Introduction to Discrete Mathematics

Introduction to Graphs

This revision © G. Kesidis (2013,2016)

This document revision is copy-left 2013.
It is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License

Note: these slides adapted in part from those of S.J. Lomonaco Jr., available at http://www.csee.umbc.edu/~lomonaco/f05/203/Slides203.html

Outline

• Introduction and basic definitions
• Bipartite graphs, stable marriage problem
• Operations on graphs, graph isomorphisms, connectivity
• Planar graphs
• Erdos-Renyi graphs (examples of random graphs)
• Trees
• Shortest path problems
 – Dijkstra’s link-state routing algorithm
 – Spanning trees of a graph
 – The Traveling Salesman Problem
Undirected and simple graphs

• A undirected $G = (V, E)$ consists of V, a nonempty set of vertices, and E, a set of unordered pairs of elements of V called edges.

• That is, for an undirected graph $G=(V,E)$:
 $$\forall e \in E, \exists u,v \in V \text{ such that } e = (u, v) = (v, u).$$

• An edge e is itself a loop if $e = (u, u)$ for some $u \in V$.

• An undirected graph may have edges that are loops and multiple (parallel) edges between the same pair of vertices.

• An simple graph is an undirected graph that contains no edges that are loops and no parallel edges.

• A pseudograph is an undirected graph that contains at least one loop or pair of parallel edges.

Directed Graphs

• A directed graph $G = (V, E)$ consists of a set V of vertices and a set E of edges that are ordered pairs of elements in V.

• That is, for a directed graph $G=(V,E)$:
 $$\forall e \in E, \exists u,v \in V \text{ s.t. } e = (u,v),$$
 where the (directed) edge $(u,v) \neq (v,u)$.

• A (directed) edge e a loop if $e = (u,u)$ for some $u \in V$.

• So a directed edge $e=(u,v)$ has a tail u and a head v, and is typically depicted by an arrow, i.e.,
 $$u \rightarrow v$$
Example – Trains between cities

• How can we represent a network of (bi-directional) railways connecting a set of cities?
• We should use a simple graph with an edge \((a, b)\) indicating a direct train connection between cities \(a\) and \(b\).

![Network diagram showing connections between cities: Toronto, Boston, New York, Washington, Hamburg, Lübeck, and Toronto.]

Example – Round-robin play

• In a round-robin tournament, each team plays against each other team exactly once.
• How can we represent the results of the tournament (which team beats which other team)?
• We could use a directed graph with an edge \((a, b)\) indicating that team \(a\) beats team \(b\).
Undirected edges

- **Definition:** Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if (u, v) is an edge in G.
- If $e = (u, v)$,
 - the edge e is called incident with the vertices u and v
 - the edge e is also said to connect u and v
- The vertices u and v are called endpoints of the edge (u, v).

Vertex degree

- **Definition:** The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.
- In other words, you can determine the degree of a vertex in a displayed graph by counting the lines that touch it.
- The degree of the vertex v is denoted by $\text{deg}(v)$.
Isolated and pendant vertices

• A vertex of degree 0 is called isolated, since it is not adjacent to any vertex.

• **Note:** A vertex with a loop at it has at least degree 2 and, by definition, is not isolated, even if it is not adjacent to any other vertex.

• A vertex of degree 1 is called pendant. It is adjacent to exactly one other vertex.

Example – Vertex types

Example:

• Which vertices in the following graph are isolated, which are pendant, and what is the maximum degree?

• What type of graph is it?

Solution:

• Vertex f is isolated, and vertices a, d and j are pendant.

• The maximum degree is $\deg(g) = 5$.

• This graph is a pseudograph (undirected edges with loops).
Example – Vertex degrees

Let us look at the same graph again and determine the number of edges and the sum of the degrees of all vertices:

Result:
• There are 9 edges, and the sum of all degrees is 18.
• This is easy to explain: Each new edge increases the sum of degrees by exactly two.

Undirected Graphs - Handshaking Theorem

• **The Handshaking Theorem:** If $G = (V, E)$ is an undirected graph with $|E|$ edges, then

 $2|E| = \sum_{v \in V} \text{deg}(v)$

• **Proof:** every edge contributes 2 to $\sum_{v \in V} \text{deg}(v)$, 1 each for its incident vertices (even an edge loop by definition). Q.E.D.

