
Diagnosing Type Errors with Class

PLDI 2015

Distinguished Paper Award

DanfengZhang
Andrew C. Myers

Cornell University

DimitriosVytiniotis
Simon Peyton-Jones

MSR Cambridge

2

ñIt is a truism that most bugs are detected

only at a great distance from their source.ò
Mitchell Wand

Finding the source of type errorsΣ tht[Ωус

Error localization is difficult for ML type systems

Even worse in sophisticated type systems

The Glasgow Haskell Compiler (GHC)
Å Type classes
Å Type families
Å GADTs
Å Type signatures

3

GHC:
Boolis not a numerical type

Actual mistake:
ΨҐҐΩǎƘƻǳƭŘ ōŜ ΨҍΩ

Error messages are sometimes confusing

Inference
Engine

SHErrLoc: Static Holistic Error Locator

4

Most likely
error cause

Ageneral, expressiveand accurateerror
localization method, which handles the
highly expressive type system of GHC

General Error Localizationώ½ƘŀƴƎϧaȅŜǊǎΩмпϐ

5

Programs

JifOCaml Others

Based on
Bayesian

interpretation

Cannotdiagnose
Haskell errors

Constraints Analysis

Constraints

The error cause is likely to be
ÅSimple
ÅAble to explain all errors
ÅNot used often on correct paths

General Diagnosis Heuristics

Cause

Haskell Program

Constraints Analysis

Constraints
A highly expressive

constraint language

A decidable and

efficient constraint

analysis algorithm

Key Contributions

Bayesian
reasoning

A Bayesian model that

accounts for the richer

graph representation

fact n = if n == 0 then 1

else n * fac (n == 1)

Cause

Cause

Roadmap

7

Haskell Program

Constraints
A highly expressive

constraint language

fact n = if n == 0 then 1

else n * fac (n == 1)

Type Checking as Constraint Solving

ÅML type system

ïConstraint elements: types

ïConstraints: type equalities

8

Constructors:)ÎÔȟ"ÏÏÌȟ,ÉÓÔ
Variables:‌ȟ‍ȟ‎

Ὁḋ ‌ȿὧέὲὉȟȣȟὉ
Ὅḋ Ὁ Ὁ ὅḋ ẒὍ

Syntax of Constraints

Constraint

Element

Type Classes

9

Instances of a type class,
called Num

Intuitively, a set of types

10

Ὁḋ ‌ȿὧέὲὉȟȣȟὉ
Ὅḋ Ὁ ὉȿὧὰὥὉȟȣȟὉ ὅḋ ẒὍ

Syntax of Constraints

Modeling Type Class Constraints

Ὁḋ ‌ȿὧέὲὉȟȣȟὉ
Ὅḋ Ὁ Ὁ ὅḋ ẒὍὍḋ Ὁ Ὁ

A type class is a
set of its instances

ἚἽἵ‌ ḧ‌ ἚἽἵ

Ὁ Ὁ ḧὉ Ὁ Ὁ᷈ Ὁ

Our constraint language

11

Ὁḋ ‌ȿὧέὲὉȟȣȟὉ
Ὅḋ Ὁ ὉȿὧὰὥὉȟȣȟὉ ὅḋ ẒὍ

Syntax of Constraints

Modeling Type Class Constraints

Ὁḋ ‌ȿὧέὲὉȟȣȟὉ
Ὅḋ Ὁ Ὁ ὅḋ ẒὍὍḋ Ὁ Ὁ

Concise; inequalities directly
map to edges in a graph

Our constraint language
A type class is a

set of its instances

Types are Checked Under Hypotheses

ÅType signatures and GADTs introduce hypotheses

12

Constraints

a .ÕÍṲa .ÕÍ
double :: Num a => a - > a

double n = n * 2

Haskell Program

Hypothesis: a is an
instance of Num

Constraint
hypothesis

Constraints are checked under hypotheses

Types are Checked Under Axioms

ÅInstance declaration may introduce (global) axioms

13

instance Eq a => Eq [a]

where {...}

Haskell Program

For all a, a is an instance of Eq implies

list of a is an instance of Eq

)ÎÔ%Ñ᷈ ὥᶅȢὥ %Ñᵼ ὥ %ÑṲ)ÎÔ%Ñ

Hypothesis Axiom

Constraint example with axioms:

)ÎÔ%Ñᵼ)ÎÔ%Ñ

Modeling Hypothesis and Axioms

ÅConstraints (ὅ): inequalities under quantified axioms

ÅQuantified axioms (ὗ): implication rules

ÅHypotheses (e.g.,)ÎÔ.ÕÍ): degenerate axioms

14

Ὁḋ ‌ȿὧέὲὉȟȣȟὉ ὗḋ ὥᶅȢẒὍᵼὍ
Ὅḋ Ὁ Ὁ ὅḋ Ẓ ẒὗṲὍ

Syntax of SHErrLocConstraints

The Full Constraint Language

ÅAlso supports

ïFunctions on constraint elements

ïNested universally and existentially quantified variables

ÅIs expressive enough to model

ïtype classes, type families, GADTs, type signatures

15

(refer to the paper for more details)

Haskell Program

Constraints Analysis

Constraints
A highly expressive

constraint language

A decidable and

efficient constraint

analysis algorithm

Roadmap

fact n = if n == 0 then 1

else n * fac (n == 1)

Cause

Constraint Graph in a Nutshell

ÅGraph construction (simple case)

ïNode: constraint element

ïDirected edge: partial ordering

17

18

Constraint Analysis in a Nutshell

Boolis not an
instance of Num

fact n = if n == 0 then 1

else n * fac (n == 1)n == 1

n 0

Num

Limitations of Previous Algorithms
[Barrett et al.ΩллΣ aŜƭǎƪƛϧwŜǇǎΩллΣ½ƘŀƴƎϧaȅŜǊǎΩмлϐ

19

)ÎÔ#Ṳ‌ "ÏÏÌ᷈‌ #

Previous algorithms under-saturatesthe graph

Satisfiable:
‌)ÎÔ

Satisfiable:
‌ "ÏÏÌ

Previous algsonly add
edges ("ÏÏÌis not in
the graph!)

