Motivation

Diagnosing Type Errors with Class

Danfeng Zhang and Andrew C. Myers
Cornell University

A general, expressive, and accurate diagnostic method for Haskell errors

Type-inference error messages are someftimes confusing

True mistake:
‘=="should be ‘-’

Haskell compiler:
Bool is not a numerical type

Type
Inference
Engine

SHErrLoc Overview
A general approach to diagnosing Haskell errors

fact n = if n == 0 then 1

else n * fac (n == 1)

Expression (n==1)
IS most likely to be wrong

Based on
Bayesian

~interpretation

Haskell-Specific

Bool=a,
n — A1
Oy — Ok
an — Q0

a1 < Num
o < Num

- simple
- able to explain all errors
- not used often on correct paths

: X The error cause is likely to be

Haskell-Agnostic

Challenges
We handle the highly expressive type system of GHC

Haskell features we handle

O Type classes
O Type families

OO0 GADTs

O Type signatures

Dimitrios Vyftiniotis and Simon Peyfton-Jones

Microsoft Research Camlbridge

SHErrLoc Consiraints
A rich constraint language that models GHC type checking

Syntax of Constraints

Constraint elements E ::= a | a |con(E4, ..., E,)|fun(Ey, ..., E;,)
Quantifled Axioms Q ::=VaA; Il; > 1
Inequalities I ==E; <E, Constraints C::=A; (A;Q; F [})

Bool=a,,
fact n = if n == 0 then 1 ‘
else n * fac (n == 1)

n — A1

A — QU x
Constraints may have hypotheses and axioms
(Int < Eq) A (Va.a < Eq= [a] < Eq) I [Int] < Eq

a1 < Num
ax < Num

Qn = Q0 oo < Num

Type Classes

Idea.: model type classes by partial ordering constraints

. : Int
.)
 Instances of a type Intuitively, a
- Float class, called Num set of types

. : Double

.. Integer

*Modeling type class constraints

Examples

D7) :=7<D
D 7] = (tup,, 7) <D

[Num Int] = Int < Num

[Mul 74 7, 73] = (tup; 71 7, T3) < Mul

Constraint Analysis Overview
Efficient constraint analysis via graph saturation

*Graph construction
- Node: constraint elements

‘Finding informative paths
- Saturate constraint graph
- Test the satisfiability of a partial order on end nodes
- Trivial paths are ignored (e.g., one end node is a variable)

- Edge: partial orders on elements

Graph Saturation

/dea: add new graph nodes and edges during saturation
[Int] < Cla F a = Bool A [a] < Cla*[Bool] + Cla

\ CFG-Reachability New Algorithm

Satisfiable: ®Cla New nodes }
= Int
a = In Cb| are added
[a] @ [)
Satisfiable:
a = Bool O o .
O @ <—> @ Bool

The new algorithm is decidable and efficient in practice

O @ «<—> @ Bool

Inferring Likely Wrong Consiraints

ldea. redundant paths are useless in ranking

® Cla Ranki -
'r (Satisfiability dependents on dnking metric
\

) isti d to Bool
—— ﬁan existing edge (a to Bool)
@] o(-:'lﬁ'o[Bo@

O @ <—> @ Bool

Lemma:. for any redundant path P (see definition in the paper), there exist
non-redundant paths P;, such that (P is satisfiable < Vi. P; is satisfiable).

E: set of constraints
k. # of sat non-redundant paths using E

Evaluation
Our fool identifies error locations more accurately

Correctness metric
- CE Benchmark: well-marked
errors in the benchmark
- Helium Benchmark: user’s
fix with larger time stamp

/

Our tool finds the correct error

CE Benchmark -
Programs collected by
Chen&Erwig, from
papers on error diagnosis

Both find the correct error

Both miss the correct error

Other tool finds the correct error

Analyzed 77 programs Our tool misses the error ~ (52)
N—r

with well-marked errors , ™~
Helium

e

Our tool finds the correct error

Helium Benchmark -

Student programs collected
by the Helium tool

Both find the correct error

Both miss the correct error

Analyzed 228 programs
with type-checking errors

Other tool finds the correct error
Our tool misses the error m

O\

