
A general approach to diagnosing Haskell errors

SHErrLoc Overview

Diagnosing Type Errors with Class
Danfeng Zhang and Andrew C. Myers

Cornell University

A general, expressive, and accurate diagnostic method for Haskell errors

Constraint Analysis Overview
Efficient constraint analysis via graph saturation

•Graph construction
- Node: constraint elements - Edge: partial orders on elements

•Finding informative paths
- Saturate constraint graph

- Test the satisfiability of a partial order on end nodes

- Trivial paths are ignored (e.g., one end node is a variable)

Constraints Constraint Graph Informative Paths

Inferring Likely Wrong Constraints
Idea: redundant paths are useless in ranking

Lemma: for any redundant path 𝑃 (see definition in the paper), there exist

non-redundant paths 𝑃𝑖, such that (𝑃 is satisfiable ⟺ ∀𝑖. 𝑃𝑖 is satisfiable).

Motivation
Type-inference error messages are sometimes confusing

We handle the highly expressive type system of GHC

Challenges

Evaluation
Our tool identifies error locations more accurately

Correctness metric
- CE Benchmark: well-marked

errors in the benchmark

- Helium Benchmark: user’s

fix with larger time stamp

Helium Benchmark
Student programs collected

by the Helium tool

Analyzed 228 programs

with type-checking errors

CE Benchmark
Programs collected by

Chen&Erwig, from

papers on error diagnosis

Analyzed 77 programs

with well-marked errors

Dimitrios Vytiniotis and Simon Peyton-Jones

Microsoft Research Cambridge

Type

Inference

Engine

Haskell compiler:

Bool is not a numerical type

True mistake:

‘==’ should be ‘-’

Constraints

Haskell-AgnosticHaskell-Specific

Haskell Program

Error Localization

Constraint Analysis via Graph

The error cause is likely to be
- simple

- able to explain all errors

- not used often on correct paths

General Diagnosis Heuristics

Based on

Bayesian

interpretation

Most likely wrong

expression

fact n = if n == 0 then 1

else n * fac (n == 1)

Haskell features we handle
 Type classes

 Type families

 GADTs

 Type signatures

Expression (n==1)

is most likely to be wrong

Type Classes
Idea: model type classes by partial ordering constraints

•Modeling type class constraints

Instances of a type

class, called Num

Intuitively, a

set of types

Examples

Num Int = Int ≤ Num

Mul 𝜏1 𝜏2 𝜏3 = (tup3 𝜏1 𝜏2 𝜏3) ≤ Mul

SHErrLoc Constraints
A rich constraint language that models GHC type checking

Constraints may have hypotheses and axioms

Constraint elements 𝐸 ∷= 𝛼 a 𝑐𝑜𝑛 𝐸1, … , 𝐸𝑛 𝑓𝑢𝑛 𝐸1, … , 𝐸𝑛
Quantified Axioms 𝑄 ∷= ∀𝑎.∧𝑖 𝐼𝑖 ⇒ 𝐼
Inequalities 𝐼 ∷= 𝐸1 ≤ 𝐸2 Constraints 𝐶 ∷= 𝑗 (𝑖𝑄𝑖 ⊢ 𝐼𝑗)

Syntax of Constraints

ConstraintsHaskell Program

fact n = if n == 0 then 1

else n * fac (n == 1)

Graph Saturation
Idea: add new graph nodes and edges during saturation

The new algorithm is decidable and efficient in practice

Int ≤ Cla ⊢ 𝛼 = Bool ∧ [𝛼] ≤ Cla

CFG-Reachability

Error is

missing!

Satisfiable:

𝛼 = Int

Satisfiable:

𝛼 = Bool

New Algorithm

New nodes

are added

Ranking metricSatisfiability dependents on

an existing edge (𝛼 to Bool)

𝐸: set of constraints

𝑘𝐸: # of sat non-redundant paths using 𝐸

Int ≤ Eq ∧ ∀𝑎. 𝑎 ≤ Eq ⇒ 𝑎 ≤ Eq ⊢ Int ≤ Eq

GHC
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Helium

Other tool finds the correct error

Our tool misses the error

Both find the correct error

Both miss the correct error

Our tool finds the correct error

Other tool misses the error

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Other tool finds the correct error

Our tool misses the error

Both find the correct error

Both miss the correct error

Our tool finds the correct error

Other tool misses the error

[Bool] ≰ Cla