• **Example:** How many edges are there in a graph with 10 vertices, each of degree 6?

• **Solution:**
 – The sum of the degrees of the vertices is $6 \cdot 10 = 60$.
 – According to the Handshaking Theorem, it follows that $2|E| = 60$, so there are $|E|=30$ edges.
Undirected graphs – A corollary

Theorem: An undirected graph has an even number of vertices of odd degree.

Proof:

- Let V_e and V_o be the set of vertices of even and odd degrees, respectively.
- Thus, we have a partition of V: $V_e \cap V_o = \emptyset$, $V_e \cup V_o = V$.
- So, by Handshaking Theorem,
 \[
 2|E| = \sum_{v \in V} \deg(v) = \sum_{v \in V_e} \deg(v) + \sum_{v \in V_o} \deg(v)
 \]
- Since both $2|E|$ and $\sum_{v \in V_e} \deg(v)$ are even,
 \[
 \sum_{v \in V_o} \deg(v) \text{ must be even.}
 \]
- Since $\deg(v)$ if odd for all $v \in V_2$, $|V_2|$ must be even.
- QED

Edges of directed graphs

- **Definition:** When (u, v) is an edge of the directed graph G (i.e., with directed edges), u is said to be **adjacent to** v, and v is said to be **adjacent from** u.

- The vertex u is called the **initial (tail) vertex** of (u, v), and v is called the **terminal (head) vertex** of (u, v):

 \[
 u \rightarrow v \text{ is a depiction of } (u,v).
 \]

- The initial vertex and terminal vertex of an edge loop are the same.
In/out-degree of a vertex in a directed graph

• **Definition:** In a graph with directed edges, the in-degree of a vertex \(v \), denoted by \(\text{deg}^-(v) \), is the number of edges with \(v \) as their terminal vertex.

• The out-degree of \(v \), denoted by \(\text{deg}^+(v) \), is the number of edges with \(v \) as their initial vertex.

• **Question:** How does adding a loop to a vertex change the in-degree and out-degree of that vertex?

• **Answer:** It increases both the in-degree and the out-degree by one.

Vertex degree - Example

Example: What are the in-degrees and out-degrees of the vertices a, b, c, d in this graph.

Note that (d,b) and (b,d) are *not* parallel as they are in different directions.

\[
\begin{align*}
\text{deg}^-(a) &= 1 \\
\text{deg}^+(a) &= 2 \\
\text{deg}^-(d) &= 2 \\
\text{deg}^+(d) &= 1 \\
\end{align*}
\]

\[
\begin{align*}
\text{deg}^-(b) &= 4 \\
\text{deg}^+(b) &= 2 \\
\text{deg}^-(c) &= 0 \\
\text{deg}^+(c) &= 2 \\
\end{align*}
\]
Total vertex degree of a connected graph

- **Theorem:** If $G = (V, E)$ be a graph with directed edges, then
 \[\sum_{v \in V} \text{deg}^-(v) = \sum_{v \in V} \text{deg}^+(v) = |E|. \]

- This is easy to see, because every edge contributes exactly 1 to both the sum of in-degrees (the edge’s head) and the sum of out-degrees (the edge’s tail).

Complete graphs

- The **complete graph** on n vertices, denoted K_n, is the simple graph that contains exactly one edge between each pair of distinct vertices.
- Note that the number of (undirected) edges is $C(n, 2)$.
Cyclic Graphs

- The cycle C_n, $n \geq 3$, consists of n vertices $v_1, v_2, ..., v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}, \{v_n, v_1\}$.
- A cyclic graph is a “connected” graph whose vertices all have degree 2.
- **Exercise:** By this definition, show that the number of edges $|E| = n = |V|$.
- **Exercise:** Show that there are $(n-1)!$ different cyclic graphs for n distinct vertices.

Wheel Graphs

- We obtain the wheel W_n with $n \geq 3$ when we add an additional vertex to the cycle C_n, and connect this new vertex to each of the n vertices in C_n by adding new edges.
- Here $|V| = n + 1$ and $|E| = 2n$.
- **Exercise:** For $n+1$ distinct vertices, show that there are $(n+1)(n-1)!$ different wheel graphs W_n.
Cubic Graphs

- **Definition:** The n-cube, denoted by Q_n, is the graph that has vertices that may be represented the 2^n bit strings of length n.

