Diagnosing Type Errors with Class

Danfeng Zhang and Andrew C. Myers Cornell University

Dimitrios Vytiniotis and Simon Peyton-Jones Microsoft Research Cambridge

A general, expressive, and accurate diagnostic method for Haskell errors

SHErrLoc Overview

A general approach to diagnosing Haskell errors

Challenges

We handle the highly expressive type system of GHC

Haskell features we handle

- Type classes
- Type families
- **□** GADTs
- Type signatures

SHErrLoc Constraints

A rich constraint language that models GHC type checking

Constraints may have hypotheses and axioms

$$(Int \le Eq) \land (\forall a. a \le Eq \Rightarrow [a] \le Eq) \vdash [Int] \le Eq$$

Type Classes

Idea: model type classes by partial ordering constraints

Instances of a type class, called Num

Intuitively, a set of types

Modeling type class constraints

$$\llbracket D \ \tau \rrbracket := \tau \leq \mathsf{D}$$

$$\llbracket D \ \overline{\tau} \rrbracket := (\mathsf{tup}_n \ \overline{\tau}) \leq \mathsf{D}$$

Mul
-

Constraint Analysis Overview

Efficient constraint analysis via graph saturation

- Graph construction
- Node: constraint elements
 - Edge: partial orders on elements
- Finding informative paths
- Saturate constraint graph
- Test the satisfiability of a partial order on end nodes
- Trivial paths are ignored (e.g., one end node is a variable)

Graph Saturation

Idea: add new graph nodes and edges during saturation

The new algorithm is decidable and efficient in practice

Inferring Likely Wrong Constraints

Idea: redundant paths are useless in ranking

Lemma: for any redundant path P (see definition in the paper), there exist non-redundant paths P_i , such that (P is satisfiable $\iff \forall i. P_i$ is satisfiable).

Evaluation

Our tool identifies error locations more accurately

Correctness metric

- CE Benchmark: well-marked errors in the benchmark
- Helium Benchmark: user's

