
A general approach to diagnosing Haskell errors

SHErrLoc Overview

Diagnosing Type Errors with Class
Danfeng Zhang and Andrew C. Myers

Cornell University

A general, expressive, and accurate diagnostic method for Haskell errors

Constraint Analysis Overview
Efficient constraint analysis via graph saturation

•Graph construction
- Node: constraint elements - Edge: partial orders on elements

•Finding informative paths
- Saturate constraint graph

- Test the satisfiability of a partial order on end nodes

- Trivial paths are ignored (e.g., one end node is a variable)

Constraints Constraint Graph Informative Paths

Inferring Likely Wrong Constraints
Idea: redundant paths are useless in ranking

Lemma: for any redundant path 𝑃 (see definition in the paper), there exist

non-redundant paths 𝑃𝑖, such that (𝑃 is satisfiable ⟺ ∀𝑖. 𝑃𝑖 is satisfiable).

Motivation
Type-inference error messages are sometimes confusing

We handle the highly expressive type system of GHC

Challenges

Evaluation
Our tool identifies error locations more accurately

Correctness metric
- CE Benchmark: well-marked

errors in the benchmark

- Helium Benchmark: user’s

fix with larger time stamp

Helium Benchmark
Student programs collected

by the Helium tool

Analyzed 228 programs

with type-checking errors

CE Benchmark
Programs collected by

Chen&Erwig, from

papers on error diagnosis

Analyzed 77 programs

with well-marked errors

Dimitrios Vytiniotis and Simon Peyton-Jones

Microsoft Research Cambridge

Type

Inference

Engine

Haskell compiler:

Bool is not a numerical type

True mistake:

‘==’ should be ‘-’

Constraints

Haskell-AgnosticHaskell-Specific

Haskell Program

Error Localization

Constraint Analysis via Graph

The error cause is likely to be
- simple

- able to explain all errors

- not used often on correct paths

General Diagnosis Heuristics

Based on

Bayesian

interpretation

Most likely wrong

expression

fact n = if n == 0 then 1

else n * fac (n == 1)

Haskell features we handle
 Type classes

 Type families

 GADTs

 Type signatures

Expression (n==1)

is most likely to be wrong

Type Classes
Idea: model type classes by partial ordering constraints

•Modeling type class constraints

Instances of a type

class, called Num

Intuitively, a

set of types

Examples

Num Int = Int ≤ Num

Mul 𝜏1 𝜏2 𝜏3 = (tup3 𝜏1 𝜏2 𝜏3) ≤ Mul

SHErrLoc Constraints
A rich constraint language that models GHC type checking

Constraints may have hypotheses and axioms

Constraint elements 𝐸 ∷= 𝛼 a 𝑐𝑜𝑛 𝐸1, … , 𝐸𝑛 𝑓𝑢𝑛 𝐸1, … , 𝐸𝑛
Quantified Axioms 𝑄 ∷= ∀𝑎.∧𝑖 𝐼𝑖 ⇒ 𝐼
Inequalities 𝐼 ∷= 𝐸1 ≤ 𝐸2 Constraints 𝐶 ∷= 𝑗 (𝑖𝑄𝑖 ⊢ 𝐼𝑗)

Syntax of Constraints

ConstraintsHaskell Program

fact n = if n == 0 then 1

else n * fac (n == 1)

Graph Saturation
Idea: add new graph nodes and edges during saturation

The new algorithm is decidable and efficient in practice

Int ≤ Cla ⊢ 𝛼 = Bool ∧ [𝛼] ≤ Cla

CFG-Reachability

Error is

missing!

Satisfiable:

𝛼 = Int

Satisfiable:

𝛼 = Bool

New Algorithm

New nodes

are added

Ranking metricSatisfiability dependents on

an existing edge (𝛼 to Bool)

𝐸: set of constraints

𝑘𝐸: # of sat non-redundant paths using 𝐸

Int ≤ Eq ∧ ∀𝑎. 𝑎 ≤ Eq ⇒ 𝑎 ≤ Eq ⊢ Int ≤ Eq

GHC
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Helium

Other tool finds the correct error

Our tool misses the error


Both find the correct error

Both miss the correct error


Our tool finds the correct error

Other tool misses the error


0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Other tool finds the correct error

Our tool misses the error


Both find the correct error

Both miss the correct error


Our tool finds the correct error

Other tool misses the error


[Bool] ≰ Cla