- Two vertices are adjacent if and only if their bit-string representation differs in exactly one bit position (Hamming distance 1).

- **Exercise:** For all $n>0$, for Q_n prove $|V|=2^n$ and $|E|=n2^{n-1}$. Hint: use the handshake formula.

- **Exercise:** For 2^n distinct vertices, how many different cubic graphs Q_n are there?

Bipartite Graphs

- **Definition:** A simple graph $G=(V,E)$ is called **bipartite** if its vertex set V can be partitioned into two disjoint nonempty sets V_1 and V_2 such that every edge in E in the graph connects a vertex in V_1 with a vertex in V_2 (so that no edge in E connects either two vertices in V_1 or two vertices in V_2).

- Recall our discussion of relations between two sets (domain and co-domain)

- For example, consider a graph that represents each person in a village by a vertex and each marriage by an edge.

- This graph is **bipartite**, because each edge connects a vertex in the **subset of males** with a vertex in the **subset of females** (if we think of traditional marriages only).

- **Exercise:** For given sets V_1 & V_2 of distinct vertices, show the number of different bipartite graphs such that all elements of V_1 have degree >0 is $(2^{|V_2|}-1)^{|V_1|}$.
Bipartite Graphs - Examples

- **Example I:** Is C_3 bipartite?
 - No, because there is no way to partition the vertices into two sets so that there are no edges with both endpoints in the same set.

- **Example II:** Is C_6 bipartite?
 - Yes, because we can display C_6 as on right:

Complete Bipartite Graphs

- **Definition:** The complete bipartite graph $K_{m,n}$ is the graph that has its vertex set partitioned into two subsets of size m and n, respectively.
 - Two vertices are connected if and only if they are in different subsets.
 - Clearly, $K_{m,n}$ has mn edges.
 - Note that the 6 node example of the previous slide is not complete.
Stable Marriage Problem

• Suppose we want to construct a bipartite graph connecting a set M vertices to a set N vertices.
• The objective is to find pairs of vertices \((a,b) \in M \times N\) best matched according to their preferences.
• Each vertex \(a \in M\) (resp. \(b \in N\)) has a list of nodes in \(N\) (resp. \(M\)) strictly ordered by preference, \(N_a \subseteq N\) (resp. \(M_b \subseteq M\)).
• A bipartite graph is a marriage if every node has degree \(<2\).
• A marriage's edge set \(L \subseteq M \times N\) is maximal if \(|L| = \min\{|M|,|N|\}\).
• A maximal marriage \(L \subseteq M \times N\) is not stable if \(\exists (a,b) \notin L\) s.t. \(a\) and \(b\) both prefer each other over their existing partners in \(L\).
• So “stability” here is a kind of stalemate.

Stable Marriage – Gale-Shapley Algorithm

• In each iteration of the GSA with \(L=\emptyset\) initially.
 1. Each \(a \in M\) “proposes” to the most preferred \(b \in N_a\) and \(N_a \rightarrow N_a \backslash \{b\}\)
 2. Each \(b \in N\) is then engaged to the most preferred \(a \in M_b\) among proposals in the previous Step 1 (of the current iteration) and its existing engagement (if any) in \(L\), and \((a,b)\) replaces the existing engagement for both \(a\) and \(b\) in \(L\).
 3. If \(\exists a \in M\) s.t. \(N_a \neq \emptyset\), then go to step 1.
• So, GSA is a kind of “greedy” algorithm.
• Note that the second part of step 1 means that GSA will terminate in a finite number of steps to a marriage.
• Exercise: Argue by contradiction that the GSA will reach a maximal stable marriage \(L\) when \(|M| = |N|\).
• Exercise: Relate GSA to the SLIP scheduling algorithm (McKeown et al.) for network switches.
Stable Marriage – example

• Consider a 3×3 example matching vertex-sets $M=\{A,B,C\}$ and $N=\{X,Y,Z\}$ with preferences decreasing from left to right

- A: YXZ
- B: ZYX
- C: XZY
- X: BAC
- Y: CBA
- Z: ACB

• There are three stable marriage arrangements:

1. M-vertices get their first choice and N-vertices their third: (AY, BZ, CX)
2. all participants get their second choice: (AX, BY, CZ)
3. N-vertices get their first choice and M-vertices their third: (AZ, BX, CY)

• Exercise: Show that there are $3! = 6$ possible maximal marriages (of which 3 above are the only stable ones).

