L[r] \) for \(r \) not a multiple of \(L \) (i.e., \(\forall k \in \mathbb{Z} \) s.t. \(r \neq kL \)) can be set in different ways, e.g., between consecutive samples:
 - (piecewise constant) hold: \(x_L[r] = x_L[r/L] = x[r/L] \)
 - linear interpolation:

 \[
 x_L[r] = x[r/L] + \frac{r - L[r/L]}{L}(x[r/L] + 1) - x[r/L])
 \]
Is the functional mapping $x \rightarrow x_L$ causal for linear interpolation?

Is the hold causal?

Exercise: Show that if a periodic, continuous-time signal $x(t)$, with period T_0, is periodically sampled every T seconds, then the resulting discrete-time signal $x[k]$ is periodic if and only if T/T_0 is rational.

Unit pulse δ, unit step u, unit delay Δ, and convolution

- Some important signals in discrete time are as those in continuous time, e.g., polynomials, exponentials, unit step.

- In discrete time, rather than the (unit) impulse, there is unit pulse (Kronecker delta):
 \[
 \delta[k] = \begin{cases}
 1 & \text{if } k = 0 \\
 0 & \text{else}
 \end{cases}
 \]

- Any discrete-time signal x can thus be written as
 \[
 x[k] = \sum_{r=-\infty}^{\infty} x[r] \delta[k-r] = \sum_{r=-\infty}^{\infty} x[k-r] \delta[r] = (x * \delta)[k]
 \]

- or just $x = x * \delta$, i.e., the unit pulse δ is the identity of discrete-time convolution.

- Define the operator Δ as unit delay (time-shift), i.e., \forall signals y and $\forall k, r \in \mathbb{Z}$,
 \[
 (\Delta^r y)[k] := y[k-r].
 \]

- The discrete-time unit step u satisfies $\delta = u - \Delta u$, equivalently: $\forall k \in \mathbb{Z}$,
 \[
 \delta[k] = u[k] - u[k-1] \quad \text{and} \quad u[k] = \sum_{r=0}^{\infty} (\Delta^r \delta)[k] = \sum_{r=0}^{\infty} \delta[k-r].
 \]
Unit pulse and unit step functions

- **Exercise:** For any signal causal \(f \{ \{ f[k], k \geq 0 \} \), show that

\[
\forall k \geq 0, (f * u)[k] = \sum_{r=0}^{k} f[r].
\]

Exponential signals in discrete time

- Real-valued exponential (geometric) signals have the form \(x[k] = A \gamma^k, k \in \mathbb{Z} \), where \(A, \gamma \in \mathbb{R} \).

- Consider the scalar \(z = \gamma e^{j \Omega} \in \mathbb{C} \) with \(\gamma > 0, \Omega \in \mathbb{R} \), where again \(j := \sqrt{-1} \).

- Generally, complex-valued exponential signals have the (polar) form

\[
x[k] = A e^{j \phi} z^k = A \gamma^k e^{j(\Omega k + \phi)}, k \in \mathbb{Z},
\]

where w.l.o.g. we can take

\[
-\pi < \Omega, \phi \leq \pi \quad \text{and real} \quad A > 0.
\]

- **Exercise:** Show this complex-valued exponential is periodic if and only if \(\Omega/\pi \) is rational.

- By the Euler-De Moivre identity,

\[
x[k] = A \gamma^k e^{j(\Omega k + \phi)} = A \gamma^k \cos(\Omega k + \phi) + j A \gamma^k \sin(\Omega k + \phi), k \in \mathbb{Z}.
\]
Systems - single input, single output (SISO)

In the figure, \(f \) is an input signal that is being transformed into an output signal, \(y \), by the depicted system (box).

To emphasize this functional transformation, and clarify system properties, we will write the output signal (i.e., system “response” to the input \(f \)) as

\[
y = Sf,
\]

where, again, we are making a statement about functional equivalence:

\[
\forall k \in \mathbb{Z}, \quad y[k] = (Sf)[k].
\]

Again, \(Sf \) is not \(S \) “multiplied by” \(f \), rather a functional transformation of \(f \).

SISO systems (cont)

The \(n \) signals \(\{x_1, x_2, ..., x_n\} \) are the internal states of the system.

The states can be taken as outputs of unit-delay operators, \(\Delta \), i.e.,

\[
\forall k \in \mathbb{Z}, \quad (\Delta y)[k] = y[k-1].
\]

Some properties of systems are as in continuous time: e.g., linear, time invariant, causal, memoryless, stable (with different conditions for stability as we shall see).
Difference equation for an discrete time, LTI, SISO system

• For linear and time-invariant systems in discrete time, relate output y to input f via difference equation in standard (time-advance operator) form:

$$\forall k \geq -n, \quad y[k + n] + a_{n-1}y[k + n - 1] + \ldots + a_1y[k + 1] + a_0y[k] = b_m f[k + m] + b_{m-1}f[k + m - 1] + \ldots + b_1 f[k + 1] + b_0 f[k],$$

given

– scalars a_k for $0 \leq k \leq n$, with $a_n := 1$, and scalars b_k for $0 \leq k \leq m$,
– $a_0 \neq 0$ or $b_0 \neq 0$ (so that P, Q are of minimal degree), and
– initial conditions $y[-n], y[-n + 1], \ldots, y[-2], y[-1]$.

• Compact representation of the above difference equation:

$$Q(\Delta^{-1})y = P(\Delta^{-1})f,$$

where polynomials

$$Q(z) = z^n + \sum_{k=0}^{n-1} a_k z^k, \quad P(z) = \sum_{k=0}^{m} b_k z^k,$$

and Δ^{-1} is the unit time-advance operator: $(\Delta^{-1}y)[k] \equiv y[k+1], (\Delta^{-r}y)[k] \equiv y[k+r]$

Discussion: conditions for causality and difference equation in Δ

• Exercise: Show that the difference equation $Q(\Delta^{-1})y = P(\Delta^{-1})f$ is not causal if $\deg(P) = m > n = \deg(Q)$, i.e., the system is not proper.

• An anti-causal difference equation can be implemented simply using memory to store a sliding window of prior values of the input f and delaying the output.

• Example: Decoding B (bidirectional) frames of MPEG video.
Numerical solution to difference equation by recursive substitution

- Given the system \(Q(\Delta^{-1})y = P(\Delta^{-1})f \), the input \(f[k] \) for \(k \geq 0 \), and initial conditions \(y[-n], ..., y[-1] \),

- one can recursively solve for \(y \) (\(y[k] \) for \(k \geq 0 \)) by rewriting the system equation as

\[
y[k + n] = \sum_{r=0}^{n-1} \alpha_r y[k + r] + \sum_{r=0}^{m} b_r f[k + r] \quad \text{for} \quad k \geq -n
\]

\[
\Rightarrow y[k] = \sum_{r=0}^{n-1} \alpha_r y[k + r - n] + \sum_{r=0}^{m} b_r f[k + r - n] \quad \text{for} \quad k \geq 0.
\]

- For example, the difference equation in standard form,

\[
y[k + 1] + 3y[k] = 7f[k + 1] \quad \text{for} \quad k \geq -1,
\]

can be rewritten as

\[
y[k] = -3y[k - 1] + 7f[k] \quad \text{for} \quad k \geq 0.
\]

- So, given \(f \) and \(y[-1] \) we can recursively compute

\[
y[0] = -3y[-1] + 7f[0], \quad y[1] = -3y[0] + 7f[1], \quad y[2] = -3y[1] + 7f[2], \quad \text{etc.}
\]

- Exercise: If \(f = u \) and \(y[-1] = 7 \) then find \(y[3] \) for this example.

Approach to closed-form solution: ZIR and ZSR

- The total response \(y \) of \(P(\Delta^{-1})f = Q(\Delta^{-1})y \) to the given initial conditions and input \(f \) is a sum of two parts:

 - the ZSR, \(y_{ZS} \), which solves

 \[
P(\Delta^{-1})f = Q(\Delta^{-1})y_{ZS} \quad \text{with zero i.c.'s, i.e., with} \quad 0 = y[-n] = ... = y[-1];
\]

 - the ZIR, \(y_{ZI} \), which solves

 \[
 0 = Q(\Delta^{-1})y_{ZI} \quad \text{with the given initial conditions.}
\]

- The total response \(y \) of the system to \(f \) and the given initial conditions is, by linearity,

\[
y = y_{ZI} + y_{ZS}.
\]

- We will determine the ZIR by finding the characteristic modes of the system.

- We will determine the ZSR by convolution of the input with the (zero state) unit-pulse response, the latter also in terms of characteristic modes.
• Consider again the difference equation:
 \[\forall k \geq -1, \quad y[k + 1] + 3y[k] = 7f[k + 1], \]

• i.e., \(Q(z) = z + 3 \) with degree \(n = 1 \), and \(P(z) = 7z \) with degree \(m = 1 \),

• Exercise: Show that the following system corresponds to this difference equation.

\[
\begin{array}{cccc}
& f & \rightarrow & 7 \\
& \Delta & -3\Delta y & \rightarrow & y \\
\end{array}
\]

• By recursive substitution, the total response is, \(\forall k \geq -1 \):

\[
y[k] = -3y[k - 1] + 7f[k] = -3(-3y[k - 2] + 7f[k - 1]) + 7f[k] = (-3)^2y[k - 2] - 3 \cdot 7f[k - 1] + 7f[k] = ...
\]

\[
= (-3)^{k+1}y[-1] + \sum_{r=0}^{k} 7(-3)^{k-r}f[r]
\]

\[
= (-3)^{k+1}y[-1] + \sum_{r=0}^{\infty} h[k - r] f[r] =: (-3)^{k+1}y[-1] + (h \ast f)[k],
\]

• where \(h[k] := 7(-3)^k u[k] \) is the (zero state) unit-pulse response,

• \(y[-1] \) is the given \((n = 1) \) initial condition, and

• we have defined the discrete-time convolution operator with \(\sum_{r=0}^{\infty} (...) := 0 \).
• Exercise: Prove by induction this expression for $y[k]$ for all $k \geq -1$.

• Exercise: Prove convolution is commutative: $h \ast f = f \ast h$.

• So, we can write the total response $y = y_{ZI} + y_{ZS}$ starting from the time of oldest initial condition:

$\forall k \geq -1, \quad y_{ZI}[k] = (-3)^{k+1}y[-1]$
$\forall k \geq -1, \quad y_{ZS}[k] = u[k] \sum_{r=0}^{k} 7(-3)^{k-r}f[r] = u[k](h \ast f)[k]$

where $y_{ZS}[k] = 0$ when $k < 0$.

• Obviously, this example involves a linear, time-invariant and causal system as described by the difference equation above.

Total response - discussion

• Note that in CMPSC 360, we don’t restrict our attention to linear and time-invariant difference equations.

• We use recursive substitution to guess at the form of the solution and then verify our guess by an inductive proof.

• In this course, we will describe a systematic approach to solve any LTIC difference equation,

• i.e., to solve for the output of a DT-LTIC system given the input and initial conditions.

• And again as in continuous time, we will see important insights about discrete-time signals and LTIC systems through frequency-domain representations and analysis.
ZIR - the characteristic values

- Note that \(\forall k, \Delta^{-r} z^k = z^{k+r} = z^r z^k \), i.e., the \(r \)-units time-advance operator, \(\Delta^{-r} \), is replaced by the scalar \(z^r \) for all \(r \in \mathbb{Z} \).

- Our objective is to solve for the ZIR, i.e., solve
 \[
 Q(\Delta^{-1}) y \equiv 0 \quad \text{given } y[-n], y[-n+1], ..., y[-2], y[-1].
 \]

- Note that exponential (or “geometric”) functions, \(\{ z^k \mid k \in \mathbb{Z} \} \) for \(z \in \mathbb{C} \), are eigenfunctions of time-shift operators of the form \(Q(\Delta^{-1}) \) for a polynomial \(Q \).

- That is, for any non-zero scalar \(z \in \mathbb{C} \), if we substitute \(y[k] = z^k \forall k \in \mathbb{Z} \) we get:
 \[
 \forall k \in \mathbb{Z}, \quad (Q(\Delta^{-1}) y)[k] = Q(\Delta^{-1}) z^k = Q(z) z^k.
 \]

- So, to solve \(Q(z) z^k \equiv 0 \) for all time \(k \geq 0 \), when \(z \neq 0 \) we require
 \[
 Q(z) = 0, \quad \text{the characteristic equation of the system.}
 \]

ZIR - the characteristic values (cont)

- If \(z \) is a root of the characteristic polynomial \(Q \) of the system, then
 - \(z \) would be a characteristic value of the system, and
 - the signal \(\{ z^k \}_{k \geq 0} \) is a characteristic mode of the system when \(z \neq 0 \), i.e.,
 \[
 Q(\Delta^{-1}) z^k = 0, \quad \forall k \geq 0.
 \]

- Since \(Q \) has degree \(n \), there are \(n \) roots of \(Q \) in \(\mathbb{C} \), each a system characteristic value.
• Let \(n' \leq n \) be the number of non-zero roots of \(Q \), i.e., \(\tilde{Q}(z) = Q(z)/z^{n-n'} \) is a polynomial satisfying \(\tilde{Q}(0) \neq 0 \).

• Though there may be some repeated roots of the characteristic polynomial \(Q \), there will always be \(n' \) different, linearly independent characteristic modes, \(\mu_k \), i.e.,

\[
\forall k \geq -n, \quad \sum_{r=1}^{n'} c_r \mu_r[k] = 0 \iff \forall r, \text{ scalars } c_r = 0.
\]

• When \(n = n' \), by system linearity, we will be able to write

\[
\forall k \geq -n, \quad y_{ZI}[k] = \sum_{r=1}^{n} c_r \mu_r[k],
\]

for scalars \(c_r \in \mathbb{C} \) that are found by considering the given initial conditions

\[
y[k] = \sum_{r=1}^{n} c_r \mu_r[k] \quad \text{for } k \in \{-n, \ldots, -2, -1\},
\]

i.e., \(n \) equations in \(n \) unknowns (\(c_r \)).

• The linear independence of the modes implies linear independence of these \(n \) equations in \(c_r \), and so they have a unique solution.

ZIR - the case of different, non-zero, real characteristic values

• If there are \(n \) different non-zero roots of \(Q \) in \(\mathbb{R} \), \(z_1, z_2, \ldots, z_n \), then there are \(n \) characteristic modes: for \(r \in \{1, 2, \ldots, n\} \),

\[
\forall \text{ time } k, \quad \mu_r[k] = z_r^k.
\]

• Therefore,

\[
\forall k \geq -n, \quad y_{ZI}[k] = \sum_{r=1}^{n} c_r z_r^k.
\]

• The \(n \) unknown scalars \(c_k \in \mathbb{R} \) can be solved using the \(n \) equations:

\[
y[k] = \sum_{r=1}^{n} c_r z_r^k, \quad \text{for } k \in \{-n, -n+1, \ldots, -2, -1\}.
\]
ZIR - the case of different, non-zero, real characteristic values

- **Example**: Consider the difference equation:
 \[\forall k \geq -3, \quad 2y[k+3] - 10y[k+2] + 12y[k+1] = 3f[k+2], \]
 with \(y[-2] = 1 \) and \(y[-1] = 3 \).

- That is, \(Q(z) = z^2 - 5z + 6 = (z - 3)(z - 2) \) and \(n = 2, P(z) = (3/2)z \) and \(m = 1 \).

