Diagnosing Type Errors with Clas:

DanfengZhang DimitriosVytiniotis
Andrew C. Myers SimonPeytonJones
CornellUniversity MSR Cambridge
PLDPRO15

Distinguished Paper Award

Error localization is difficult for ML type systems

N lista truism that most bugs are detected

only at a great distance from their source
Mitchell Wand
Findingthe source of typerror t ht [Qy c

Even worse In sophisticated type systems

asgow Haskell Compiler (GHC)
ne classes
ne families

A Type signatures

WIH K 2 dzfL8

[Actual mistake:

GHC.:
Boolis not a numerical typ

Error messages are sometimes confusing

3

SHErrLacStatic Holistic Error Locatc

%

fac n = if n == ® then 1

else n * fac (n==1)

Most likely
error cause

A general expressiveandaccurateerror
localization method, which handles the
highly expressive type system of GHC

General Error LocalizatiQnk: yasae s«

Programs
Cannotdiagnose | OCaml || Jif omers‘
Haskell errors {}

Constraints

unit = accs

CCs = e
Based_on (ii‘.i‘.g = E;i;at*float) list
Bayesian
interpretation {}
ConstraintsAnalysis
General Diagnosis Heuristics

The error cause is likely to be
ASimple

AAble to explain all errors
ANot used often on correqtaths

Key Contributions

Haskell Program

factn = if n==0 the
else n* fac

A Bayesian model the ’ c Ut -
accounts for the riche —NSTAITS
. ool=ay,
graph representatio an=ai a1 < Num
Qi = QU ax < Num
Oy = (X ap < Num

Bayesian
reasoning

e

ConstraintsAnalysis

constraint languag

A decidable and
efficient constrain

analysis algorith

Roadmap

Haskell Program

factn = if n==0 then 1
else n* fac (n==1)

N7

Constraints

Bool=a,,
Qp =01 a1 < Num .
Gn=0. 0, <Num constraint languag

Oy = (X ap < Num

Type Checking as Constraint Solvir

A ML type system
I Constraint elements: type
I Constraints: type equalities

Constructors) HA hIEOC
Variables: i h

El t .
SN Syntax of Constraints

0d | WEMBOMBHRO)
od O © 6d z O

Constraint

Type Classes

:: Int

:: Integer Instances of a type class,

—

.. Float calledNum

:: Double

Intuitively, a set of types

Modeling Type Class Constraints

Syntax of Constraints

0od | WEMDIBHO)
"G | ‘; ‘; 3 \ Egs IVE; I"gg ; 6 d Z "O

Atype class is
Our constraint language set of its instances

0d | WEDMWHRO)
Od O ©O od Z2 O

=S s I =M
[O O]Jh©O ©O°"0 ©

Modeling Type Class Constraints

Syntax of Constraints

0od | WEMDIMBHO)
"G | ‘; ‘; 3 1 Egs IVE; I"gg ; 6 d Z "O

Atype class is
Our constraint language set of its instances

0d | WEDMWHRO)
Od O ©O od Z2 O

Conciseinequalities directly
map to edges in a graph

Types are Checked Under Hypothe:s

A Type signatureand GADTSs introdudeypotheses

Haskell Program

Constraints
double :: Num a => a ->a o o
doublen=n* 2 ®a . OluUa . Ol
Hypothesis: a is an Constraint
Instance ofNum hypothesis

Constraints are checked under hypothese

12

Types are Checkddnder Axioms

A Instancedeclarationmayintroduce (global) axioms

For all a, a is an instanceled implies
list of a is an instance &q

~ Haskell Program
instance Eq a=> Eq [a]
where {...}

Constraint example with axioms:
O T O O 1T OoN [) 11 0%NY[) 1T O%N
\ | }

| f
Hypothesis Axiom

Modeling Hypothesis and Axioms

Syntax ofSHErrLo€onstraints
od | WwéE®EMBRO) 0d 1d O O
0od O ©O 6d Zz ZO UDO

A Constraints4): inequalities undequantified axioms
A Quantifiedaxioms 0): implication rules
A Hypothesege.g.,) T Q O): degenerate axioms

The Full Constrairitanguage

A Also supports
I Functions on constraint elements
I Nested universally and existentially quantified variables

A Is expressive enough to model
I type classes, type families, GADTSs, type signatures

(refer to the paper for more detalls)

Roadmap

Haskell Program

factn = if n==0 the
else n* fac

N7

Constraints

Bool=a,

Qp =01 a1 < Num .

Gn=c. (s < Num constraint languag
Oy, = QX ap < Num

N0

ConstraintsAnalysis

A decidable and
efficient constrain
analysis algorith

Constraint Graph in a Nutshell

A Graph construction (simple case)
I Node: constraint element
I Directed edge: partial ordering

Bool =«
Qtn, = Q41 Bool @ <« >0 <——F—> @ —> @ Num
Oy, = Qe o < Num an\a*

QO = QX g < Num

17

Constraint Analysis in a Nutshell

@ ——— @ Num

/al

Bool @ < > @ < > ® Num
n

\ .4"‘&. Num
®@ —> @ Num o1
e * -----

Bool O < > @ < > =% @ Num
\ n 8"
| Boolis not an e N e > o ltun
Instance ofNum ; PR

%1 N

fact n =n f n==00 then 1

'Q n* fac (mn ==
/ 18

Limitations of Previous Algorithms
[BarrettetalQ nanSt a1 A wSLIAQnn I %Ky

8.