• Exercise: Show that GSA converges to stable marriage 3 when vertices in M propose and those in N accept.

• Exercise: To what stable marriage does GSA converge when vertices in N propose and those in M accept?

Operations on Graphs - Subgraph

• Definition: A subgraph of a graph $G = (V, E)$ is a graph $H = (W, F)$ where $W \subseteq V$ and $F \subseteq E$ such that F only connects nodes in W.

• Note: Of course, H is a valid graph, so we cannot remove any end-point vertices of remaining edges when pruning G to create H.

• Example:
Operations on Graphs - Unions

- **Definition:** The union of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$.
- The union of G_1 and G_2 is denoted by $G_1 \cup G_2$.

Representing graphs by listing edges: undirected, directed examples
Note redundancy in table representation of undirected graph as, e.g., $(a,b)=(b,a)$.

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Adjacent Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b, c, d</td>
</tr>
<tr>
<td>b</td>
<td>a, d</td>
</tr>
<tr>
<td>c</td>
<td>a, d</td>
</tr>
<tr>
<td>d</td>
<td>a, b, c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Vertex</th>
<th>Terminal Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>a, b, c</td>
</tr>
</tbody>
</table>
Representing Graphs – Adjacency Matrix

• Let \(G = (V, E) \) be a simple graph with \(|V| = n\).
• Suppose that the vertices of \(G \) are listed in arbitrary order as \(v_1, v_2, \ldots, v_n \).
• The \textbf{adjacency matrix} \(A \) (or \(A_G \)) of \(G \), with respect to this listing of the vertices, is the \(n \times n \) zero-one matrix with 1 as its \((i, j)^{th}\) entry when \(v_i \) and \(v_j \) are adjacent, and 0 otherwise.
• In other words, for an adjacency matrix \(A = [a_{ij}] \),
 \[a_{ij} = 1 \quad \text{if} \quad (v_i, v_j) \text{ is an edge of } G, \quad \text{and} \]
 \[a_{ij} = 0 \quad \text{otherwise}. \]

Adjacency Matrix Example

• \textbf{Example}: What is the adjacency matrix \(A_G \) for the following graph \(G \) based on the order of vertices \(a, b, c, d \) ?
• Solution:

\[
A_G = \begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}
\]

\textbf{Note}: Adjacency matrices of undirected graphs are always symmetric.
Incidence matrices

- Let $G = (V, E)$ be an undirected graph with $|V| = n$ and $|E| = m$.
- Suppose that the vertices and edges of G are listed in arbitrary order as $v_1, v_2, ..., v_n$ and $e_1, e_2, ..., e_m$, respectively.
- The **incidence matrix** of G with respect to this listing of the vertices and edges is the $n \times m$ zero-one matrix with 1 as its $(i, j)^{th}$ entry when edge e_j is incident with v_i, and 0 otherwise.
- In other words, for an incidence matrix $M = [m_{ij}]$,
 - $m_{ij} = 1$ if edge e_j is incident with v_i
 - $m_{ij} = 0$ otherwise.

Representing Graphs

- **Example:** What is the incidence matrix M for the following graph G based on the order of vertices a, b, c, d and edges 1, 2, 3, 4, 5, 6?
- **Solution:**
 $$M = \begin{bmatrix}
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

Note: Incidence matrices of undirected graphs contain two 1s per column for edges connecting two vertices and one 1 per column for loops.
Isomorphism of Graphs - Definition

- The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection (an one-to-one and onto function) $f: V_1 \rightarrow V_2$ with the property that: $\forall a, b \in V_1$, a and b are adjacent in G_1 if and only if $f(a)$ and $f(b)$ are adjacent in G_2.
- Such a function f is called an isomorphism.
- In other words, G_1 and G_2 are isomorphic if their vertices can be ordered in such a way that the adjacency matrices M_{G_1} and M_{G_2} are identical.