"ÏÏÌ#Ṁa type class

C

‌

‌ "ÏÏÌ

New Algorithm

20

Key idea: add new edges and nodes during saturation

New algorithm
adds new nodes

Key challenge: naive algorithms either fail to terminate,
or under-saturate the graph

)ÎÔ#Ṳ‌ "ÏÏÌ᷈‌ #

C

‌

‌ "ÏÏÌ

"ÏÏÌ

New Algorithm in a Nutshell

21

Lemma: the algorithm always terminates

Black node: node before saturation
White node: added during saturation

Nodes added based on patterns
1. one edge with two black nodes
2. a black/white node

Recursion check: if white node, not
added based on the edge in pattern

C

‌

‌ "ÏÏÌ

"ÏÏÌ

Constraint Analysis

ÅThe analysis also handles

ïFunctions on constraint elements

ïHypotheses

ïQuantified axioms

ÅPerformance

ïEmpirically: quadratic in graph size

22

(refer to the paper for more details)

Roadmap

23

Haskell Program

Constraints Analysis

Constraints
A highly expressive

constraint language

A decidable and

efficient constraint

analysis algorithm

Bayesian
reasoning

A Bayesian model that

accounts for the richer

graph representation

fact n = if n == 0 then 1

else n * fac (n == 1)

Cause

Cause

Likelihood Estimation ώ½ƘŀƴƎϧaȅŜǊǎΩмпϐ

A ranking metric based
on Bayesian reasoning

(ὖȟὖ are tunable parameters)

ÅSimplifying assumption

ïSatisfiability of paths are independent

ὖ
ȿȿ ὖ

ρ ὖ

sat paths using
locations in E

Explanation: a set
of locations

White nodes
break this
assumption

ÅObservation: some paths using white nodes provide
neither positive nor negative evidence

25

Satisfiability depends on
edges between ‌and "ÏÏÌ

Lemma: the satisfiability of any redundant path
depends on non-redundantpaths

Redundant Paths(definition in paper)

C

‌

‌ "ÏÏÌ

"ÏÏÌ

New Ranking Metric

ÅIntuitively,

ÅTop candidates returned by an efficient A* algorithm
ώ½ƘŀƴƎϧaȅŜǊǎΩмп]

26

The error cause is likely to be
Å Simple
Å Able to explain all errors
Å Not used often on correct

non-redundant paths

General Diagnosis Heuristics

non-redundant

ὖ
ȿȿ ὖ

ρ ὖ
sat paths use
constraints in E

Evaluation

ÅImplementation

ïFrom Haskell programs to constraints

ïSHErrLoc

27

Modified
GHC

GHC
Constraints

little
effort

Constraint
Graph

Error
Diagnosis

Reports

SHErrLoc

Constraint
Translator

SHErrLoc
Constraints

50 atop
20K+ LOC

~400 LOC
~7500 LOC

Evaluation Setup

ÅBenchmarks

ïCE Benchmark: analyzed 77 Haskell programs collected from
papers about type-error diagnosis, used in ώ/ƘŜƴϧ9ǊǿƛƎΩмпϐ

ïHelium benchmark: analyzed 228 programs with type-
checking errors, logged by the Helium tool ώIŀƎŜΩмпϐ

ÅGround truth

ïCE Benchmark: already well-marked

ïIŜƭƛǳƳ ōŜƴŎƘƳŀǊƪΥ ǳǎŜǊΩǎ ŀŎǘǳŀƭ ŦƛȄ

ÅCorrectness

ïonly when the programmer mistake is returned by tools

28

Accuracy on the CE Benchmark

29

Comparison with GHC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Comparison with the Helium tool
[HeerenŜǘ ŀƭΦΩло]

Other tool finds the correct error
SHErrLocmisses the errorL

Both find the correct error

Both miss the correct error
K

SHErrLocfinds the correct error
Other tool misses the errorJ

SHErrLocuses no Haskell-specific heuristics!

Accuracy on the Helium Benchmark

30

Comparison with GHC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Other tool finds the correct error
SHErrLocmisses the error

Both find the correct error

Both miss the correct error

SHErrLocfinds the correct error
Other tool misses the errorJ

K

L

Comparison with the Helium tool

Related Work

ÅGeneral error localization [½ƘŀƴƎϧaȅŜǊǎΩмп]

ïCannot handle the type system of GHC

ïSimpler constraints and constraint analysis algorithm

ÅProgram analyses as constraint solving ώŜΦƎΦΣ !ƛƪŜƴΩффΣ CƻǎǘŜǊ et al.Ωлсϐ

ïNo support for hypotheses and axioms

ÅDiagnosing Haskell error [e.g., HeerenŜǘ ŀƭΩлоΣIŀƎŜϧIŜŜǊŜƴΩлтΣ/ƘŜƴϧ9ǊǿƛƎΩмпϐ

ïHaskell-specific heuristics

ïUnable to handle all of the sophisticated features of GHC

31

SHErrLoc

General, expressive and accurate error localization

ïApplies to the highly expressive type system of GHC

ïA novel graph-based constraint analysis algorithm

ïBayesian reasoning => more accurate error locations than
with existing tools

32

Type classes
Type families
GADTs
Type signatures

GHC

SHErrLoc