- So, the \(n = 2 \) characteristic values are \(z = 3, 2 \) and the ZIR is
 \[\forall k \geq -n = -2, \quad y_{ZI}[k] = c_1 3^k + c_2 2^k \]

- Using the initial conditions to find the scalars \(c_1, c_2 \):
 \[

 1 = y[-2] = c_1 3^{-2} + c_2 2^{-2} \quad \text{and} \quad 3 = y[-1] = c_1 3^{-1} + c_2 2^{-1}.

 \]

- **Exercise**: Now solve for \(c_1 \) and \(c_2 \).

- **Note**: When a coefficient \(c \) is worked out to be zero, it may not be exactly zero in practice, and the corresponding characteristic mode \(z^k \) will increasingly contribute to ZIR \(y_{ZI} \) over time if \(|z| > 1 \) (i.e., an “unstable” mode in discrete time).

©2016 George Kesidis

ZIR - the case of not-real characteristic values

- The characteristic polynomial \(Q \) may have non-real roots, but such roots come in complex-conjugate pairs because \(Q \)'s coefficients \(a_k \) are all real.

- For example, if the characteristic polynomial is
 \[Q(z) = (z - 1)(z^2 - 2z - 2) \]
 then the characteristic values (\(Q \)'s roots) are
 \[-1, \quad 1 \pm j\sqrt{3} \quad \text{again recalling } j = \sqrt{-1}. \]

- Because we have three different characteristic values \(\in \mathbb{C} \), we can specify three corresponding characteristic modes,
 \[(-1)^k, (1 + j\sqrt{3})^k, (1 - j\sqrt{3})^k, \forall k \geq 0, \]
 and construct the ZIR as
 \[\forall k \geq -n = -3, \quad y_{ZI}[k] = c_1 (-1)^k + c_2 (1 + j\sqrt{3})^k + c_3 (1 - j\sqrt{3})^k \]
 \[= c_1 (-1)^k + c_2 2^k e^{k j\pi/3} + c_3 2^k e^{-k j\pi/3} \]
 where
 - \(c_1 \in \mathbb{R} \) and \(c_2 = c_3 \in \mathbb{C} \) so that \(y_{ZI} \) is real-valued, and again,
 - these scalars are determined by the \(n = 3 \) given (real) initial conditions: \(y[-3], y[-2], y[-1] \).
ZIR - not-real characteristic values with real characteristic modes

• By the Euler-De Moivre identity for the previous example,

\[y_{ZI}[k] = c_1(-1)^k + (c_2 + c_3)2^k \cos(k\pi/3) + j(c_2 - c_3)2^k \sin(k\pi/3) \]

\[= c_1(-1)^k + 2\text{Re}\{c_2\}2^k \cos(k\pi/3) - 2\text{Im}\{c_2\}2^k \sin(k\pi/3) \]

• Again, because all initial conditions are real and \(Q \) has real coefficients, \(y_{ZI} \) is real valued and so \(c_3 = \overline{c_3} \Rightarrow c_2 + c_3, j(c_2 - c_3) \in \mathbb{R} \).

• In general, consider two complex conjugate characteristic values \(\nu \pm j\eta \) corresponding to two complex-valued characteristic modes \(|z|^k e^{\pm jk\angle z} \), where \(|z| = \sqrt{\nu^2 + \eta^2} \) and \(\angle z = \arctan(\eta/\nu) \).

• One can use Euler’s identity to show that the corresponding real-valued characteristic modes are

\[|z|^k \cos(k\angle z), |z|^k \sin(k\angle z) \]

ZIR - the case of repeated characteristic values

• Consider the case where at least one characteristic value is of order > 1, i.e., there are repeated roots of the characteristic polynomial, \(Q \).

• For example, \(Q(z) = (z + 0.75)^3(z - 0.5) \) has a triple (twice repeated) root at \(-0.75\) and a single root at \(0.5\).

• Again, \(\{-0.75\}^k \) is a characteristic mode because \(Q(\Delta^{-1})(-.75)^k \equiv 0 \) follows from

\[(\Delta^{-1} + .75)(-.75)^k = \Delta^{-1}(-.75)^k + .75(-.75)^k \]

\[= (-.75)^{k+1} + .75(-.75)^k \]

\[= 0. \]

• Similarly, \(\{0.5\}^k \) is a characteristic mode since \((\Delta^{-1} - 0.5)(0.5)^k \equiv 0 \).

• Also, \(\{k(-.75)^k\} \) is a characteristic mode because \(Q(\Delta^{-1})k(-.75)^k \equiv 0 \) follows from

\[(\Delta^{-1} + .75)^2k(-.75)^k \]

\[= (\Delta^{-2} + 1.5\Delta^{-1} + (.75)^2)k(-.75)^k \]

\[= \Delta^{-2}k(-.75)^k + 1.5\Delta^{-1}k(-.75)^k + (.75)^2k(-.75)^k \]

\[= (k + 2)(-.75)^{k+2} + 1.5(k + 1)(-.75)^{k+1} + (.75)^2k(-.75)^k \]

\[= (-.75)^{k+2}((k + 2) - 2(k + 1) + k) \]

\[= 0. \]
ZIR - the case of repeated characteristic values (cont)

• Similarly, \(k^2(-0.75)^k\) is also a characteristic mode because
 \((\Delta^{-1} + 0.75)^3k^2(-0.75)^k = 0\).

• Note that without three such linearly independent characteristic modes
 \(\{(-0.75)^k, k(-0.75)^k, k^2(-0.75)^k \mid k \geq 0\}\)
 for the twice-repeated (triple) characteristic value -.75, the initial conditions will create an
 "overspecified" set of \(n\) equations involving fewer than \(n\) "unknown" coefficients \(c_k\) of
 the linear combination of modes forming the ZIR.

• For this example,

 \[y_{ZI}[k] = c_0(-0.75)^k + c_1 k(-0.75)^k + c_2 k^2(-0.75)^k + c_3(0.5)^k, \quad k \geq -4.\]

• If the given initial conditions are, say,

 \[y[-4] = 12, \quad y[-3] = 6, \quad y[-2] = -5, \quad y[-1] = 10,\]
 the four equations to solve for the four unknown coefficients \(c_k\) are:

 \[y_{ZI}[-4] = (-0.75)^{-4}c_0 + (-4)(-0.75)^{-4}c_1 + (-4)^2(-0.75)^{-4}c_2 + (.5)^{-4}c_3 = 12\]
 \[y_{ZI}[-3] = (-0.75)^{-3}c_0 + (-3)(-0.75)^{-3}c_1 + (-3)^2(-0.75)^{-3}c_2 + (.5)^{-3}c_3 = 6\]
 \[y_{ZI}[-2] = (-0.75)^{-2}c_0 + (-2)(-0.75)^{-2}c_1 + (-2)^2(-0.75)^{-2}c_2 + (.5)^{-2}c_3 = -5\]
 \[y_{ZI}[-1] = (-0.75)^{-1}c_0 + (-1)(-0.75)^{-1}c_1 + (-1)^2(-0.75)^{-1}c_2 + (.5)^{-1}c_3 = 10\]

ZIR - general case of repeated, non-zero characteristic values

• In general, a set of \(r\) linearly independent modes corresponding to a non-zero characteristic
 value \(z \in \mathbb{C}\) repeated \(r - 1\) times are

 \[k^{r-1}z^k, k^{r-2}z^k, ..., kz^k, z^k, \quad \text{for } k \geq 0.\]

• Also, if \(v \pm jq\) are characteristic values repeated \(r - 1\) times, with \(v, q \in \mathbb{R}\) and \(q \neq 0\),
 we can use the \(2k\) real-valued modes
 \[k^a|z|^k \cos(\angle z), k^a|z|^k \sin(\angle z), \quad \text{for } a \in \{0, 1, 2, ..., r - 1\},\]
 where \(|z| = \sqrt{v^2 + q^2}\) and \(\angle z = \arctan(q/v)\).
ZIR - when some characteristic values are zero

- Again let $n' \leq n$ be the number of non-zero roots of Q (characteristic values),
- i.e., $r := n - n' \geq 0$ is the order (1+repetition) of the characteristic value 0, and
- $r \geq 0$ is the smallest index such that (the coefficient of Q) $a_r \neq 0$.
- So, there is a polynomial \tilde{Q} such that $Q(z) = z^r \tilde{Q}(z)$ and $\tilde{Q}(0) \neq 0$.
- Because the constant signal zero cannot be a characteristic mode, we add $r = n - n'$
 time-advanced unit-pulses:
 \[
 \forall k \geq -n, \ y_{ZI}[k] = \sum_{i=1}^{r} C_i \delta[k + i] + y_N[k] \\
 = C_r \delta[k + r] + C_{r-1} \delta[k + r - 1] + \ldots + C_1 \delta[k + 1] + y_N[k]
 \]
 where y_N is a “natural response” (linear combination of n' characteristic modes).
- The n initial conditions are then met by the r coefficients C_i of the advanced unit pulses
 together with the $n' = n - r$ coefficients of the characteristic modes in y_N.

ZIR - when some characteristic values are zero - example

- Consider a fourth-order system with characteristic polynomial
 $Q(z) = z^2(z + 1)^2$.
- Thus the poles are 0, -1 each repeated and the (non-zero) characteristic modes are
 $(-1)^k, k(-1)^k$.
- So, the ZIR is, for $k \geq -4$:
 \[
 y_{ZI}[k] = C_2 \delta[k + 2] + C_1 \delta[k + 1] + c_1(-1)^k + c_2 k(-1)^k
 \]
- That is, the ZIR has four unknown coefficients C_2, C_1, c_1, c_2 to account for the four (given)
 initial conditions $y[-4], y[-3], y[-2], y[-1]$.
Zero State Response - the unit-pulse response

- Recall the LTIC system
 \[\sum_{r=0}^{n} a_r \Delta^{-r} y = Q(\Delta^{-1})y = P(\Delta^{-1})f = \sum_{r=0}^{m} b_r \Delta^{-r} f \]
 with \(a_n = 1 \), \(a_0 \neq 0 \) or \(b_0 \neq 0 \), \(m \leq n \).

- We can express any input signal
 \[f[k] = \sum_{r=0}^{\infty} f[r] \delta[k-r] \quad \forall k \geq 0, \quad \text{i.e., } f = f * \delta. \]

- So the unit pulse \(\delta \) is the identity of the convolution operator in discrete time.

- Thus, by LTI, the ZSR \(y_{ZS} \) is the convolution of input \(f \) and ZSR \(h \) to unit pulse \(\delta \),
 \[y_{ZS}[k] = \sum_{r=0}^{\infty} f[r] h[k-r] = (f * h)[k], \quad \forall k \geq 0, \]

- \(h \) is called the unit-pulse response of the LTIC system, i.e.,
 \[Q(\Delta^{-1})h = P(\Delta^{-1})\delta \quad \text{s.t. } h[k] = 0 \quad \forall k < 0. \]

Computing an LTIC system’s unit-pulse response, \(h \)

- For the LTIC system in standard form, if \(a_0 \neq 0 \) then
 \[h = (b_0/a_0) \delta + y_N u \]
 where \(y_N \) is a natural response of the system (linear combination of characteristic modes).

- Note that \(h[k] = 0 \) for all \(k < 0 \) owing to the unit step \(u \).

- The \(n \) scalars of the natural response \(y_N \) component of \(h \) are solved using
 \[(Q(\Delta^{-1})h)[k] = (P(\Delta^{-1})\delta)[k] \quad \text{for } k \in \{-n,-n+1,...,-2,-1\} \]
Unit-pulse response when zero is a characteristic value

- If \(r \geq 0 \) is the smallest index such that \(a_r \neq 0 \) (0 is a char. mode of order \(r \)), then may need to add \(r \) delayed unit-pulse terms to \(h \):

\[
h = \sum_{i=0}^{r-1} A_i \Delta^i \delta + (b_0 / a_r) \Delta^r \delta + y_n u,
\]

where
- by definition of the standard form of the difference equation, if \(r > 0 \), \(a_0 = 0 \) so \(b_0 \neq 0 \), and
- \(r \leq n \) since \(0 \neq a_n \) := 1.

- So if \(r = 0 \) (i.e., \(a_0 \neq 0 \)), then \(A_0 = b_0 / a_0 \) as above, where \(\sum_{i=0}^{-1}(...) := 0 \).

- Exercise: Prove \(A_r = b_0 / a_r \) for \(0 \leq r \leq n \).

- Thus, zero is a characteristic value of degree \(r \geq 0 \), and

- there are \(r \) characteristic modes that will all be zero.

- The additional unit-pulse terms introduce \(r \) degrees of freedom in the form of the coefficients \(A_0, A_1, ..., A_{r-1} \) to accommodate the \(n = r + n' \) initial conditions of the unit-pulse response: \(h[-n] = h[-n+1] = ... = h[-2] = h[-1] = 0 \).

Computing the ZSR - example 1

- Recall that the difference equation \(y = 7f - 3\Delta y \) corresponds to the above system; in standard form:

\[
\forall k \geq -1, \quad y[k+1] + 3y[k] = 7f[k+1].
\]

with \(Q(z) = z + 3 \), \(P(z) = 7z \) and \(n = 1 = m \).

- Since the system characteristic value is \(-3 \) and \(b_0 = 0 \), the (zero state) unit-pulse response has the form \(h[k] = c(-3)^k u[k] \).

- The scalar \(c \) is solved by evaluating the above difference equation at time \(k = -1 \):

\[
(Q(\Delta^{-1})h)[-1] = (P(\Delta^{-1})\delta)[-1]
\]

\[
i.e., \quad h[0] + 3h[-1] = 7\delta[0]
\]

\[
\Rightarrow c + 3 \cdot 0 = 7 \cdot 1, \quad c = 7
\]
Computing the ZSR - example 1 (cont)

• So, \(h[k] = 7(-3)^ku[k] \).
• If the input is \(f[k] = 4(0.5)^ku[k] \), the system ZSR is, for all \(k \geq 0 \),

\[
yzs[k] = \sum_{r=0}^{k} h[r]f[k-r] = \sum_{r=0}^{k} 7(-3)^r 4(0.5)^{k-r}
\]

\[
= 28(0.5)^k \sum_{r=0}^{k} (-6)^r = 28(0.5)^k \frac{(-6)^{k+1} - 1}{-6 - 1} u[k]
\]

\[
= (24(-3)^k + 4(0.5)^k)u[k].
\]

• Note how the ZIR \(y_{ZI} \) has a term that is a characteristic mode (excited by the input \(f \)) and a term that is proportional to the input \(f \) (this forced response is an eigenresponse).

• Exercise: For the difference equation, \(y[k+1] + 3y[k] = 7f[k] \) \(\forall k \geq -1 \); draw the block diagram, show that \(h[k] = 21(-3)^{k-1}u[k] + (7/3)\delta[k] \), and find the ZSR to the above input \(f \).

• Exercise: Read “sliding tape” method to compute convolution in Lathi, p. 595.

Computing the unit pulse response - example 2

• Find the ZSR of the following system to input \(f[k] = 2(-5)^ku[k] \):

\[
f \rightarrow + \rightarrow \Delta \rightarrow y
\]

• Exercise: show the difference equation for this system (in direct canonical form) is:

\[
\forall k \geq 0, \quad y[k+2] - 5y[k+1] + 6y[k] = 1.5f[k+1]
\]

• That is, \(Q(z) = z^2 - 5z + 6 = (z-3)(z-2) \) and \(n = 2, P(z) = 1.5z \) and \(m = 1 \).