Checking Isomorphism of Graphs

- From a visual standpoint, G_1 and G_2 are isomorphic if they can be arranged in such a way that their displays are identical (of course without changing adjacency).
- Unfortunately, for two simple graphs, each with n vertices, there are $n!$ possible isomorphisms that we have to check in order to show that these graphs are isomorphic.
- However, showing that two graphs are not isomorphic can be easy.
Disproving graph isomorphism by checking invariants

• For this purpose we can check **invariants**, that is, properties that two isomorphic simple graphs must both have.

• For example, they must have the same:
 – number of vertices $|V|$
 – number of edges $|E|$
 – degree distribution of vertices
 – distribution of minimum paths between vertex pairs (cf. Dijkstra algorithm)
 – distribution of minimum coloring (such that no two adjacent nodes have the same color)

• Note that two graphs that **differ** in any of these invariants are **not** isomorphic, but two graphs that **match** in all of them are **not necessarily** isomorphic.

Isomorphism of Graphs – Example I

Are the following two graphs isomorphic?

Solution:
• Yes, they are isomorphic, because they can be arranged to look identical.
• You can see this if in the right graph you move vertex b to the left of the edge (a, c).
• Then the isomorphism f from the left to the right graph is:

 $f(a) = e$, $f(b) = a$, $f(c) = b$, $f(d) = c$, $f(e) = d$.
Isomorphism of Graphs – Example II

• Are these two graphs isomorphic?

![Graphs](image)

Solution:
• No, they are not isomorphic, because they differ in the degrees of their vertices.
• Vertex d in right graph is of degree one, but there is no pendant vertex in the left graph.

Graph Connectivity – Definition of Path

• A **path** of length \(n \in \mathbb{Z}^+ \) from vertex \(u \) to \(v \) in an **undirected or directed graph** is a sequence of edges \(e_1, e_2, \ldots, e_n \) of the graph such that
 \[
 e_1 = (x_0, x_1), \quad e_2 = (x_1, x_2), \ldots, \quad e_n = (x_{n-1}, x_n),
 \]
 where \(x_0 = u \) and \(x_n = v \).
• That is, successive edges on the path meet at the path’s interior vertices \(x_1, x_2, \ldots, x_{n-1} \) (meet head-to-tail for a directed graph).
• When the graph is simple, we denote this path by its **vertex sequence** \(x_0, x_1, \ldots, x_n \), since it uniquely determines the path.
• The path is a **circuit** if it begins and ends at the same vertex, that is, if \(u = v \).
• The path or circuit is said to **pass through** or traverse \(x_1, x_2, \ldots, x_{n-1} \).
• A path or circuit is **simple** if it does not contain the same edge more than once.
Graph Connectivity - Definition

- An undirected graph is called **connected** if there is a path between every pair of distinct vertices in the graph.
- For example, any two computers in a network can communicate if and only if the graph of their network is connected.
- **Note:** A graph consisting of only one vertex is always connected, because it does not contain any pair of distinct vertices.

Connectivity - Examples

- **Example:** Are the following graphs connected?

 ![Graph 1](image1.png) **Yes.**
 ![Graph 2](image2.png) **No.**
 ![Graph 3](image3.png) **Yes.**
 ![Graph 4](image4.png) **No.**
Connected components of a disconnected graph

- **Definition**: A graph that is not connected is the union of two or more connected subgraphs, each pair of which has no vertex in common.

- These disjoint connected subgraphs are called the **connected components** of the graph.

Connected Components - Example

Example: What are the connected components in the following graph?

Solution: The connected components are the graphs with vertices \{a, b, c, d\}, \{e\}, \{f\}, \{f, g, h, j\}.
Strong and Weak Directed Graph Connectivity

- **Definition:** An directed graph is **strongly connected** if there is a path from a to b and from b to a whenever a and b are vertices in the graph.

- **Definition:** An directed graph is **weakly connected** if there is a path between any two vertices in the underlying undirected graph.

Connectivity - Example

Example: Are the following directed graphs strongly or weakly connected?

Weakly connected, because, for example, there is no path from b to d.

Strongly connected, because there are paths between all possible pairs of vertices.
Undirected Planar Graphs - Kuratowski’s Theorem

• A graph is **planar** if it can be drawn so that its edges do not intersect except at vertices.

• Kuratowski proved that a graph is planar if it contains neither a fully connected 5-vertex subgraph nor a fully connected 3×3 bipartite subgraph.