Previous algorithmandersaturatesthe graph

D NO# U "1 T #

atype class

Satisfiable ®C _
)10 Previousalgsonly add
edges(" T Tid notin
e
Satisfiable the graph!)

LI =n N

~ II L] (] N
| @< >0 " | 1]

19

New Algorithm
DNO#yY 1110 #

Key idea: add new edgasd nodesduring saturation

eC New algorithm
f\ * adds new nodes
| @< >0 " | | |

Key challenge: naive algorithms either fail to terminate,
or undersaturate the graph

New Algorithm in a Nutshell

Black node: node before saturation
White node: added during saturation

Nodes added based on patterns
1. one edge with two black nodes

2. a black/white node

.

Recursion check: if white node, not
added based on the edge In pattern

Lemma: the algorithm always terminates

21

Constraint Analysis

A The analysis also handles
T Functions on constraint elements
I Hypotheses

I Quantified axioms
(refer to the paper for more details)

A Performance
I Empirically: quadratic in graph size

Roadmap

Haskell Program

factn = if n==0 the
else n* fac

A Bayesian model the ’ c Ut -
accounts for the riche —NSTAITS
. ool=ay,
graph representatio an=ai a1 < Num
Qi = QU ax < Num
Oy = (X ap < Num

Bayesian
reasoning

e

ConstraintsAnalysis

constraint languac

A decidable and
efficient constrain

analysis algorith

Likelihood Estimationwkr yasae sn

Explanation: a set
of locations

_ _ 6 # sat paths using
A ranking metric basedj® ¢ _ locations in E
on Bayesian reasoning P U

(0 D are tunable parameters)

A Simplifying assumption White n(_)des
I Satisfiability of paths are independent break this
assumption

Satisfiability depends on
edges between and" T 1 1|

Red U ndant Pathﬁflnltlon In paper)
A Observation=seme-paths-tsire-white-redes provide

neither positivenor negative evidence

Lemma.: the satisfiability of amgdundant path

depends omon-redundant paths

25

New Ranking Metric

| hon-redundant

5 |
6 S S U # sat paths use
p £ constraints in E

0
A Intuitively,

General Diagnosis Heuristics

The error cause is likely to be

A Simple

A Able to explain all errors

A Not used often on correct
non-redundant paths

A Top candidates returned by an efficient afyorithm
OW¥%BKFYy3IggdgeSNBEQmMM

little

effort Evaluation

50atop _
20k+ Loc A Implementation

I From Haskell programs to constraints
[GHC } I SHErrLoc
S

Modified
GHC

Constraint

Constraint
~400 LOC

SHErrLoc ~7500 LOC

SH ErrLocW Constraint | Error Reports
ConstraintsJ Graph Diagnosis P

27

Evaluation Setup

A Benchmarks

I CE Benchmark: analyzed 77 Haskell programs collected fr
papers about typeerror diagnosis, used i/ KSy 3 9 NB A 3

I Helium benchmark: analyzed 228 programs with type
checking errors, logged by the Helium taol 3Somn 8

A Ground truth

I CE Benchmark: already walhrked

il St AdzyY 0SYOKYINJ Y dzaSNXa |
A Correctness

I only when the programmer mistake is returned by tools

Accuracy on the CE Benchmark

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Comparison with GHC

AN

SHErrLo@inds the correct error
Other tool misses the errorJ

/ Both find the correct error

K

Bothmiss the correct error

/

_—

Other tool finds the correct err
SHErrLomisses the error L

&

Comparison with the Helium tool

[HeerenSG Nt ®Q

SHErrLoases no Haske#ipecific heuristics!

Accuracy on théleliumBenchmark

100%
90% \ /
80% SHErrLotinds the correct error

oo \Other tool misses the errorJ /

60% Both find the correct error
K
40% Bothmiss the correct error

30%

0% Other tool finds the correoﬂarror
SHErrLomisses the error

10% \

0%

Comparison with GHC Comparison with the Helium tool

Related Work

A General error localizatiop:k I y3sap SNE Qmn
I Cannot handle the type system of GHC
I Simpler constraints and constraint analysis algorithm

A Program analyses as constraint solviigeo3 oz | A ptalg OGS
I No support for hypotheses and axioms

A Diagnosing Haskell err@g.,Heeren$ i I £t Qno =1 F 3831 SSN.
I Haskellspecific heuristics
I Unable to handle all of the sophisticated features of GHC

GHC

Type classes
Type families
GADTs

Type signatures

SHErrLoc

General, expressive and accurate error localization
I Applies tathe highly expressive type system of GHC

I A novel grapkbased constraint analysis algorithm

I Bayesian reasoning => more accurate error locations than
with existing tools

Google

SHErrLoc