• So, the \(n = 2 \) characteristic values are \(z = 3, 2 \) and \(b_0 = 0 \) so the unit-pulse response

\[
h[k] = (c_13^k + c_22^k)u[k].
\]
Computing the unit pulse response - example 2 (cont)

- To find the constants, evaluate the difference equation at \(k = -1 \):
 \[
 2h[1] - 10h[0] + 12h[-1] = 3\delta[0] \\
 \Rightarrow 2h[1] - 10h[0] = 3 \\
 \Rightarrow (2 \cdot 3 - 10 \cdot 1)c_1 + (2 \cdot 2 - 10 \cdot 1)c_2 = 3 \\
 \Rightarrow -4c_1 + -6c_2 = 3
 \]
 and at \(k = -2 \):
 \[
 2h[0] - 10h[-1] + 12h[-2] = 3\delta[-1] \Rightarrow 12h[0] = 0 \Rightarrow h[0] = 0
 \]
 \[
 \Rightarrow c_1 + c_2 = 0.
 \]

- Thus, \(c_2 = -1.5 = -c_1 \) so that \(h[k] = (-1.5(3)^k + 1.5(2)^k)u[k] \) and for \(k \geq 0 \)
 \[
 y_{ZS}[k] = (h * f)[k] = \sum_{r=0}^{k} h[r]f[k-r].
 \]

- **Exercise:** Write the ZSR as a sum of system modes \(2^k \) and \(3^k \) and a (force) term like the input, here taken as \(f[k] = 4(-5)^k u[k] \).

Convolution - other important properties

- Again, for a LTI system with impulse response \(h \) and input \(f \), the ZSR is \(y_{ZS} = f \ast h \), where
 \[
 (f \ast h)[k] = \sum_{r=-\infty}^{\infty} f[r]h[k-r]
 \]

- By simply changing the dummy variable of summation to \(r' = h - r \), can show convolution is commutative: \(f \ast h = h \ast f \).

- One can directly show that convolution \(f \ast h \) is a bi-linear mapping from pairs of signals \((f, h) \) to signals \((y_{ZS}) \), consistent with convolution’s commutative property and the (zero state) system with impulse response \(h \) being LTI;

- that is, \(\forall \) signals \(f, g, h \) and scalars \(\alpha, \beta \in \mathbb{C} \),
 \[
 (\alpha f + \beta g) \ast h = \alpha(f \ast h) + \beta(g \ast h)
 \]

- By changing order of summation (Fubini’s theorem), one can easily show that convolution is associative, i.e., \(\forall \) signals \(f, g, h \),
 \[
 (f \ast g) \ast h = f \ast (g \ast h).
 \]
Convolutions - other important properties (cont)

- We’ll use these properties when composing more complex systems from simpler ones.

- By just changing variables of integration, we can show how to exchange time-shift with convolution, i.e., \(\forall \) signals \(f, h : \mathbb{Z} \to \mathbb{C} \) and times \(k \in \mathbb{Z}, \)

\[
(\Delta^k f) * h = \Delta^k (f * h);
\]

recall how convolution represents the ZSR of linear and time-invariant systems.

- By the ideal sampling property, recall that the identity signal for convolution is the unit pulse \(\delta \), i.e., \(\forall \) signals \(f, \)

\[
f * \delta = \delta * f = f
\]

- **Exercise:** Adapt the proofs of these properties in continuous time to this discrete-time case.

- **Exercise:** In particular, show that if \(f \) and \(h \) are causal signals, then \(y = f * h \) is causal; i.e., if the unit-pulse response \(h \) of a system is a causal signal, then the system is causal.

System stability - ZIR - asymptotically stable

- Consider a SISO system with input \(f \) and output \(y \).

- Recall that the ZIR \(y_{ZI} \) is a linear combination of the system’s characteristic modes, where the coefficients depend on the initial conditions, possibly including some initial unit-pulse terms if zero is a characteristic value (system pole).

- A system is said to be asymptotically stable if for all initial conditions,

\[
\lim_{{k \to \infty}} y_{ZI}[k] = 0.
\]

- So, a system is asymptotically stable if and only if all of its characteristic values have magnitude less than 1.
• If the characteristic polynomial \(Q(z) = (z - 0.5)(z^2 + 0.0625) \), then

• the system’s characteristic values (roots of \(Q \)) are 0.5, \(\pm 0.25j \) each with magnitude less than one,

• and the ZIR is of the form,

\[
y_{ZIR}[k] = (c_1(0.5)^k + c_2(0.25j)^k + c_3(-0.25j)^k) u[k] \\
= (c_1(0.5)^k + 2\text{Re}\{c_2\}(0.25)^k \cos(k\pi/2) - 2\text{Im}\{c_2\}(0.25)^k \sin(k\pi/2)) u[k],
\]

• recalling that \(j^k = e^{jk\pi/2} \).

• So, \(y_{ZIR}[k] \to 0 \) as \(k \to \infty \) for all \(c_1, c_2 \) (i.e., for all initial conditions), and

• hence is asymptotically stable.

System stability - bounded signals

• A signal \(y \) is said to be bounded if

\[\exists M < \infty \text{ s.t. } \forall k \in \mathbb{Z}, |y[k]| \leq M; \]

otherwise \(y \) is said to be unbounded.

• For example, \(y[k] = 0.25(\frac{1+j\sqrt{3}}{2})^k u[k] \) is bounded (can use \(M = 0.25 \)).

• Also, \(3 \cos(5k) \) is bounded (can use \(M = 3 \)).

• But both \(2^k \cos(5k) \) and \(3 \cdot (-2)^k \) are unbounded.
A system is said to be marginally stable if it is not asymptotically stable but \(y_{ZI} \) is always (for all initial conditions) bounded.

A system is marginally stable if and only if

- it has no characteristic values with magnitude strictly greater than 1,
- it has at least one characteristic value with magnitude exactly 1, and
- all magnitude-1 characteristic values are not repeated.

That is, a marginally stable system has

- some characteristic modes of the form \(\cos(\Omega k) \) or \(\sin(\Omega k) \),
- while the rest of the modes are all of the form \(k^r |z|^k \cos(\Omega k) \) or \(k^r |z|^k \sin(\Omega k) \), with \(|z| < 1 \) and integer degree \(r \geq 0 \).

Exercise: Explain why we can take \(\Omega \in (-\pi, \pi] \) without loss of generality.

Note: the dimension of \(\Omega \), \([\Omega]=\text{radians}\).

The characteristic polynomial is \(Q(z) = z(z^2 + 1)(z - 0.25) \) gives characteristic values 0, 0.25, \(\pm j \).

then the system is marginally stable with modes \((0.25)^k \cos(k\pi/2), \sin(k\pi/2) \),

the last two of which are bounded but do not tend to zero as time \(k \to \infty \).
System stability - ZIR - unstable

- A system that is neither asymptotically nor marginally stable (i.e., a system with unbounded modes) is said to be unstable.

- For example, the system with $Q(z) = (z^2 - 0.5)(z + 3)$ is unstable owing to the characteristic value -3 with unbounded mode $(-3)^k$.

- For another example, if the characteristic polynomial is $Q(z) = (z^2 + 1)^2(z - 0.5)$ then the purely imaginary characteristic values $\pm j$ are repeated, and hence the two additional modes $k \sin(k\pi/2), k \cos(k\pi/2)$ are unbounded, so this system is unstable.

- Similarly, if $Q(z) = (z^2 - 1)^2(z - 0.5)$ then the characteristic values ± 1 are repeated and the modes k and $k(-1)^k$ are unbounded, so this system is unstable too.

ZIR stability - stability of poles

©2016 George Kesidis
• A SISO system is said to be *Bounded Input, Bounded Output* (BIBO) stable if \(\forall \) bounded input signals \(f \), the ZSR \(y_{ZS} \) is bounded.

• A sufficient condition for BIBO stability is absolute summability of the unit-pulse response,

\[
\sum_{k=0}^{\infty} |h[k]| < \infty.
\]

• To see why: If the input \(f \) is bounded (by \(M_f \) with \(0 \leq M_f < \infty \)) then \(\forall k \geq 0 \):

\[
|y_{ZS}[k]| = |(f \ast h)[k]| = \left| \sum_{r=0}^{k} f[k-r]h[r] \right| \leq \sum_{r=0}^{k} |f[k-r]| |h[r]| \leq M_f \sum_{r=0}^{\infty} |h[r]| =: M_y < \infty.
\]

System stability - ZSR - BIBO stable

• The condition of absolute summability of the unit-pulse response,

\[
\sum_{r=0}^{\infty} |h[r]| < \infty,
\]

is also necessary for, and hence equivalent to, BIBO stability.

• If any component characteristic mode of \(h \) is unbounded, then \(h \) will not to be absolutely summable.

• Thus, if the system (ZIR) is asymptotically stable it will be BIBO stable; the converse is also true.
ZSR - the transfer function, \(H \)

- Recall that for any polynomial \(Q \) and \(z \in \mathbb{C} \) (including \(s = jw, \ w \in \mathbb{R} \)),
 \[
 Q(\Delta^{-1})z^k = Q(z)z^k, \ \forall k \geq 0.
 \]

- So, if we guess that a "particular" solution of the system \(Q(\Delta^{-1})y = P(\Delta^{-1})f \) with input \(f[k] = Az^ku[k] \) is of the form \(y_0[k] = AH(z)z^k = H(z)f[k], \ k \geq 0 \), then we get by substitution that \(\forall k \geq 0, z \in \mathbb{C} \),
 \[
 (Q(\Delta^{-1})y_0)[k] = (P(\Delta^{-1})f)[k] \Rightarrow AH(z)Q(z)z^k = AP(z)z^k \Rightarrow H(z) = P(z)/Q(z).
 \]

- The "rational polynomial" \(H = P/Q \) is known as the system’s transfer function and will figure prominently in our study of frequency-domain analysis.

- So, the ZSR (forced response + characteristic modes) would be of the form:
 \[
 y_{ZS}[k] = (AH(z)z^k + \text{linear combination of char. modes})u[k].
 \]

- Recall that for the example with \(Q(z) = z + 3 \) and \(P(z) = 7z \), we computed the unit-pulse response \(h[k] = 7(-3)^ku[k] \) and the ZSR to input \(f[k] = 4(0.5)^ku[k] \) as \(y_{ZS}[k] = (24(-3)^k + 4(0.5)^k)u[k] \).

- Here, note that \(H(0.5) = P(0.5)/Q(0.5) = 1 \), i.e., the forced response component of \(y_{ZS} \) is \(H(0.5)f[k] = 1 \cdot 4(0.5)^ku[k] = 4(0.5)^ku[k] \).

ZSR - unit-pulse response \(h \), transfer function \(H \), and eigenresponse

- \(y_{ZS}[k] = (H(z)Az^k + \text{linear combination of char. modes})u[k] \) is the ZSR to input \(f[k] = Az^ku[k] \), where \(H(z) = P(z)/Q(z) \).

- The eigenresponse is a special case of the forced response for exponential inputs.

- If \(|z| = 1 \), i.e., \(z = e^{j\Omega} \) for some \(\Omega \in (-\pi, \pi) \) (w.l.o.g.), and the system is asymptotically stable, then the ZSR tends to the steady-state eigenresponse of the system:
 \[
 y[k] \rightarrow AH(e^{j\Omega})e^{j\Omega k} \text{ as } k \rightarrow \infty.
 \]

- Since \(y = h * f \), we get that as \(k \rightarrow \infty \) for a LTIC and asymptotically stable system,
 \[
 y_{ZS}[k] = \sum_{r=0}^{k} h[r]Ae^{j\Omega(k-r)} = Ae^{j\Omega k}H(e^{j\Omega})
 \Rightarrow \sum_{r=0}^{\infty} h[r]e^{-j\Omega r} = H(e^{j\Omega}), \ \forall \Omega \in (-\pi, \pi).
ZSR - transfer function \(H \) and eigenresponse (cont)

\[
e^{j\Omega k} \quad \rightarrow \quad H \equiv \frac{P}{Q} \quad \rightarrow \quad H(e^{j\Omega k})e^{j\Omega k}
\]

- The LTI system transfer function \(H \) is the Discrete-Time Fourier Transform (DTFT) of the system unit-pulse response \(h \):

\[
\forall \Omega \in \mathbb{R}, \quad H(e^{j\Omega}) = \sum_{r=0}^{\infty} h[r]e^{-j\Omega r}.
\]

- Note that \(H(e^{j\Omega}) \) is periodic since \(H(e^{j\Omega}) \equiv H(e^{j\Omega+2\pi k}) \) for any integer \(k \).

- For the \(z \)-transform (and DTFS) we will use this notation for \(H \), but for the DTFT we will instead write \(H(\Omega) \).

©2016 George Kesidis

Frequency-domain methods for discrete-time signals

- Discrete-Time Fourier Series (DTFS) of periodic signals
- Discrete-Time Fourier Transform (DTFT)
- Sampled data systems
 - DFT & FFT
- \(z \)-transform for (complete) transient response
- Eigenresponse
- Canonical system realization of a difference equation
Discrete-time Fourier series of periodic signals

- For all \(r, N \in \mathbb{Z} \), note that the signal \(\{ \exp(jr \frac{2\pi}{N} k) \mid k \in \mathbb{Z} \} \) “repeats itself” every \(N > 0 \) units of (discrete) time \(k \), in particular
 \[
 \forall r \in \mathbb{Z}, \quad \exp\left(jr \frac{2\pi}{N} k\right)_{k=0} = 1 = \exp\left(jr \frac{2\pi}{N} k\right)_{k=N}.
 \]
- Also the signals \(\{ \exp(jr \frac{2\pi}{N} k) \mid k \in \mathbb{Z} \} \equiv \{ \exp(jr' \frac{2\pi}{N} k) \mid k \in \mathbb{Z} \} \) whenever \(r' = r \mod N \).
- Suppose \(N \) is the period of periodic signal \(x = \{ x[k] \mid k \in \mathbb{Z} \} \) and \(\Omega_0 = 2\pi/N \) be the fundamental “frequency” of \(x \) (recall \([\Omega_0] = \) radians).
- We can write \(x \) as a Discrete-Time Fourier Series (DTFS):
 \[
 \forall k \in \mathbb{Z}, \quad x[k] = \sum_{r=0}^{N-1} D_r \exp(jr \Omega_0 k).
 \]
 where \(r \) indexes \(x \)'s \(N \) harmonics.
- Note that the DTFS can also be written for any discrete-time signal \(x : A \rightarrow \mathbb{R} \) defined over any finite interval of time, e.g., \(A = \{ 0, 1, 2, \ldots, N - 1 \} \) or \(A = \{-N, -N + 1, \ldots, -1\} \) for integer \(N < \infty \).

Discrete-time Fourier series of periodic signals (cont)

- Consider the \(N \) signals \(\xi_r[k] := \exp(jr \Omega_0 k) \) over any time-interval \(A \) of length \(N \).
- Equivalently consider these \(N \) signals \(\xi_r \) as \(N \)-vectors in \(\mathbb{R}^N \), i.e., the \(k \)th entry of vector \(\xi_r \) is \(\xi_r[k] \).
- If these signals/vectors \(\{ \xi_r \}_{r=0}^{N-1} \) are linearly independent, then they will form a basis spanning all other signals \(x : A \rightarrow \mathbb{R} \), equivalently all other vectors \(x \in \mathbb{R}^N \),
 - i.e., any such \(x \) can be written as a linear combination of the \(\{ \xi_r \}_{r=0}^{N-1} \) giving the DTFS of \(x \):
 \[
 x_r = \sum_{r=0}^{N-1} D_r \xi_r.
 \]
- If we show that these signals/vectors \(\{ \xi_r \}_{r=0}^{N-1} \) are orthogonal then
 - linear independence follows
 - the \(r \)th coordinate \(D_r \) (DTFS coefficients) is found by simply projecting \(x \) onto the vector \(\xi_r \):
 \[
 D_r = \langle x, \xi_r \rangle / ||\xi_r||^2.
 \]
DTFS - coefficients (cont)

• Consider any period of \(x : \mathbb{Z} \to \mathbb{R} \), say \(\{0, 1, 2, ..., N - 1\} \).