• **Exercise:** Prove Kuratowski’s theorem by first taking two cases: graphs with fewer than 7 vertices or more than 6, and exhaustively consider all (sub)graphs (up to isomorphism) of the former case.

Planar Graphs – Euler’s formula

• For a planar graph, let $N=|V|$ be the number of vertices, $L=|E|$ the number of edges and F the number of “faces”, i.e., contiguous regions bounded by edges including the outer region beyond the graph, i.e. a partition of the plane.

• **Euler’s formula for connected planar graphs without pendants:** $N-L+F=2$

• For the example graph at left, $N=4$, $L=5$ and $F=3$.

• Note that the other graph is isomorphic to the first, hence also planar with $N=4$, $L=5$ and $F=3$.

• **Exercise:** Try to prove Euler’s formula by induction on the number of vertices (a vertex will increase the number of faces by the number of edges also added minus 1, i.e., $N-L+F$ doesn’t change).
A family of random graphs: Erdos-Renyi

- Consider a simple undirected graph $G(V,E)$ with $N=|V|$ vertices/nodes and $L=|E|$ edges/links.
- So, the number of edges $L \leq C(N,2)$
- Recall that the sum of node degrees $= 2L$ (Handshake Theorem).
- Let $G(N; p)$ be the random simple graph (a random object) consisting of N vertices where each edge independently exists with probability p, i.e., an independent Bernoulli random variable for each edge.
- So, the distribution of the number of edges L is binomial:

 $$ P(L = m) = \binom{C(N,2)}{m} p^{m} (1 - p)^{C(N,2) - m} , $$

 $$ E L = \sum_{m=0}^{C(N,2)} m P(L = m) = C(N,2)p \quad \text{(which is intuitive)} $$
- Let D be the random variable representing the degree of a node of the graph:

 $$ P(D=k) = \binom{N-1}{k} p^{k} (1 - p)^{N-1-k} , $$
- So, $N ED=2EL$ (handshake) $\Rightarrow ED=(N - 1)p$ (also intuitive)

Erdos-Renyi graphs (cont)

- As $N \to \infty$ and $p \to 0$, the graph $G(N;p)$ becomes sparse.
- By the law of small numbers, if

 $$ \lim_{N \to \infty, p \to 0} pC(N,2) = ED $$

 with $0 < ED < \infty$, then the (binomial) degree distribution tends to Poisson:

 $$ P(D=k) = (ED)^k e^{-ED} /k! $$
- Recall:
 - A path in a graph is a series of connected edges.
 - A graph is connected if every pair of vertices is connected by a path.
- Among the results proved by Erdos and Renyi in 1960 are:
 - If $p(N) > \log(N) /N$, then $\lim_{N \to \infty} P(G(N;p(N)) \text{ is connected}) = 1$, i.e., $G(N;p(N))$ becomes connected almost surely (a.s.)
 - If $p = 1/N$, then as $N \to \infty$, the largest (principle) connected component of $G(N;p)$ will a.s. have on the order of $N^{2/3}$ vertices.
Trees

- In a graphical tree with directed edge (a,b), i.e., “a→b”, vertex b is the child of a and vertex a is the parent of b.
- The leaves of a tree are the vertices without any children.
- A directed graph G=(V,E) is called a tree if:
 - it is weakly connected and with only |V|-1 edges, i.e., |E|=|V|-1 (consistent with Euler's formula for planar graphs);
 - There is a single root vertex without any parents, i.e., zero in-degree (consistent with |E|=|V|-1); and
 - There is a directed path from the root to every leaf.
- Note that the number of edges of the tree are the minimal number required for it to be thus connected; if |E|>|V|-1, one can prove by the pigeonhole principle that there must be a non-root vertex that either has two different parents or parallel edges.
- Thus, a every non-root vertex has a unique parent vertex (in-degree = 1), and a tree has no “weak” circuit paths.
- Undirected trees can be similarly defined, where any node can play the role of the root.

Trees – Example with 8 leaves, depth 3

- Note that for a tree with bidirectional edges, any node can “serve” as root.
- The choice of root may affect the depth of the tree, however.
Counting Trees

• A binary/Boolean tree is one where the out-degree of every parent node, including the root, is 2.

• How many different (non-isomorphic) binary trees $T(N)$ are there that span a set of N distinct leaf vertices?

• Solution:
 – Obviously, $T(1)=1$ (single node with no edges).
 – Thinking inductively for $N>1$, if the N^{th} leaf X is added to a binary tree with $N-1$ leaves, one of the existing leaf nodes Y is replaced by a parent node and X and Y become children of that parent; since there are $N-1$ ways that this can happen (minding graph isomorphisms (i.e., it does’t matter whether the children are arranged X,Y or Y,X):
 $$T(N) = (N-1)T(N-1)$$
 – Thus, $T(N)=(N-1)!$

Counting Trees (cont)

• How many different (non-isomorphic) binary trees $T(L)$ are there the that span a set of N distinct vertices (leaf or parent), i.e., $|V|=|L|$?

• Consider a root with a certain collection of $R \leq N$ vertices to the right of it, and $N-R$ vertices to the left.

• $T(N) = \sum_{R=0}^{\lfloor N/2 \rfloor} \binom{N}{R} T(R)T(N-R)$

• Note how we stop summing at $\lfloor N/2 \rfloor$ to avoid counting isomorphic graphs we have already counted.

• Obviously, $T(1)=1$.

• Exercise: Write a program that can compute $T(N)$ for all N.
Tree Traversal (Node Enumeration)

- Different ways of traversing a tree, visiting each node once.
- Each way can be used to enumerate the nodes of, or search, the tree.
- For a tree depicted with root at top and leaves below, can recursively traverse tree **depth-first**, e.g. first from left then right in:
 1. **Pre-order** - record parent nodes on downward edge moves
 2. **In-order** - record child nodes on upward edge moves
- Alternatively, **breadth-first**, e.g. first from left to right, then down.
- **Exercise:** Given a doubly-linked data-structure (one record per node) of a tree, write a recursion for depth-first search. For breadth-first search, how much memory is required?

Tree Traversal Example

- **Depth First**
 - Pre-order (left to right): radejbcfgklmh
 - Post-order (left to right): dijeabfklmghcr
 - Breadth first (left to right): rabcddefghijklm
Shortest Path Problems

• We can assign weights to the edges of graphs, for example to represent the distance between cities in a railway network:

![Graph with cities Chicago, New York, Boston, and Toronto with edge weights 600, 700, 200, and 650]

Shortest Path Problems

• Such weighted graphs can also be used to model computer networks with response times or costs as weights.
• One of the most interesting questions that we can investigate with such graphs is:
 • What is the **shortest path** between two vertices in the graph, that is, the path with the **minimal sum of weights** along the way?
 • This corresponds to the shortest train connection or the fastest connection in a computer network.
 • Note that when all edges have the same weight, the additive path cost is proportional to the number of edges, a quantity commonly expressed as “hops”.
Shortest Path Problems: Example

- Suppose we are planning the construction of a highway from city A to city K.
- Different construction alternatives and their “edge” costs $g \geq 0$ between directly connected cities (nodes) are given in the following graph.
- The problem is to determine the highway (edge sequence) with the minimum total (additive) cost.

Bellman’s principle of optimality

- Bellman’s principle of optimality - shortest path example
- If C belongs to an optimal (by edge-additive cost J^*) path from A to B, then the sub-path A to C and C to B are also optimal,
- i.e., any sub-path of an optimal path is optimal (easy proof by contradiction).
Dijkstra’s link-state routing algorithm

- Dijkstra’s iterated algorithm uses the predecessor node of destination (path penultimate node) and is based on complete link-state (edge-state) information consistently shared among all nodes:
 \[J^*(A, B) = \min \{ J^*(A, C) + g(C, B) \mid C \text{ is a predecessor of } B \}, \]
 i.e., C and B are adjacent nodes (endpoints of the same edge).

- **Note:** The iterated distributed Bellman-Ford algorithm instead uses the successor node of the path origin and only nearest-neighbor distance-vector information sharing:
 \[J^*(A, B) = \min \{ g(A, C) + J^*(C, B) \mid C \text{ is a successor of } A \} \]

- Both Dijkstra’s (OSPF, ISIS) and the dBF (RIP) algorithms are the basis of different Interior Gateway packet-routing Protocols (IGPs) in the Internet.