• First note that for any \(v \in \mathbb{Z} \) that is not a multiple of \(N \) (so \(e^{j\nu \Omega_o} = e^{j\nu(2\pi/N)} \neq 1 \)), the geometric series

\[
\sum_{k=0}^{N-1} e^{j\nu \Omega_o k} = \frac{e^{j\nu(2\pi/N)N} - e^{j\nu(2\pi/N)0}}{e^{j\nu(2\pi/N)} - 1} = 0.
\]

• Thus, for any \(r \neq v \in \mathbb{Z} \) such that \(N \nmid (v - r) \), the inner product \(\langle \xi_r, \xi_v \rangle \) is

\[
\langle \{e^{j\nu(2\pi/N)k}\}, \{e^{j\nu(2\pi/N)k}\} \rangle := \sum_{k=0}^{N-1} e^{j(r-v)(2\pi/N)k} = \sum_{k=0}^{N-1} e^{j(r-v)(2\pi/N)k} = 0,
\]

recalling that the inner product is conjugate-linear in the second argument so that \(<x, x> = ||x||^2 \) when \(x \) is \(\mathbb{C} \)-valued.

• So, these signals are orthogonal and the DTFS coefficients of \(N \)-periodic \(x \) are

\[
D_r = \frac{1}{N} \sum_{k=0}^{N-1} x[k] e^{-j\nu \Omega_o k} = \frac{\langle x, \{e^{j\nu \Omega_o k}\} \rangle}{||\{e^{j\nu \Omega_o k}\}||^2}, \text{ where } \Omega_o = \frac{2\pi}{N}.
\]

DTFS - checking coefficients

• Let’s now compute the inner product of \(\xi_v \), for any \(v \in \{0, 1, ..., N - 1\} \), with the DTFS of \(N \)-periodic \(x \):

\[
\langle x, \{e^{j\nu \Omega_o k}\} \rangle = \sum_{k=0}^{N-1} x[k] e^{-j\nu \Omega_o k} = \sum_{k=0}^{N-1} \sum_{r=0}^{N-1} D_r e^{j\nu \Omega_o k} e^{-j\nu \Omega_o r} = \sum_{r=0}^{N-1} D_r e^{j(r-v) \Omega_o k} = \sum_{r=0}^{N-1} D_r N \delta(r-v) = D_v N
\]

• Again, we have verified the DTFS coefficients is

\[
D_r = \frac{1}{N} \sum_{k=0}^{N-1} x[k] e^{-j\nu \Omega_o k} = \frac{\langle x, \{e^{j\nu \Omega_o k}\} \rangle}{||\{e^{j\nu \Omega_o k}\}||^2}, \text{ where } \Omega_o = \frac{2\pi}{N}
\]

©2016 George Kesidis
DTFS - example

Problem:
Identify the DTFS coefficients (if they exist) for
\[x[k] = 7 \sin(5.7\pi k) + 2 \cos(3.2\pi k), \quad k \in \mathbb{Z}. \]

Solution:

- First note that the two components of \(x \) are periodic, so their sum is periodic. (Why is this so in discrete time?)

- Since \(\sin \) and \(\cos \) have period \(2\pi \), we can subtract integer multiples of \(2\pi \) to get
 \[x[k] = 7 \sin(1.7\pi k) + 2 \cos(1.2\pi k). \]

- \(1.7\pi k \) is an integer multiple of \(2\pi \) when (integer) \(k = 20 \), and when \(k = 5 \) for \(1.2\pi k \), so least common multiple of these periods is \(k = 20 \).

- (Show that one can alternatively find the greatest common divisor of the component frequencies.)

DTFS - example (cont)

- Thus, the period of \(x \) is \(N = 20 \) and the fund. frequ. is \(\Omega_0 = 2\pi/N = 0.1\pi \).

- By Euler’s identity and adding \(2\pi k \) to the negative exponents,
 \[x[k] = \frac{7}{2j}e^{1.7\pi k} - \frac{7}{2j}e^{-1.7\pi k} + e^{1.2\pi k} + e^{-1.2\pi k} = -3.5je^{1.7\pi k} + 3.5je^{0.3\pi k} + e^{1.2\pi k} + e^{0.8\pi k}. \]

- So, the DTFS of \(x[k] = \sum_{r=0}^{19} D_r e^{jr.1\pi k} \) with
 \[D_{17} = -3.5j = 3.5e^{-j\pi/2}, \quad D_3 = 3.5j = 3.5e^{j\pi/2}, \quad D_{12} = 1, \quad \text{and} \quad D_8 = 1; \]
 else \(D_r = 0 \) (incl. the fundamental \(r \in \{1, 19\} \) & DC \(r = 0 \) components).
DTFS - example and exercise

- Example: The DTFS of an even rectangle wave with period $N = 6$ and duty cycle 3:

$$x[k] = \sum_{\ell = -\infty}^{\infty} \Delta^6\ell (\Delta^{-1}u - \Delta^2u)[k] = \sum_{\ell = -\infty}^{\infty} (u[k + 1 - 6\ell] - u[k - 2 - 6\ell])$$

is

$$= 5 X r = 0 D r e^{j\ell r \Omega_0},$$

where the fund. freq. $\Omega_0 = 2\pi/6$ and, $\forall r \in \mathbb{Z}$,

$$D_r = \frac{1}{6} \sum_{k=-3}^{2} x[k] e^{-j\ell r \Omega_0} = \frac{1}{6} \sum_{k=-1}^{1} 1 \cdot e^{-j(2\pi/6)k} = \frac{1}{6}(1 + 2 \cos(r(2\pi/6)k)).$$

- Exercise: Plot $x[k]$ as a function of time k and plot its (periodic) spectrum:

$$\forall r \in \{0, 1, 2, ..., 5\}, \ell \in \mathbb{Z},$$

$$\hat{X}(r2\pi/6 + 2\pi\ell) = D_r.$$

DTFS - Parseval’s theorem

- The average power of the N-periodic discrete-time signal x is

$$P_x = \frac{1}{N} \sum_{k=0}^{N-1} |x[k]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} x[k]\overline{x[k]};$$

equivalently, the sum could be taken over any interval of length $N \in \mathbb{Z}^{>0}$.

- Substituting the Fourier series of x separately for $x[k]$ and $\overline{x[k]}$ (using a different summation-index variable for each substitution), leads to Parseval’s theorem

$$P_x = \sum_{r=0}^{N-1} |D_r|^2.$$

- Parseval’s theorem can be used to determine the amount of periodic signal x’s power resides in a given frequency band $[\Omega_1, \Omega_2] \subset [0, 2\pi]$ radians:

1. determine the harmonics $r\Omega_0$ of x that reside in this band, $i.e.$, integers $r \in [\Omega_1/\Omega_0, \Omega_2/\Omega_0]$ where x’s fundamental frequency $\Omega_0 = 2\pi/N$.

2. sum just over these harmonics to get the answer, $\sum_{[\Omega_1/\Omega_0] \leq r \leq [\Omega_2/\Omega_0]} |D_r|^2$.

©2016 George Kesidis
Find the fraction of x's average power in the "frequency" band $[0.4\pi, 1.1\pi]$ radians where
\[
\forall k \in \mathbb{Z}, \ x[k] = \sum_{\nu=-\infty}^{\infty} (3\delta[k - 4\nu] - 4\delta[k - 1 - 4\nu])
\]

Solution: x has period $N = 4$ and average power
\[
P_x = \frac{1}{N} \sum_{k=0}^{N-1} |x[k]|^2 = \frac{1}{4} \sum_{k=0}^{3} |x[k]|^2 = \frac{1}{4}(3^2 + (-4)^2 + 0^2 + 0^2) = \frac{25}{4}
\]

x has fundamental frequency $\Omega_o = 2\pi/N = \pi/2$ radians and discrete-time Fourier coefficients
\[
D_r = \frac{1}{N} \sum_{k=0}^{N-1} x[k] e^{-j(r\Omega_o)k} = \frac{1}{4}(3 - 4e^{-j\pi/2}), \ 0 \leq r \leq N - 1 = 3.
\]

The harmonics r of x that reside in $[0.4\pi, 1.1\pi]$ satisfy $0.4\pi \leq r\Omega_o = r\pi/2 \leq 1.1\pi$, i.e., $r \in \{1, 2\}$.

So, by Parseval’s theorem, the answer is $\left(|D_1|^2 + |D_2|^2 \right) / P_x$.

Periodic extensions

Consider signal $x : \mathbb{Z} \to \mathbb{R}$ having finite support $\{-M, -M + 1, ..., 0, ..., M - 1, M\}$ for $0 < M < \infty$; i.e., $\forall |k| > M$, $x[k] = 0$.

For $N \geq M$, define $2N$-periodic $x^{(N)}$ such that
\[
x^{(N)}[k] = \begin{cases}
 x[k] & \text{if } |k| \leq M \\
 0 & \text{if } M < |k| \leq N
\end{cases}
\]

$x^{(N)}$ is a periodic extension of the finite-support signal x, where again $x^{(N)}$'s period is $2N$ and
\[
\lim_{N \to \infty} x^{(N)} = x.
\]
DTFS of periodic extension leading to DTFT

- For \(r \in \{-N + 1, -N + 2, \ldots, N - 1, N\} \), the DTFS of \(x^{(N)} \) has coefficients

\[
D_r^{(N)} = \frac{1}{2N} \sum_{k=-N+1}^{N} x^{(N)}[k] e^{-jr \frac{2\pi}{2N} k}
\]

\[
= \frac{1}{2N} \sum_{k=-M}^{M} x[k] e^{-jr \frac{2\pi}{2N} k}
\]

\[
= \frac{1}{2N} \sum_{k=-\infty}^{\infty} x[k] e^{-jr \frac{2\pi}{2N} k}
\]

\[
=: \frac{1}{2N} X \left(r \frac{2\pi}{2N} \right),
\]

where the Discrete-Time Fourier Transform (DTFT) of (aperiodic) \(x : \mathbb{Z} \to \mathbb{R} \) is \(X : \mathbb{R} \to \mathbb{C} \):

\[
X(\Omega) := \sum_{k=-\infty}^{\infty} x[k] e^{-j\Omega k} =: (Fx)(\Omega), \quad \Omega \in \mathbb{R}
\]

- Note that Fourier integrals (spectra of discrete-time signals) are periodic, repeating themselves every 2\(\pi \) radians: \(\forall \Omega \in \mathbb{R}, \ell \in \mathbb{Z}, \)

\[
X(\Omega) = X(\Omega + \ell 2\pi).
\]

Inverse DTFT by Fourier Integral

- Thus, \(\forall k \in \mathbb{Z}, \)

\[
x[k] = \lim_{N \to \infty} x^{(N)}[k]
\]

\[
= \lim_{N \to \infty} \sum_{r=-N+1}^{N} D_r^{(N)} e^{jr \frac{2\pi}{2N} k}
\]

\[
= \lim_{N \to \infty} \sum_{r=-N+1}^{N} X \left(r \frac{2\pi}{2N} \right) e^{jr \frac{2\pi}{2N} k} \frac{1}{2N} \frac{2\pi}{2\pi}
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega k} d\Omega
\]

where the last equality is by Riemann integration with \(2\pi/(2N) \to d\Omega. \)

- Thus, we have derived the inverse DTFT by Fourier integral of \(X \) giving (aperiodic) \(x \),

\[
\forall k \in \mathbb{Z}, \quad x[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega k} d\Omega =: (F^{-1}X)[k].
\]

©2016 George Kesidis
• If \(x = \delta \) then obviously \(X = 1 \).

• The geometric signal \(x[k] = \gamma^k u[k] \) for scalar \(\gamma \) s.t. \(|\gamma| < 1 \) has DTFT

\[
X(\Omega) = \sum_{k=0}^{\infty} \gamma^k e^{-j\Omega k} = \sum_{k=0}^{\infty} (\gamma e^{-j\Omega})^k = \frac{1}{1 - \gamma e^{-j\Omega}} = \frac{1}{(1 - \gamma) \cos(\Omega) + j\gamma \sin(\Omega)}
\]

• Note that

\[
|X(\Omega)| = \frac{1}{(1 - \gamma \cos(\Omega))^2 + \gamma^2 \sin^2(\Omega)} = \frac{1}{1 + \gamma^2 - 2\gamma \cos(\Omega)} \\
\angle X(\Omega) = -\arctan \left(\frac{\gamma \sin(\Omega)}{1 - \gamma \cos(\Omega)} \right)
\]

DTFT Examples - exponential signal (cont)

• The plots above are for \(\gamma = 0.5 \).

• Note how \(X \) has period \(2\pi \).

• Exercise: What are the maximum and minimum values of \(|X| \), i.e., how would this plot depend on \(\gamma > 0 \)? Plot \(x \) and \(\angle X \). How do these plots differ when \(-1 < \gamma < 0 \)?

• Exercise: Find the DTFT of anticausal signal \(x[k] = \gamma^k u[-k] \) for scalar \(\gamma \) s.t. \(|\gamma| > 1 \).

• Exercise: Find the DTFT of \(x[k] = |k|, k \in \mathbb{Z} \), for scalar \(\gamma \) s.t. \(|\gamma| < 1 \).
• For \(T \in \mathbb{Z}^+ \), the even rectangle pulse with support \(2T + 1 \),
\[x = \Delta_T u - \Delta_{T+1} u \quad (\text{i.e., } x[k] = u[k+T] - u[k-(T+1)]) \]
has DTFT
\[X(\Omega) = \sum_{k=-T}^{T} 1 - e^{-j\Omega k} = 1 + 2 \sum_{k=1}^{T} \cos(k\Omega), \quad \Omega \in \mathbb{R}. \]

• Exercise (even rectangle pulse in frequency domain):
Show that for fixed \(\Omega' \) s.t. \(0 < \Omega' < \pi \),
\[\mathcal{F}^{-1}\{\Delta_{-\Omega} u - \Delta_{\Omega} u\}[k] = \frac{\Omega'}{\pi} \text{sinc}(\Omega'k), \quad k \in \mathbb{Z}. \]

• For \(T \in \mathbb{Z}^+ \), the odd triangle pulse with support \(2T + 1 \),
\[x[k] \equiv k(\Delta_T u[k] - \Delta_{T+1} u[k]) \]
has DTFT
\[X(\Omega) = \sum_{k=-T}^{T} k e^{-j\Omega k} = -2j \sum_{k=1}^{T} k \sin(k\Omega), \quad \Omega \in \mathbb{R}. \]

DTFT Examples - exponential sinusoid

• For fixed time \(K_0 \), clearly
\[\mathcal{F}\{\delta[k-K_0]\}(\Omega) = e^{jK_0\Omega}, \]
where here \(\delta \) is the unit pulse.