Example: Dijkstra’s algorithm at A

Initially set of optimal paths (by destination) \(\Omega = \{A\}, J^*(A, A) = 0 \)
Dijkstra’s algo finds optimal paths in order of increasing lengths
1. \(A \rightarrow B \) (via A), \(\Omega = \{A, B\}, J^*(A, B) = 8 = g(A, B) + J^*(A, A) \)
2. \(A \rightarrow C \) (via A), \(\Omega = \{A, B, C\}, J^*(A, C) = 10 = g(A, C) + J^*(A, A) \)
3. \(C \rightarrow F \) (A→F via C), \(\Omega = \{A, B, C, F\}, J^*(A, F) = 17 = g(C, F) + J^*(A, C) \)
4. \(B \rightarrow E \) (A→E via B), \(\Omega = \{A, B, C, F, E\}, J^*(A, E) = 18 = g(B, E) + J^*(A, B) \)
5. \(B \rightarrow D \) (A→D via B), \(\Omega = \{A, B, C, F, E, D\}, J^*(A, D) = 22 = g(B, D) + J^*(A, B) \)
6. \(E \rightarrow H \) (A→H via E) etc. (**exercise**)
Spanning Trees

• A **spanning tree** of a graph is a tree subgraph whose vertices are a certain subset (or perhaps all) of the graph’s vertices.
• Edges may be weighted.
• Note that Dijkstra’s algorithm creates a spanning tree.
• **Kruskal’s algorithm** is a greedy approach that finds a spanning tree of *minimum total weight*.
• **Steiner trees** are minimal spanning trees for subgraphs.
• The Internet’s IGMP uses a decentralized approach to find a tree spanning subscribers (leaves) to a multicast session.

Spanning Trees – Kruskal’s algorithm

1. Initially, $$G=(V,E)$$ is an undirected graph with weighted edges
2. Also create an initial forest $$F$$ (a set of trees), where initially each vertex of the graph is a (single-vertex) tree of the forest, i.e., $$F=V$$
3. While $$E \neq \emptyset$$ and $$|F|>1$$
 i. remove an edge with minimum weight from $$E$$
 ii. if the removed edge connects two different trees in $$F$$ then combine these two trees into a single tree in $$F$$, i.e., $$|F| \rightarrow |F|-1$$
• **Exercise**: Prove by contradiction that if the graph is connected, then at the termination of Kruskal’s algorithm, $$|F|=1$$ and the single element in $$F$$ is a minimum spanning tree.
• **Exercise**: Run Kruskal’s algorithm on the example used for Dijkstra’s algorithm. Compare the resulting spanning tree with that obtained by Dijkstra’s algorithm operating at $$A$$ in terms of total edge weight.
The Traveling Salesman Problem

- The **traveling salesman problem** is one of the classical problems in computer science.
- A traveling salesman wants to visit a number of cities and then return to his starting point (i.e., a circuit of the cities, a graphical cycle).
- Of course he wants to save time and energy, so he wants to determine the **shortest path** for his trip.
- We can represent the cities and the distances between them by a weighted, complete, undirected graph.
- The problem then is to find the circuit of minimum total weight that visits each vertex exactly once.

Example: What path would the traveling salesman take to visit the following cities?

![Graph of cities: Boston, New York, Chicago, Toronto, with distances labeled (600, 200, 650, 700, 700, 550)].

Solution: The shortest path is Boston, New York, Chicago, Toronto, Boston (2,000 miles).
The Traveling Salesman Problem

• **Question:** Given n vertices, how many different cycles \(C_n \) can we form by connecting these vertices with edges?

• **Solution:** We first choose a starting point. Then we have \((n - 1) \) choices for the second vertex in the cycle, \((n - 2) \) for the third one, and so on, so there are \((n - 1)! \) choices for the whole cycle.

• However, this number includes identical cycles that were constructed in **opposite directions**. Therefore, the actual number of different cycles \(C_n \) is \((n - 1)! / 2 \).

The Traveling Salesman Problem

• Unfortunately, no algorithm solving the TSP with polynomial worst-case time-complexity has been devised yet.

• This means that for large numbers of vertices, solving the TSP may be impractical.

• Other computationally difficult problems can be shown to be equivalent in complexity to the TSP, i.e., they're also “NP-hard”.

• Sometimes there are more computationally feasible approaches but they lead to suboptimal solutions.

• Or just apply vast, distributed computational resources particularly to a simple (e.g. exhaustive search) method.