• Note that \(e^{jK_0\Omega} \) is a sinusoidal function of \(\Omega \) with period \(2\pi/K_0 \) (frequency \(K_0 \)).

• Exercise: For fixed frequency \(\Omega_0 \), show that
\[\mathcal{F}\{e^{-j\Omega_0 k}\}(\Omega) = 2\pi \sum_{v=-\infty}^{\infty} \delta(\Omega - \Omega_0 + 2\pi v), \]
where here \(\delta \) is the Dirac impulse (in the frequency domain \(\Omega \in \mathbb{R} \)). Hint: work with \(\mathcal{F}^{-1} \).

• So, the DTFT of a \(N \)-periodic signal with Fourier series
\[\sum_{r=0}^{N-1} D_re^{j\Omega r} \xrightarrow{\mathcal{F}} 2\pi \sum_{v=-\infty}^{\infty} \sum_{r=0}^{N-1} D_r\delta(\Omega - r\frac{2\pi}{N} + 2\pi v) \]
DTFT - Time shift and frequency shift properties

• If fixed $K_0 \in \mathbb{Z}$ and $X = \mathcal{F}\{x\}$ then

$$\mathcal{F}\{\Delta^{K_0}x\}(\Omega) = \sum_{k=-\infty}^{\infty} (\Delta^{K_0}x)[k]e^{-j\Omega k}$$

$$= \sum_{k=-\infty}^{\infty} x[k - K_0]e^{-j\Omega k}$$

$$= \sum_{k'=-\infty}^{\infty} x[k']e^{-j(k' + K_0)\Omega}$$

$$= e^{-jK_0\Omega}X(\Omega),$$

i.e., shift in time by K_0 corresponds to product with sinusoid of period $2\pi/K_0$ (linear phase shift) in frequency domain.

• Exercise: Prove the dual property that if fixed $\Omega_0 \in \mathbb{R}$ and $X = \mathcal{F}\{x\}$ then

$$\mathcal{F}\{x[k]e^{j\Omega_0 k}\}(\Omega) = X(\Omega - \Omega_0),$$

i.e., modulation (multiplication by a sinusoid) in time domain results in frequency shift.

DTFT - convolution properties

• Let $X_r = \mathcal{F}\{x_r\}$ for $r \in \{1, 2\}$.

$$\mathcal{F}\{x_1 \ast x_2\}(\Omega) := \sum_{k=-\infty}^{\infty} (x_1 \ast x_2)[k]e^{-j\Omega k}$$

$$:= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} x_1[l]x_2[k-l]e^{-j(k-l)\Omega}e^{-j\Omega l}$$

i.e., $x e^{j\Omega}e^{-j\Omega} = 1$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} x_1[l]x_2[k']e^{-jk'\Omega}e^{-j\Omega l}$$

where $k' = k - l$

$$= \sum_{l=-\infty}^{\infty} x_1[l]e^{-jl\Omega} \sum_{k=-\infty}^{\infty} x_2[k']e^{-jk'\Omega} =: X_1(\Omega)X_2(\Omega)$$

• Exercise: Prove the dual property that

$$\mathcal{F}\{x_1x_2\}(\Omega) = \frac{1}{2\pi} (X_1 \ast X_2)(\Omega) := \frac{1}{2\pi} \int_{2\pi} X_1(v)X_2(\Omega - v)dv.$$

• Exercise: Use the convolution properties to prove the time and frequency shift properties. Hint: $(\Delta^{K,\delta} \ast x) = \Delta^{K,x}$.

• Exercise: Show that DTFT is a linear operator.
DTFT - Parseval’s Theorem

- The energy of a signal DT x is

$$E_x := \sum_{k=\infty}^{\infty} |x[k]|^2 = \sum_{k=\infty}^{\infty} x[k] \bar{x}[k] = \sum_{k=\infty}^{\infty} (\mathcal{F}^{-1}X)[k] (\mathcal{F}^{-1}X)[k]$$

$$= \sum_{k=\infty}^{\infty} \frac{1}{2\pi} \int_{2\pi}^{2\pi} X(\Omega) e^{j\Omega k} d\Omega' \frac{1}{2\pi} \int_{2\pi}^{2\pi} X(\Omega) e^{j\Omega k} d\Omega$$

$$= \sum_{k=\infty}^{\infty} \frac{1}{2\pi} \int_{2\pi}^{2\pi} X(\Omega') e^{j\Omega k} d\Omega' \frac{1}{2\pi} \int_{2\pi}^{2\pi} \bar{X}(\Omega) e^{-j\Omega k} d\Omega$$

$$= \frac{1}{2\pi} \int_{2\pi}^{2\pi} X(\Omega') \int_{2\pi}^{2\pi} \bar{X}(\Omega) \frac{1}{2\pi} \left(\sum_{k=\infty}^{\infty} e^{j\Omega k} e^{-j\Omega k} \right) d\Omega d\Omega'$$

$$= \frac{1}{2\pi} \int_{2\pi}^{2\pi} X(\Omega') \int_{2\pi}^{2\pi} \bar{X}(\Omega) \frac{1}{2\pi} (2\pi \delta(\Omega - \Omega')) d\Omega d\Omega'$$

$$= \frac{1}{2\pi} \int_{2\pi}^{2\pi} X(\Omega') |\bar{X}(\Omega')|^2 d\Omega' = \frac{1}{2\pi} \int_{2\pi}^{2\pi} |X(\Omega')|^2 d\Omega'$$

(recalling that for fixed Ω': $\mathcal{F}^{-1}\{2\pi \delta(\Omega - \Omega')\}[k] = e^{-j\Omega k}$ & $\int_{2\pi}^{2\pi} \bar{X}(\Omega) \delta(\Omega - \Omega') d\Omega = \bar{X}(\Omega')$).

DTFT - Parseval’s Theorem - example

- The even rectangle pulse with support $2T+1$, $x = \Delta^{-T}u - \Delta^{T+1}u$ has energy

$$E_x = \sum_{k=\infty}^{\infty} |x[k]|^2 = \sum_{k=\infty}^{\infty} 1^2 = 2T + 1.$$

- Recall its DTFT is $X(\Omega) = \sum_{k=-T}^{T} e^{-j\Omega k}$, so

$$\frac{1}{2\pi} \int_{2\pi}^{2\pi} |X(\Omega)|^2 d\Omega = \frac{1}{2\pi} \int_{2\pi}^{2\pi} X(\Omega) \bar{X}(\Omega) d\Omega = \frac{1}{2\pi} \int_{2\pi}^{2\pi} \left(\sum_{k=-T}^{T} e^{-j\Omega k} \right) \bar{X}(\Omega) d\Omega$$

$$= \frac{1}{2\pi} \int_{2\pi}^{2\pi} \left(\sum_{k=-T}^{T} 1 + \sum_{k<k'} e^{j(k-k')\Omega} \right) d\Omega$$

$$= \sum_{k=-T}^{T} \frac{1}{2\pi} \int_{2\pi}^{2\pi} 1 d\Omega + \sum_{k<k'} \frac{1}{2\pi} \int_{2\pi}^{2\pi} e^{j(k-k')\Omega} d\Omega = \sum_{k=-T}^{T} 1 + 0$$

$$= 2T + 1.$$
• **Exercise:** Repeat this calculation using $X(\Omega) = 1 + 2 \sum_{k=1}^{T} \cos(\Omega k)$.

• **Exercise:** Compute amount of energy of x in the frequency band $[-\pi/6, \pi/6]$, i.e.,

$$\frac{1}{2\pi} \int_{-\pi/6}^{\pi/6} |X(\Omega)|^2 d\Omega$$

Analysis of Stable DT LTI Systems in Steady-State

• Consider a SISO, DT-LTIC system described by the difference equation

$$Q(\Delta^{-1}) y = P(\Delta^{-1}) f,$$

where f is the input and y is the ZSR (output).

• Recall that by the time-shift property,

$$Q(e^{i\Omega}) Y_{ZS}(\Omega) = P(e^{i\Omega}) F(\Omega) \Rightarrow Y_{ZS}(\Omega) = H(\Omega) F(\Omega).$$

• We now re-derive from first principles the eigenresponse by first recalling that the ZSR $y_{ZS} = f * h$ where h is the unit-pulse response.

• Taking DTFTs, $Y_{ZS} = HF$ where $H = F h$ is the transfer function.

• Suppose the system is BIBO/asymptotically stable, i.e., the n roots of Q (system char. modes/poles) z all have modulus $|z| < 1$.

• The ZSR will consist of a forced response plus characteristic modes, where the latter will $\rightarrow 0$ over time (our stability assumption) so that the forced response becomes the steady-state response.
Analysis of Stable DT LTI Systems in Steady-State (cont)

- The forced response to a persistent sinusoidal input
 \[f[k] = A_f e^{j(\Omega k + \phi_f)} \]
 will be of the form
 \[y_{ss}[k] = A_y e^{j(\Omega k + \phi_y)} \]
 where (for \(k \geq 0 \)),
 \[Q(e^{j\Omega}) y_{ss}[k] = (Q(\Delta^{-1}) y_{ss})[k] = (P(\Delta^{-1}) f)[k] = P(e^{j\Omega}) f[k]. \]
 \[\Rightarrow y_{ss}[k] = \frac{P(e^{j\Omega})}{Q(e^{j\Omega})} f[k] \]

- Also, the ZSR \(y_{ZS} = h * f \), i.e., for all time \(k \geq 0 \):
 \[y_{ZS}[k] = \sum_{v=0}^{k} h[v] A_f e^{j(\Omega (k-v) + \phi_f)} = f[k] \sum_{v=0}^{k} h[v] e^{-j\Omega v} \]
 \[\Rightarrow f[k] H(\Omega_o) =: y_{ss}[k] \text{ as } k \to \infty. \]

Transfer Function and Eigenresponse in Discrete Time (cont)

- Equating the forced responses (steady-state response for a stable system), we again get that the system transfer function is
 \[H(\Omega) = P(e^{j\Omega}) / Q(e^{j\Omega}) = (Fh)(\Omega). \]

- Note that \(\forall k \in \mathbb{Z}, H(\Omega) = H(\Omega + 2\pi k). \)

- Also, we write \(H(\Omega) \) not \(H(e^{j\Omega}) \) for the DTFT.

- So, the eigenresponse of a BIBO/asymptotically stable SISO, DT-LTIC system is the steady-state response to a sinusoid:
 \[f[k] = A_f e^{j(\Omega_k + \phi_f)} \rightarrow H(\Omega_o) f[k] = A_y e^{j(\Omega k + \phi_y)} =: y_{ss}[k] \]

- The system magnitude response (gain) is \(|H(\Omega)| = |P(e^{j\Omega})| / |Q(e^{j\Omega})| \).
 \[i.e., A_y = A_f |H(\Omega_0)|. \]

- The system phase response is \(\angle H(\Omega) = \angle P(e^{j\Omega}) - \angle Q(e^{j\Omega}) \).
 \[i.e., \phi_y = \phi_f + \angle H(\Omega_0). \]
• **Problem:** For the system $2y[k] = 0.6y[k - 1] - 7f[k]$ find the steady-state response (if it exists) to $f[k] = 4 \cos(5k)u[k]$.

• **Solution:** The difference equation in standard form is

$$ (Q(z)y[k]) = y[k + 1] - 0.3y[k] = -3.5f[k + 1] = (P(z)f[k]), $$

where $Q(z) = z - 0.3$ and $P(z) = -3.5z$.

The sole system characteristic value (root of Q, system pole) is 0.3, hence the system is BIBO/asymptotically stable.

By Euler’s identity $f[k] = (2e^{i5k} + 2e^{i(-5)k})u[k]$.

By linearity, the eigenresponse is therefore

$$ 2H(5)e^{i5k} + 2H(-5)e^{i(-5)k}, $$

where $H(\Omega) = P(e^{j\Omega})/Q(e^{j\Omega}) = -3.5e^{j\Omega}/(e^{j\Omega} - 0.3) = H(-\Omega)$, so that

$$ |H(\Omega)| = \frac{3.5}{\sqrt{(\cos(\Omega) -.3)^2 + \sin^2(\Omega)}}, \quad \angle H(\Omega) = \pi + \Omega - \arctan(\frac{-\sin(\Omega)}{\cos(\Omega) - .3}) $$

• **Exercise:** Show that the eigenresponse is also simply $|H(5)|4 \cos(5k + \angle H(5))$.

2D Image Processing Example

• Apply 1-dimensional filtering to a 2-dimensional (2D) image by separately performing row and column operations.

• For 256×256 pixel (2D) image,

$$ f = \begin{bmatrix} f[1, 1] & f[1, 2] & \ldots & f[1, 256] \\ f[2, 1] & f[2, 2] & \ldots & f[2, 256] \\ \vdots & \vdots & \ddots & \vdots \\ f[256, 1] & f[256, 2] & \ldots & f[256, 256] \end{bmatrix} $$

• If $f[k, i]$ represents the 8-bit (grey) intensity of the pixel in row k and column i (i.e., 8 bits per pixel or bpp), then the "raw" image size will be $256^3 \text{bits} = 16\text{Mb} = 2\text{MB}$.

• Each of f’s rows of pixels can be processed by a system with unit-pulse response h to obtain a new row of pixels, and thus a new image y:

$$ \forall k, \ f[k, \cdot] \rightarrow [h] \rightarrow y[k, \cdot] $$

• Alternatively, each of f’s columns of pixels can be processed by a system with unit-pulse response h to obtain a new column of pixels, and thus a new image y:

$$ \forall i, \ f[\cdot, i] \rightarrow [h] \rightarrow y[\cdot, i] $$

©2016 George Kesidis
The system h may have a specific signal processing objective.

The output pixels $y[k, i]$ may be quantized to fewer bpp than those of the input, thus achieving image compression.

The simple low-pass filter (L)

$$h[k] = \frac{1}{2}(\delta[k] + \delta[k - 1]) \quad \Rightarrow \quad y[k] = \frac{1}{2}(f[k] + f[k - 1])$$

can capture shading and texture in the image.

The simple high-pass filter (H)

$$h[k] = \frac{1}{2}(\delta[k] - \delta[k - 1]) \quad \Rightarrow \quad y[k] = \frac{1}{2}(f[k] - f[k - 1])$$

can capture edges in the image.

Typically more compression possible in higher-frequency bands (H).

Define y_{LH} as the output of

$$f \rightarrow \text{row filtering} \rightarrow \text{column filtering} \rightarrow y$$

Similarly define y_{LL}, y_{HH} and y_{HL}.

The y images are downsampled by a factor of four (two in each direction).

The y_{LL} image will have a lot of energy while y_{HH} will have the least energy.

This motivates non-uniform quantization (bit allotment per pixel) of these images.

Together with a coding strategy for the quantized images (particularly for the regions of zero pixel-values), this is the basic approach used in JPEG leading to very good compression, e.g., from 8 bpp to 0.2-0.5 bpp.
Sampling Continuous-Time Signals (A/D)

• Consider continuous-time signal x with $X = \mathcal{F}x$.

• Recall that by sampling at period T with impulses in continuous time $t \in \mathbb{R}$, we get
 $$x_T(t) := \sum_{k=-\infty}^{\infty} x(kT)\delta(t-kT) \xrightarrow{\mathcal{F}} \sum_{k=-\infty}^{\infty} x(kT)e^{-jkw} =: X_T(w),$$
equivalently, $X_T(w) = \frac{1}{T} \sum_{v=-\infty}^{\infty} X \left(w - \frac{2\pi}{T} v \right)$.

• Now define the sampled process in discrete-time $k \in \mathbb{Z}$ and its DTFT,
 $$\hat{x}[k] := x(kT) \xrightarrow{\mathcal{F}} \hat{X}(\Omega) = \sum_{k=-\infty}^{\infty} \hat{x}[k]e^{-j\Omega k}.$$

• Substituting $w = \Omega/T$ we get
 $$\hat{X}(\Omega) = X_T \left(\frac{\Omega}{T} \right) = \frac{1}{T} \sum_{v=-\infty}^{\infty} X \left(\frac{\Omega - v2\pi}{T} \right).$$

• Exercise: Read decimation (downsampling) and interpolation (upsampling) of Lathi Figs. 8.17 & 10.9.

Sampling Continuous-Time Signals - example

• We are particularly interested in the case where
 – the continuous-time signal x is band-limited, i.e., $\exists w' > 0$ s.t. $X(w) = 0$ for $|w| > w'$, and
 – the sampling frequency is greater than Nyquist’s, i.e., $2\pi/T > 2w' \Rightarrow w'T < \pi$.

• Example: For fixed $w' > 0$, consider the cts-time signal $x(t) = A\text{sinc}(w't)$ with FT
 $$X(w) = \frac{A\pi}{w'}(u(w + w') - u(w - w')).$$

• Sampling x at period $T < \pi/w'$ we get the discrete-time signal $x[k] = A\text{sinc}(w'kT)$.

• Using inverse DTFT, recall that we can easily check that the DTFT of x is,
 $$\hat{X}(\Omega) = \sum_{v=-\infty}^{\infty} \frac{A\pi}{w'}(u(\Omega + w'T - 2\pi v) - u(\Omega - w'T - 2\pi v))$$
 $$= \sum_{v=-\infty}^{\infty} \frac{1}{T} X \left(\frac{\Omega - 2\pi v}{T} \right),$$
noting $\forall T > 0$, $u(\frac{\Omega}{T} \pm w') = u(\frac{1}{T}(\Omega \pm w'T)) = u(\hat{\Omega} \pm w'T)$, $\hat{\Omega} := \Omega - 2\pi v$.
Sampled Data Systems: A/D (analog-to-digital conversion)

- Suppose the signal f is sampled every T_s seconds, i.e., at sampling frequency $w_s := 2\pi / T_s$.

- Recall Poisson’s identity (the Fourier series of the picket-fence function)

$$p_{T_s}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_s) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} e^{jkw_s t}$$

- Let’s rederive the relationship between the spectrum of a sampled continuous-time signal and its discrete-time counterpart by first defining the discrete-time signal

$$\forall k \in \mathbb{Z}, \quad \hat{f}[k] = f(kT_s).$$

- We want to relate the (continuous-time) Fourier transform of f to the (discrete-time) Fourier transform of \hat{f}.

$$\hat{F}(\Omega) := \sum_{k=-\infty}^{\infty} \hat{f}[k] e^{-j\Omega k} = \sum_{k=-\infty}^{\infty} f(kT_s) e^{-j\Omega k}.$$
To this end, recall
\[f(t) \xrightarrow{T_s} \frac{1}{T_s} \sum_{k=-\infty}^{\infty} f(kT_s) \delta(t - kT_s) \xrightarrow{F} \frac{1}{T_s} \sum_{k=-\infty}^{\infty} F(w - kw_s) , \]
and also
\[f(t) \xrightarrow{T_s} \frac{1}{T_s} \sum_{k=-\infty}^{\infty} f(kT_s) e^{-jkwT_s} = \hat{F}(wT_s). \]

Equating these two expressions for \(F\{f_{T_s}\} \) we get,
\[\hat{F}(wT_s) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} F(w - kw_s). \]

Substituting \(w = \Omega/T_s \) we get,
\[\hat{F}(\Omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} F \left(\frac{\Omega - k2\pi}{T_s} \right). \]

Now consider a discrete time signal \(\hat{y}[k] \).

We implement at D/A with a \(T_s \)-second hold, i.e., construct the continuous-time signal
\[y(t) : = \sum_{k=-\infty}^{\infty} \hat{y}[k] r_{T_s}(t - kT_s) , \] where
\[r_{T_s}(t) : = u(t) - u(t - T_s) \xrightarrow{F} T_s \text{sinc}(wT_s/2)e^{-jwT_s}/2 =: R_{T_s}(w). \]

Note that \(y \) is in the form of a convolution, so:
\[Y(w) = \sum_{k=-\infty}^{\infty} \hat{y}[k] R_{T_s}(w)e^{-jkwT_s} \]
\[= R_{T_s}(w)\hat{Y}(wT_s) \]
Consider a digital system $\hat{H}(\Omega)$ (or $\hat{H}(e^{j\Omega})$ depending on notation), whose (ZS) output is \hat{y} when the input is \hat{f}, i.e., $\hat{Y} = \hat{H}\hat{F}$.

The equivalent continuous-time transformation of the tandem system

\[f \rightarrow \text{A/D (}T_s\text{sample)} \rightarrow \hat{H}(\Omega) \rightarrow \text{D/A (}T_s\text{hold)} \rightarrow y \]

with input f has (ZS) output

\[Y(w) = R_{T_s}(w)\hat{Y}(wT_s) = R_{T_s}(w)\hat{H}(wT_s)\hat{F}(wT_s) = R_{T_s}(w)\hat{H}(wT_s)\frac{1}{T_s} \sum_{k=-\infty}^{\infty} F(w - kw_s). \]

Exercise: Show that if f is band-limited by $w_s/2$ (i.e., w_s is greater than f’s Nyquist frequency) and the previous sampled data system is followed by an ideal low-pass filter with bandwidth $w_s/2$, then the equivalent (continuous-time) transfer function is

\[H(w) = \hat{H}(wT_s)T_s^{-1}R_{T_s}(w)(u(w + w_s/2) - u(w - w_s/2)) \]

Note that the term in the transfer function H,

\[T_s^{-1}R_{T_s}(w)(u(w + w_s/2) - u(w - w_s/2)) = \text{sinc}(\Omega/2)(u(\Omega + \pi) - u(\Omega - \pi)) \]

is not a constant function of $\Omega = wT_s$.

This distortion due to the hold function R can be reduced by putting in tandem with \hat{H} an equalizer system with transfer function approximately

\[\tilde{R}^{-1}(\Omega) := \sum_{k=-\infty}^{\infty} \frac{u(\Omega + \pi - k2\pi) - u(\Omega - \pi - k2\pi)}{\text{sinc}((\Omega - k2\pi)/2)} \]

i.e.,

\[\hat{H}(\Omega) \rightarrow \tilde{R}^{-1}(\Omega) \]
Sampled Data Systems: equalization of hold sinc(\(\Omega/2\)) by \(\hat{R}^{-1}(\Omega)\)

- the hold (at left, \(R\)) distorts the signal by attenuating its higher frequency components
- the equalizer (at right, \(R^{-1}\)) amplifies at the higher frequencies to cancel out this distortion

DFT and FFT - Reading Exercise on Computational Issues

- Read Lathi Sec. 5.2 and 5.3 re. continuous-time FS, FT
- Read Lathi Sec. 10.6 re. DTFS, DTFT
Transient analysis in discrete time by unilateral z-transform

- z-transform definition and region of convergence.
- Basic z-transform pairs and properties.
- Inverse z-transform of rational polynomials by Partial Fraction Expansion (PFE).
- Total transient response of SISO DT LTIC systems $Q(\Delta^{-1})y = P(\Delta^{-1})f$.
- The steady-state eigenresponse revisited.
- System composition and canonical realizations.

The unilateral z-transform & region of convergence

- The z-transform of a signal $x = \{x[k]\}_{k \geq 0}$ is
 \[
 X(z) = (Zx)(z) = \sum_{k=0}^{\infty} x[k]z^{-k} := \lim_{K \to \infty} \sum_{k=0}^{K} x[k]z^{-k},
 \]
 where $z \in \mathbb{C}$.
- If the signal x is bounded by an exponential (geometric), i.e.,
 \[
 \exists M, \gamma \in \mathbb{R}_{>0} \text{ such that } \forall k \in \mathbb{Z}_{\geq 0}, |x[k]| \leq M\gamma^k \quad \text{(i.e., } -M\gamma^k \leq x[k] \leq M\gamma^k)\]
 then the series $X(z)$ converges in the region outside of a disk centered $0 \in \mathbb{C}$,
 \[
 \{z \in \mathbb{C} \mid |z| > \gamma\}.
 \]
- To see why bounded by an exponential suffices, recall absolute convergence \Rightarrow convergence:
 \[
 \forall k \geq 0, \quad |x[k]z^{-k}| = |x[k]| \cdot |z|^{-k} \leq M\gamma^k |z|^{-k} = M(\gamma/|z|)^k
 \]
 \[
 \Rightarrow \sum_{k=0}^{\infty} |x[k]z^{-k}| \leq M \sum_{k=0}^{\infty} (\gamma/|z|)^k \quad \text{which converges if } \gamma/|z| < 1.
 \]
\[\delta[k] \xrightarrow{z} 1, \quad z \in \mathbb{C} \]
\[u[k] \xrightarrow{z} \sum_{k=0}^{\infty} z^{-k} = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}, \quad |z| > 1 \]
\[\beta^k u[k] \xrightarrow{z} \sum_{k=0}^{\infty} \beta^k z^{-k} = \frac{1}{1 - \beta z^{-1}} = \frac{z}{z - \beta}, \quad |z| > |\beta| \]
\[\{ \beta^{k-1} u[k - 1] \}(z) \xrightarrow{z} \sum_{k=1}^{\infty} \beta^{k-1} z^{-k} = z^{-1} \sum_{k=0}^{\infty} \beta^k z^{-k'} = z^{-1} \frac{1}{1 - \beta z^{-1}} = \frac{1}{z - \beta}, \quad |z| > |\beta| \]
\[e^{j\Omega k} u[k] \xrightarrow{z} \sum_{k=0}^{\infty} e^{j\Omega k} z^{-k} = \frac{1}{1 - e^{j\Omega} z^{-1}}, \quad |z| > 1 \quad (\beta = e^{j\Omega}) \]
\[k\beta^k u[k] \xrightarrow{z} \sum_{k=0}^{\infty} k\beta^k z^{-k} = \frac{\beta d}{d\beta} \sum_{k=0}^{\infty} \beta^k z^{-k} = \frac{\beta}{d\beta} \frac{1}{1 - \beta z^{-1}} = \frac{\beta z^{-1}}{(1 - \beta z^{-1})^2}, \quad |z| > |\beta| \]

Exercise: Find \(Z\{ A \cos(\Omega, k + \phi) u[k] \} \) and \(Z\{ A \sin(\Omega, k + \phi) u[k] \} \).
Basic z-transform properties: advance time shift

- Advance time shift (no change in RoC): Let $X = Zx$.

$$
\Delta^{-1}x \xrightarrow{Z} \sum_{k=0}^{\infty} x[k + 1]z^{-k} = -zx[0] + \sum_{k=-1}^{\infty} x[k + 1]z^{-k}
$$

$$
= -zx[0] + z \sum_{k=-1}^{\infty} x[k + 1]z^{-(k+1)}
$$

$$
= -zx[0] + z \sum_{k=0}^{\infty} x[k']z^{-k'}
$$

$$
= -zx[0] + zX(z)
$$

- Exercise: For $v \in \mathbb{Z}^>$ show by induction that

$$
(Z\{\Delta^{-v}x\})(z) = -\sum_{k=1}^{v} z^{k}v[k] + z^{v}X(z)
$$

Basic z-transform properties: delay time shift

- Delay time shift (no change in RoC): For $v \in \mathbb{Z}^>$,

$$
\Delta^{v}(xu) \xrightarrow{Z} \sum_{k=0}^{\infty} x[k - v]u[k - v]z^{-k}
$$

$$
= \sum_{k=v}^{\infty} x[k - v]z^{-k} = \sum_{k=0}^{\infty} x[k']z^{-k'-v}
$$

$$
= z^{-v}X(z).
$$

- So in the “zero-state” (input-output) context (i.e., $x[k]u[k] = 0$ for $k < 0$), we identify multiplying by z^{-1} in complex-frequency domain with the unit delay Δ in the time domain.

- Delay $v \in \mathbb{Z}^>$ of non-causal x:

$$
\Delta^{v}x \xrightarrow{Z} \sum_{k=0}^{\infty} x[k - v]z^{-k} = \sum_{k=-v}^{\infty} x[k']z^{-k'-v}
$$

$$
= \sum_{k=-v}^{-1} x[k']z^{-k'-v} + z^{-v}X(z).
$$
Basic z-transform properties: frequency shift & convolution

- Let $X = \mathcal{Z}x$ with RoC $C(\gamma) := \{z \in \mathbb{C} \mid |z| > \gamma\}$.
 \[\beta^k x[k] \xrightarrow{z} \sum_{k=0}^{\infty} \beta^k x[k] z^{-k} = \sum_{k=0}^{\infty} x[k] (z/\beta)^{-k} = X(z/\beta), \quad z \in C(\gamma/|\beta|). \]
 i.e., $\times \beta^k$ in the time-domain is dilation by β in the z-domain.

- For signals $x_1, x_2 : \mathbb{Z}^{\geq 0} \to \mathbb{C}$ ($x_1[k], x_2[k] = 0$ for $k < 0$), with respective ROCs $C_1, C_2 \subset \mathbb{C}$,
 \[x_1 \ast x_2 \xrightarrow{z} \sum_{k=0}^{\infty} (x_1 \ast x_2)[k] z^{-k} = \sum_{k=0}^{\infty} \sum_{v=0}^{k} x_1[v] x_2[k-v] z^{-(k-v)} z^{-v} \]
 \[= \sum_{v=0}^{\infty} x_1[v] z^{-v} \sum_{k=v}^{\infty} x_2[k-v] z^{-(k-v)} \]
 \[= \sum_{v=0}^{\infty} x_1[v] z^{-v} \sum_{k'=0}^{\infty} x_2[k'] z^{-k'} \]
 \[= X_1(z) X_2(z), \quad z \in C_1 \cap C_2. \]

Basic z-transform properties: convolution, IVT & FVT

- So convolution in the time-domain is multiplication in the frequency domain.
- The converse is also true.
- Directly by definition of $X = \mathcal{Z}x$, we get the initial value theorem
 \[\lim_{z \to \infty} X(z) = x[0]. \]
- There is also a “final value” theorem for $\lim_{k \to \infty} x[k]$.

©2016 George Kesidis
We now study transient analysis of LTI difference equations using z-transforms.

Recall our system is defined given polynomials P, Q, input f and initial conditions:
- $Q(\Delta^{-1})y = P(\Delta^{-1})f$, where y is the (total) output and
- input $f[k] = 0$ for $k < 0$,
- degree of polynomial $Q = n \geq m = \text{degree of polynomial } P$ (causal system),
- $Q(z) = z^n + \sum_{v=1}^{n-1} a_v z^v$ (i.e., $a_n = 1$) and $P(z) = \sum_{v=0}^{m} b_v z^v$,
- $a_n \neq 0$ or $b_n \neq 0$ for poly'ls Q, P of minimum degree,
- n initial conditions $y[-n], y[-n+1], \ldots, y[0], y[1]$.

We can restate the difference equation in terms of delays by delaying both sides by n time-units (i.e., applying with Δ^n), to get

$$\Delta^n Q(\Delta^{-1})y = \Delta^n P(\Delta^{-1})f$$

$$\Rightarrow \bar{Q}(\Delta)y := \sum_{v=0}^{n-1} a_v \Delta^{n-v} y = \sum_{v=0}^{m} b_v \Delta^{n-v} f =: \bar{P}(\Delta)f$$

So, taking the z-transform of the (delay) difference equation, we get by the (delay) time-shift and linearity properties that

$$\sum_{v=0}^{n} a_v \sum_{k=-v}^{1} y[k] z^{-k-v} + \bar{Q}(z^{-1})Y(z) = \bar{P}(z^{-1})F(z)$$

So, solving for the total response Y we get

$$Y(z) = \frac{\bar{P}(z^{-1})F(z)}{\bar{Q}(z^{-1})} - \frac{\sum_{v=0}^{n} a_v \sum_{k=-v}^{1} y[k] z^{-k-v}}{\bar{Q}(z^{-1})} = Y_{ZS}(z) + Y_{ZI}(z)$$

where the ZIR and ZSR in the complex-frequency (z) domain respectively are

$$Y_{ZI}(z) := -\frac{\sum_{v=0}^{n} a_v \sum_{k=-v}^{1} y[k] z^{-k-v}}{\bar{Q}(z^{-1})} = -\frac{\sum_{v=0}^{n} a_v \sum_{k=-v}^{1} y[k] z^{n-k-v}}{\bar{Q}(z)}$$

$$Y_{ZS}(z) := \frac{\bar{P}(z^{-1})F(z)}{\bar{Q}(z^{-1})} = \frac{P(z)}{Q(z)} F(z) = H(z)F(z) \text{ (transfer function } H).$$

Regarding this total transient response, note how
- the z-transform’s unilateral aspect captures the impact of initial conditions (ZIR), and
- a greater range of inputs f than under DTFT through $\text{RoC} \subset \mathbb{C}$ (not just $|z| = 1$).
• Suppose i.c. \(y[-1] = -1 \), input \(f[k] = 2(-3)^k u[k] \) and output \(y \) s.t.
\[
\forall k \geq -1, \quad 2y[k + 1] + 2y[k] = 3f[k + 1] + 2f[k].
\]

• To find the total response \(y \), we take the \(z \)-transform of the equivalent system: \(\forall k \geq 0, \)
\[
2y[k] + 2y[k - 1] = 3f[k] + 2f[k - 1]
\implies 2Y(z) + 2(z^{-1}Y(z) + y[-1]) = 3F(z) + 2z^{-1}F(z).
\]

• So by the delay property for non-causal signals \((y) \), the total response
\[
Y(z) = \frac{3 + 2z^{-1}}{2} F(z) + \frac{-2y[-1]}{2 + 2z^{-1}}
\]
\[
= H(z) F(z) + \frac{-y[-1]}{1 + z^{-1}}
\]
\[
= Y_{ZS}(z) + Y_{ZI}(z)
\]
with RoC for \(Y \) being the intersection of those of \(F \) and \(H \).

• Understanding that the ZIR begins at \(k = -1 \) (initial condition) and the ZSR at time \(k = 0 \), we get:
\[
\forall k \geq -1, \quad y[k] = (3.5(-3)^k - 0.5(-1)^k)u[k] + (-1)^k = y_{ZS}[k] + y_{ZI}[k],
\]
where we minded the ambiguity \(\mathcal{Z}x = \mathcal{Z}xu \).

• Exercise: Verify this solution using time-domain methods, i.e.,
\[
y = y_{ZI} + y_{ZS} = y_{ZI} + h \ast f, \quad \text{where} \ h \ \text{and} \ y_{ZI} \ \text{consist of char. modes.}
\]
Inverse z-transform of proper rational polynomials

- We now describe how to find $\mathcal{Z}^{-1}X$ of causal signal X that is rational polynomial in z, i.e., $X(z) = M(z)/N(z)$ where $M(z)$ and $N(z)$ are polynomials in z.

- If $\deg(M) = \deg(N) + 1$, we perform long division to write $X = c + \tilde{M}/N$ where $\deg(N) = \deg(\tilde{M})$ and $\mathcal{Z}^{-1}X = c\delta + \mathcal{Z}^{-1}\{\tilde{M}/N\}$.

- If $\deg(M) = \deg(N)$ and $M(0) = 0$ (so $z^{-1}M(z)$ is a polynomial), we can factor z from M to get

$$X(z) = z^{-1}M(z)/N(z).$$

- We will find $\mathcal{Z}^{-1}X$ using PFE of the strictly proper rational polynomial $z^{-1}M(z)/N(z)$.

- Alternatively, we could apply PFE on strictly proper rational polynomials in z^{1}, $z^{-K}M(z)/(z^{-K}N(z))$ where $K := \deg(N)$, as in the previous example.

Partial Fraction Expansion (PFE) example in z (not z^{-1})

- For example, suppose

$$X(z) := \frac{z(3z + 2)}{z^2 - 0.64} = \frac{z(3z + 2)}{(z + 0.8)(z - 0.8)} = \frac{z(0.25 \cdot z + 2.75)}{z + 0.8 + \frac{z}{z - 0.8}} = 0.25 \frac{z}{z + 0.8} + 2.75 \frac{z}{z - 0.8}$$

where PFE (below) gave the numerators (residues) 0.25 and 2.75.

- So,

$$\mathcal{Z}^{-1}X[k] = 0.25(-0.8)^k u[k] + 2.75(0.8)^k u[k]$$

- Note that the associated RoC of X is $\{z \in \mathbb{C} \mid |z| > 0.8\}$.
Partial Fraction Expansion (PFE) - preliminaries

- Let $K = \deg(N) = \deg(M)$ so that we can factor
 \[N(z) = \prod_{k=1}^{K}(z - p_k), \]
 where the p_k are the roots of N (poles of M/N).
- We assume M and N have no common roots, i.e., no “pole-zero cancellation” issue to consider, so that the p_k are the poles of M/N.
- Again, we assume $M(0) = 0$ (0 is a zero of M/N) and so $z^{-1}M(z)$ is a polynomial of degree $K - 1$.
- Note that the RoC for $M(z)/N(z)$ is $\{z \in \mathbb{C} \mid |z| > \max_{k} |p_k|\}$.

PFE - the case of no repeated poles

- Suppose there are no repeated poles for M/N, i.e., $\forall k \neq l, \ p_k \neq p_l$.
- In this case, we can write the PFE of $z^{-1}M(z)/N(z)$ as
 \[z^{-1}M(z) \begin{array}{c} \begin{array}{cc} N(z) \\ \Rightarrow M(z) \\ \Rightarrow \end{array} \end{array} \begin{array}{c} \begin{array}{c} N(z) \\ \Rightarrow \end{array} \end{array} = \sum_{l=1}^{K} \frac{c_l}{z - p_l} \]
 \[= \sum_{l=1}^{K} \frac{c_l}{z - p_l} = \sum_{l=1}^{K} \frac{1}{1 - p_lz^{-1}} \]
 where the scalars (Heaviside coefficients) $c_l \in \mathbb{C}$ are
 \[c_l = \frac{z^{-1}M(z)}{\prod_{k \neq l}(z - p_k)} \bigg|_{z = p_l} = \lim_{z \to p_l} \frac{z^{-1}M(z)}{N(z)}(z - p_l) = \frac{z^{-1}M(z)}{N(z)}(z - p_l) \bigg|_{z = p_l}. \]
- That is, to find the Heaviside coefficient c_k over the term $z - p_k$ in the PFE, we have removed (covered up) the term $z - p_k$ from the denominator $N(z)$ and evaluated the remaining rational polynomial at $z = p_k$.
- This approach, called the Heaviside cover-up method, works even when p is \mathbb{C}-valued.
- Given the PFE of $z^{-1}M/N$, $(Z^{-1}M/N)[k] = \sum_{l=1}^{K} c_l p_l^k u[k]$.
PFE - proof of Heaviside cover-up method

• To prove that the above formula for the Heaviside coefficient c_l is correct, note that the claimed PFE of $z^{-1}M(z)/N(z)$ is

$$
\sum_{l=1}^{K} \frac{c_l}{z - p_l} = \sum_{l=1}^{K} c_l \prod_{k \neq l} (z - p_k) / N(z)
$$

• Thus, the PFE equals $z^{-1}M(z)/N(z)$ if and only if the numerator polynomials are equal, i.e., iff

$$
z^{-1}M(z) = \sum_{l=1}^{K} c_l \prod_{k \neq l} (z - p_k) =: \hat{M}(z).
$$

• Again, two polynomials are equal if their degrees, L, are equal and either:
 - their coefficients are the same, or
 - they agree at $L + 1$ (or more) different points, e.g., two lines ($L = 1$) are equal if they agree at 2 ($= L + 1$) points.

• Since $z^{-1}M(z)$ is a polynomial of degree $< K$, it suffices to check that whether $z^{-1}M(z) = \hat{M}(z)$ for all $z = p_k$, $k \in \{1, 2, ..., K\}$, i.e., this would create K equations in $< K$ unknowns (the coefficients of \hat{M}).

PFE - proof of Heaviside cover-up method (cont)

• But note that any pole p_r of $z^{-1}M(z)/N(z)$ is a root of all but the r^{th} term in \hat{M}, so that

$$
\hat{M}(p_r) = c_r \prod_{k \neq r} (p_r - p_k) = \left(\frac{z^{-1}M(z)}{\prod_{k \neq r} (z - p_k)} \right)_{z=p_r} \prod_{k \neq r} (p_r - p_k) = \frac{p_r^{-1}M(p_r)}{\prod_{k \neq r} (p_r - p_k)} \prod_{k \neq r} (p_r - p_k) = p_r^{-1}M(p_r).
$$

• Q.E.D.
PFE - the case of no repeated poles - example

• To find the inverse z-transform of a proper rational polynomial $X = M/N$ with $M(0) = 0$, first factor its denominator N and factor z from M, e.g.,

$$X(z) = \frac{z^3 + 5z^2}{z^3 + 9z^2 + 26z + 24} = \frac{z^2 + 5z}{(z + 4)(z + 3)(z + 2)} \quad \text{for } |z| > 4.$$

• So, by PFE

$$X(z) = z \left(\frac{c_4}{z + 4} + \frac{c_3}{z + 3} + \frac{c_2}{z + 2} \right) = z \frac{z^{-1} M(z)}{N(z)} \Rightarrow$$

$$z^{-1} M(z) = 1z^2 + 5z + 0 = c_4(z + 3)(z + 2) + c_3(z + 4)(z + 2) + c_2(z + 4)(z + 3) =: \hat{M}(z).$$

• We can solve for the 3 constants c_k by comparing the 3 coefficients of quadratic M and \hat{M}.

• The Heaviside cover-up method suggests we try $z = -2, -3, -4$ to solve for c_2, c_3, c_4:

$$c_4 = \left. \frac{z^2 + 5z}{(z + 3)(z + 2)} \right|_{z = -4} = -2, \quad c_3 = \left. \frac{z^2 + 5z}{(z + 4)(z + 2)} \right|_{z = -3} = 6, \quad c_2 = \left. \frac{z^2 + 5z}{(z + 4)(z + 3)} \right|_{z = -2} = -3$$

• Thus, $x[k] = (Z^{-1} X)[k] = (-2(-4)^k + 6(-3)^k - 3(-2)^k)u[k]$.

PFE - the case of a non-repeated, complex-conjugate pair of poles

• Again, recall that for polynomials with all coefficients $\in \mathbb{R}$, all complex poles will come in complex-conjugate pairs, $p_1 = \overline{p}_2$.

• The case of non-repeated poles $p_1, p_2 = \alpha \pm j\beta \ (\alpha, \beta \in \mathbb{R}, \ j := \sqrt{-1})$ that are complex-conjugate pairs can be handled as above, leading to corresponding complex-conjugate Heaviside coefficients c_1, c_2, i.e., $c_1 = \overline{c}_2$.

• In the PFE, we can alternatively combine the terms

$$\frac{c_1}{z - p_1} + \frac{c_2}{z - p_2} = \frac{r_1 z + r_0}{(z - \alpha)^2 + \beta^2}$$

where by equating the two numerator polynomials' coefficients,

$$r_0 = -c_1 p_2 - c_2 p_1 = -2 \text{Re}\{c_1 p_2\} \in \mathbb{R} \quad \text{and} \quad r_1 = c_1 + c_2 = 2 \text{Re}\{c_1\} \in \mathbb{R}.$$

• Exercise: Show that

$$2|c| \cdot |p|^k \cos(k \angle p + \angle c) \overset{z}{\longrightarrow} \frac{cz}{z - p} + \frac{\overline{c}z}{z - \overline{p}}$$
To find the inverse z-transform of

$$X(z) = \frac{3z^2 + 2z}{z^3 + 5z^2 + 10z + 12},$$

first factor the denominator and divide the numerator by z to get

$$X(z) = \frac{3z + 2}{(z^2 + 2z + 4)(z + 3)}.$$

Note that the poles of X are -3 and $-1 \pm j\sqrt{3}$ (so X's RoC is $|z| > 3$).

So, we can expand X to

$$X(z) = \frac{r_1 z + r_0}{z^2 + 2z + 4} + \frac{c_3}{z + 3},$$

where by the Heaviside cover-up method,

$$c_3 = \frac{3z + 2}{z^2 + 2z + 4} \bigg|_{z = -3} = -1.$$

Thus, by comparing coefficients

$$0 = r_1 - 1, \quad 3 = 3r_1 + r_0 - 2, \quad 2 = 3r_0 - 4$$

we get

$$r_0 = 2 \quad \text{and} \quad r_1 = 1.$$
Thus by substituting, we get

\[X(z) = \frac{z + 2}{z^2 + 2z + 4} + z \frac{-1}{z + 3} \]

Exercise: Show that

\[x[k] = (z^{-1}X)[k] = \left(\sqrt{\frac{4}{3}} 2^k \cos(k2\pi/3 - \pi/6) - (-3)^k \right) u[k]. \]

If a particular pole \(p \) of \(z^{-1}M(z)/N(z) \) is of order \(r \geq 1 \), i.e., \(N(z) \) has a factor \((z - p)^r\), then the PFE of \(z^{-1}M(z)/N(z) \) has the terms

\[\frac{c_1}{z - p} + \frac{c_2}{(z - p)^2} + \cdots + \frac{c_r}{(z - p)^r} = \sum_{k=1}^{r} \frac{c_k}{(z - p)^k} = \frac{z^{-1}M(z)}{N(z)} - \Phi(z) \]

with \(c_k \in \mathbb{C} \forall k \in \{1, 2, ..., r\} \), where \(\Phi(z) \) represents the other PFE terms of \(z^{-1}M(z)/N(z) \) (i.e., corresponding to poles \(\neq p \)).

Note that equating \(z^{-1}M(z)/N(z) \) to its PFE and multiplying by \((z - p)^r\) gives

\[\frac{z^{-1}M(z)}{N(z)}(z - p)^r = c_r + \sum_{k=1}^{r-1} c_k(z - p)^{r-k} + \Phi(z)(z - p)^r \]

\[\Rightarrow \frac{z^{-1}M(z)}{N(z)}(z - p)^r \bigg|_{z=p} = c_r, \]

i.e., Heaviside cover-up (of the entire term \((z - p)^r\)) works for \(c_r \).
To find c_{r-1}, we differentiate the previous display to get

$$
\frac{d}{dz} \left(z^{-1} M(z) (z-p)^r \right) = \sum_{k=1}^{r-1} c_k (r-k)(z-p)^{r-k} \frac{d}{dz} \Phi(z)(z-p)^r \\
= c_{r-1} + \sum_{k=1}^{r-2} c_k (r-k)(z-p)^{r-k} \frac{d}{dz} \Phi(z)(z-p)^r \\
\Rightarrow c_{r-1} = \left. \left(\frac{d}{dz} \left(z^{-1} M(z) \right) (z-p)^r \right) \right|_{z=p}
$$

If we differentiate the original display $k \in \{0, 1, 2, \ldots, r-1\}$ times and then substitute $z = p$, we get (with $0! := 1$)

$$
\left. \frac{d^k}{dz^k} \left(z^{-1} M(z) \right) (z-p)^r \right|_{z=p} = k! c_{r-k} \\
\Rightarrow c_{r-k} = \frac{1}{k!} \left. \left(\frac{d^k}{dz^k} \left(z^{-1} M(z) \right) (z-p)^r \right) \right|_{z=p} .
$$

PFE - the general case of repeated poles - example

To find the inverse z-transform of

$$X(z) = \frac{z(3z + 2)}{(z + 1)(z + 2)^3},$$

write the PFE of X as

$$X(z) = z \left(\frac{c_1}{z+1} + \frac{c_{2,1}}{z+2} + \frac{c_{2,2}}{(z+2)^2} + \frac{c_{2,3}}{(z+2)^3} \right),$$

so clearly the RoC of causal X is $|z| > 2$.

By Heaviside cover-up

$$c_1 = \left. \frac{3z + 2}{(z+2)^3} \right|_{z=-1} = -1 \quad \text{and} \quad c_{2,3} = \left. \frac{3z + 2}{z+1} \right|_{z=-2} = 4.$$
• Also,

\[c_{2,2} = \frac{1}{1!} \left. \left(\frac{d}{dz} \frac{3z + 2}{z + 1} \right) \right|_{z=-2} = \frac{1}{1!} \left. \frac{1}{(z + 1)^2} \right|_{z=-2} = 1 \]

\[c_{2,1} = \frac{1}{2!} \left. \left(\frac{d^2}{dz^2} \frac{3z + 2}{z + 1} \right) \right|_{z=-2} = \frac{1}{2!} \left. \frac{-2}{(z + 1)^3} \right|_{z=-2} = 1 \]

Thus,

\[X(z) = \frac{-1}{z + 1} + z \frac{1}{z + 2} + z \frac{1}{(z + 2)^2} + z \frac{4}{(z + 2)^3} \quad \forall |z| > 2 \]

\[\Rightarrow x[k] = (Z^{-1}X)[k] = \left(-(-1)^k + (-2)^k + k(-2)^{k-1} + \frac{k(k-1)}{2} \right) u[k] \]

• Exercise: Show by induction and integration by parts that: \(\forall m \in \mathbb{Z}^+ \),

\[\left(\begin{array}{c} k \\ m \end{array} \right) \gamma^{k-m} u[k] \xrightarrow{z} \frac{z}{(z - \gamma)^m} \]

• Exercise: Find the ZSR \(y \) to input \(f[k] = 2^k u[k] = 2e^{jk\pi/2} u[k] \) of the marginally stable system \(H(z) = \frac{4}{(z^2 + 1)} \).

PFE of \(M/N \) when \(M(0) \neq 0 \)

• If \(M(0) \neq 0 \) (so cannot factor \(z \) from \(M(z) \)), then just perform long division if \(\deg(M) \geq \deg(N) \) to get a strictly proper rational polynomial, factor \(N \) to find the poles, and find the PFE as before.

• When taking inverse \(z \)-transform, recall the \(z \)-transform pair

\[\beta^{k-1}u[k-1] \xrightarrow{z} \frac{1}{z - \beta}, \quad |z| > |\beta| \]
PFE without factoring z from the numerator first

- For example, to find the ZSR to $f[k] = 2(-1)^ku[k]$ of the system

 \[y[k+1] - 4y[k] = 5f[k], \]

 take the z-transform to get

 \[\frac{Y_{ZS}(z)}{z-4} = F(z) = \frac{10z}{(z-4)(z+1)} \]

 \[\Rightarrow y_{ZS}[k] = 8(4)^k u[k-1] + 2(-1)^k u[k-1] \]

- Note that the unit-pulse response is

 \[h[k] = Z^{-1}(H)[k] = 5(4)^k u[k-1], \]

 and that, by delaying the difference equation to get

 \[y[k] = -4y[k-1] + 5f[k-1], \]

 we see that (the ZSR) $y_{ZS}[0] = 0$.

- Exercise: First factor z from the numerator of Y_{ZS} before PFE to show that

 \[y_{ZS}[k] = 2(4)^k u[k] - 2(-1)^k u[k]. \]

 Is this result different? Check for $k = 0$ and $k > 0$.

PFE and eigenresponse for asymptotically stable systems

- The total response of a SISO LTI system to input f is of the form

 \[Y(z) = H(z)F(z) + \frac{P(z)}{Q(z)} \]

 where P_1 depends on the initial conditions and the RoC is the intersection of that of input $F = Zf$ and the system characteristic modes.

- Unlike for DTFT notation, here write $H(z) = \frac{P(z)}{Q(z)} = (Zh)(z)$.

- Suppose the system is BIBO/asymptotically stable and the input is a sinusoid at frequency (angle) Ω_o, $f[k] = A e^{j(\Omega_o k + \phi)} u[k] = A e^{j\phi} (e^{j\Omega_o})^k u[k]$ with $A > 0$

 \[\Rightarrow F(z) = A e^{j\phi} / (z - e^{j\Omega_o}) \] with RoC $|z| > 1$.

- Since $e^{j\Omega_o}$ cannot be a system pole (owing to asymptotic stability all poles have modulus strictly less than one), we can use Heaviside cover-up on

 \[\frac{Y_{ZS}(z)}{z-\Omega_o} = H(z)F(z) = z \frac{P(z)}{Q(z)} e^{j\phi} \] to get

 \[Y_{ZS}(z) = z H(e^{j\Omega_o}) A e^{j\phi} + \text{char. modes} = H(e^{j\Omega_o}) F(z) + \text{char. modes}. \]

©2016 George Kesidis
Thus, the total response of an asymptotically stable system to a sinusoidal input f at frequency Ω_o is

$$y[k] = H(e^{j\Omega_o})f[k] + \text{linear combination of characteristic modes.}$$

So by asymptotic stability, the steady-state response is the eigenresponse, i.e., as $k \to \infty$,

$$y[k] \to H(e^{j\Omega_o})f[k] = H(e^{j\Omega_o})Ae^{j(\Omega_o k + \phi)} = |H(e^{j\Omega_o})|Ae^{j(\Omega_o k + \phi + \angle H(e^{j\Omega_o}))},$$

where again,

- $H = P/Q$ is the system’s transfer function,
- $|H(e^{j\Omega_o})|$ is the system’s magnitude response at frequency (angle) Ω_o, and
- $\angle H(e^{j\Omega_o})$ is the system’s phase response at Ω_o.

Laplace’s approximation: the rate at which the total response converges to the eigenresponse is according to the characteristic value of largest modulus,

- which will be < 1 owing to the stability assumption,
- i.e., giving the modes(s) that $\to 0$ slowest.

In continuous-time systems, it’s the characteristic value of largest real part, which will be negative owing to stability assumption.
Canonical (ZS) system-realizations - direct form

• Consider the proper \((m \leq n)\) transfer function

\[
H(z) = \frac{P(z)}{Q(z)} = \frac{b_m z^m + b_{m-1} z^{m-1} + \ldots + b_1 z + b_0}{z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0} = \frac{Y(z)}{F(z)}
\]

• The direct-form realization employs the interior system state \(X := F/Q\), i.e., \(F = QX\) and \(Y = PX\) where the former implies (with \(a_n = 1\)),

\[
F(z) = \sum_{r=0}^{n} a_r z^r X(z) \Rightarrow z^n X(z) = F(z) - \sum_{r=0}^{n-1} a_r z^r X(z).
\]

• For \(n = 2\), there are two “system states” (outputs of unit delays), \(X\) and \(zX\) (respectively, \(x[k]\) and \((\Delta^{-1}x)[k] = x[k+1]\)):

![Diagram](Image)

Canonical system-realizations - direct form (cont)

• Now adding \(Y = PX\), we finally get the direct-form canonical system-realization of \(H\):

![Diagram](Image)

• Again, state variables taken as outputs of unit delays, here: \(x, \Delta^{-1}x, \ldots, \Delta^{-(n-1)}x\).

• If \(b_n = b_2 \neq 0\), there is direct coupling of input and output, \(H\) is proper but not strictly so, \(h = Z^{-1}H\) has a unit-pulse component \(b_2\delta\).

©2016 George Kesidis
Note that this $n = 2$ example above can be used to implement a pair of complex-conjugate poles as part of a larger PFE-based implementation (with otherwise different states); e.g., for $n = 2$, $H(z) = P(z)/Q(z)$ where

$$Q(z) = z^2 + a_1z + a_0 = (z - \alpha)^2 + \beta^2$$

for $\alpha, \beta \in \mathbb{R}$, so the poles are $\alpha \pm j\beta$.

Canonical system realizations by PFE

- In the general case of a proper transfer function, we can use partial-fraction expansion
 - grouping the terms corresponding to a complex-conjugate pair of poles, i.e., a second-order denominator, and
 - using a direct-form realization for these terms.

- Besides the PFE-based and direct-form realizations, there are other (zero-state) system realizations, e.g., "observer" canonical.

- For proper rational-polynomial transfer functions $H = P/Q$, all of these realizations involve n (degree of Q) unit delays, the output of each being a different interior state variable of the system.
Canonical system realizations by PFE - example

\[H(z) = \frac{0.3 z^2 - 0.1}{z^2 - 0.1 z - 0.3} = 0.3 + \frac{0.3 z - 0.01}{(z - 0.6)(z + 0.5)} = 0.3 + \frac{0.17/1.1}{z - 0.6} + \frac{0.16/1.1}{z + 0.5} \]

Note that one cannot factor \(z \) from the numerator of \(H \).

Exercise: Find a realization for this transfer function \(H \) by

1. splitting/forking the input signal \(F \),
2. using the direct canonical form for each of these 3 terms of \(H \) found by long division and PFE, and
3. summing three resulting output signals to get the (ZS) output \(Y = H F \).

Digital Proportional-Integral (PI) system

- Consider a continuous-time signal \(x \) sampled every \(T \) seconds,
 \[\forall k \in \mathbb{Z}^+, \ x[k] = x(kT), \]
 and its integral \(y(t) = \int_0^t x(\tau) d\tau \).
- The sampled integral can be approximated, \(y(kT) \approx y[k] \), by the trapezoid rule,
 \[y[k] = y[k - 1] + \frac{x[k - 1] + x[k]}{2} T. \]
- In the complex-frequency domain,
 \[Y(z) = Y(z) z^{-1} + \frac{X(z) z^{-1} + X(z) T}{2} \]
 \[\Rightarrow \frac{Y(z)}{X(z)} = \frac{T}{2} \frac{1 + z^{-1}}{1 - z^{-1}}. \]
Digital PI system (cont)

- So, a digital PI transfer function would be of the form,
 \[G(z) = K_p + \frac{K_i T}{2} \cdot \frac{1 + z^{-1}}{1 - z^{-1}}. \]
 for constants \(K_p, K_i. \)

- In practice, PID or PI systems \(G \) are commonly used to control a plant \(H \), where \(G \) may be in series with \(H \) or in the feedback branch.

Exercises:
- Draw the direct-form canonical realization for \(G \).
- Draw the block diagram for the closed-loop system with negative feedback: \(Y = HX \) and \(X = F - GY \) where \(H \) is the (open-loop) system.
- Find the closed-loop transfer function \(Y/F \) and recall the pole placement problem to stabilize \(H \).

Recursive Least Squares (RLS) Filter - Introduction

- Consider a LTI system with input \(f \) and output \(y \),
 \[y[k] = \sum_{r=0}^{K} h[k-r] f[r] + v[k], \quad k \in \mathbb{Z}, \]
 where \(v \) is an additive noise process and \(K \) is the maximum system order.

- The system (unit-pulse response) \(h \) is not known.

- Past values of the output \(y \) are observed (known).

- At time \(k \), the objective is to forecast the next output \(\hat{y}[k+1] \), based on the assumed known/observed quantities:
 - the next input \(f[k+1] \),
 - the past \(R \) input-output pairs \(\{f[r], y[r]\}_{k-R+1 \leq r \leq k} \).
RLS objective and R^{th}-order linear tap filter

- The output of an R^{th}-order RLS tap-filter at time k is,

$$\hat{y}_k[i] = \sum_{r=i-R+1}^{i} \eta_k[i-r] f[r], \ i \leq k + 1.$$

- The objective of this filter at time k is to accurately estimate the system output $y[k+1]$ with $\hat{y}_k[k+1]$ by choosing the R filter coefficients $\eta_k[k-R+1], ..., \eta_k[k-1], \eta_k[k]$ that minimize the following sum-of-square-error objective:

$$E_k = \sum_{r=k-R+1}^{k} \lambda^{k-r} |y[r] - \hat{y}_k[r]|^2 = \sum_{r=k-R+1}^{k} \lambda^{k-r} |e_k[r]|^2$$

where
- $\lambda > 0$ is a forgetting factor and
- error $e_k[r] := y[r] - \hat{y}_k[r]$.

Exercise: Prove the last equality.

RLS filter

- So, to minimize E_k, substitute $\hat{y}_k[r]$ into E_k and solve

$$0 = \frac{\partial E_k}{\partial \eta_k[i]} \text{ for } i \in \{k-R+1, ..., k-1, k\}.$$

- That is, R equations in R unknowns: for $i \in \{k-R+1, ..., k-1, k\}$,

$$0 = \sum_{r=k-R+1}^{k} 2\lambda^{k-r} e_k[r] \frac{\partial e_k[r]}{\partial \eta_k[i]}$$

$$= \sum_{r=k-R+1}^{k} 2\lambda^{k-r} (y[r] - \hat{y}_k[r]) \left(-\frac{\partial \hat{y}_k[r]}{\partial \eta_k[i]} \right)$$

$$= \sum_{r=k-R+1}^{k} 2\lambda^{k-r} (\hat{y}_k[r] - y[r]) f[r-i]$$

- Exercise: Prove the last equality.
Substituting $\hat{y}_k[r]$, rewrite these equations to get the following R equations in R unknowns $\eta_k[i]$ that are E_k-minimizing: for $i \in \{k - R + 1, \ldots, k - 1, k\}$,

$$\sum_{r=k-R+1}^{k} \lambda^{k-r} f[r - i] \sum_{\ell=r-R+1}^{r} f[\ell] \eta_k[r - \ell] = \sum_{r=k-R+1}^{k} \lambda^{k-r} y[r] f[r - i]$$

Exercise: Prove the last equality and write it in matrix form.

Exercise: Research how the E_k-minimizing filter parameters η_k can be computed recursively, i.e., using η_{k-1}.

The filter order R can also be “trial adapted” to discover the system order K so that the error-minimizing filter parameters η_k “track” the system unit-pulse response h over time k.

Note the required initial “warm-up” period of R time-units where the outputs of system h are simply observed and recorded and no estimates are made.

Exercise: If there was no additive noise process v and the system unit-pulse response h had finite support (i.e., a FIR system with $K < \infty$), show how h can be deduced from input-output (f, y) observations.