Xen and the Art of Virtualization
- Barham et. al.

CSE 598c - Spring 2006
William Enck
Xen’s Goals

• Isolation
 ‣ Access Control
 ‣ Performance

• Heterogeneity
 ‣ Support a variety of Guest OSs

• Low Performance Overhead
Terms

- **Guest OS**: an operating system that Xen can host
- **Domain**: a running virtual machine within a guest OS executes
- **Hypervisor**: Xen, or the VMM. (operates at a higher privilege level than the supervisor of Guest OSs)
A Review

- Types of Virtual Machine Monitors (VMMs)

Type I

- App.
- Guest OS
- VMM
- Host Hardware

Type II

- App.
- Guest OS
- VMM
- Host OS
- Host Hardware
Figure 1: The structure of a machine running the Xen hypervisor, hosting a number of different guest operating systems, including Domain0 running control software in a XenoLinux environment.
Figure 1: The structure of a machine running the Xen hypervisor, hosting a number of different guest operating systems, including Domain0 running control software in a XenoLinux environment.
Xen Hypervisor

• Hypervisor provides only basic control operations
 ‣ CPU scheduling between domains
 ‣ filtering network packets before transmission
 ‣ access control for block reads

• No need to look deeper
 ‣ e.g. CPU sharing, type of transmitted data
 ‣ Potentially complex policy decisions are best performed by management software in a guest OS
Figure 1: The structure of a machine running the Xen hypervisor, hosting a number of different guest operating systems, including Domain0 running control software in a XenoLinux environment.
Domain0 (Dom0)

• The domain created at boot time is permitted to use the *control interface*
 ‣ Full access to the physical machine

• Responsible for hosting application level management software
 ‣ create and terminate other domains
 ‣ delegate access to machine resources (mem, disks, NICs)
Domain Management

```
[enck@stout ~]% sudo xm list

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Mem(MiB)</th>
<th>VCPUs</th>
<th>State</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain-0</td>
<td>0</td>
<td>256</td>
<td>1</td>
<td>r-------</td>
<td>210.1</td>
</tr>
<tr>
<td>stout-0</td>
<td>7</td>
<td>64</td>
<td>1</td>
<td>-b------</td>
<td>15.6</td>
</tr>
<tr>
<td>stout-1</td>
<td>8</td>
<td>64</td>
<td>1</td>
<td>-b------</td>
<td>14.6</td>
</tr>
<tr>
<td>stout-2</td>
<td>9</td>
<td>64</td>
<td>1</td>
<td>-b------</td>
<td>14.5</td>
</tr>
<tr>
<td>stout-3</td>
<td>10</td>
<td>64</td>
<td>1</td>
<td>-b------</td>
<td>14.5</td>
</tr>
</tbody>
</table>
```


Figure 1: The structure of a machine running the Xen hypervisor, hosting a number of different guest operating systems, including Domain0 running control software in a XenoLinux environment.
User Domains (DomU)

• Use abstracted interfaces managed by Dom0
 ‣ Virtual network InterFaces (VIF)
 • Dom0 can prevent source address spoofing
 ‣ Virtual Block Devices (VBD)
 • Additional reordering and scheduling in Xen

• Receive a static amount of memory
 ‣ Strong Isolation
 ‣ Can be increased with the Balloon Driver
Device View

[enck@stout-0 ~]# /sbin/ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:16:3E:31:33:07
 inet addr:10.0.0.50 Bcast:10.0.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:2029 errors:0 dropped:0 overruns:0 frame:0
 TX packets:27 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:175431 (171.3 KiB) TX bytes:1134 (1.1 KiB)

[enck@stout-0 ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/hda1 4.0G 311M 3.5G 9% /
.tmpfs 35M 4.0K 35M 1% /dev/shm

[enck@stout-0 ~]# free -mt
 total used free shared buffers cached
Mem: 68 25 43 0 1 10
-/+ buffers/cache: 13 55
Swap: 511 0 511
Total: 580 25 555

[enck@stout-0 ~]#
A Review

• Challenges of Virtualization
 ‣ Processor Support
 • All sensitive instructions must be privileged (i.e. must trap)
 • Not the case for x86
 ‣ Problem Areas
 • Syscalls, Page Faults

• Work-arounds
 ‣ Full Virtualization (VMWare)
 ‣ Signal Handers (User-Mode Linux)
Paravirtualization

- **Drawbacks of Full Virtualization**
 - Efficiency
 - Need for real and virtual time (e.g. TCP timeouts)

- **Solution: Paravirtualization**
 - Present a virtual machine abstraction that is similar but not identical to the underlying hardware
 - Requires modification of the guest OS
 - does not require changes to the ABI (guest applications)
 - Xen does this differently than the Denali project
Control Transfer

• Domain to Xen
 ‣ Hypercall
 • synchronous call from a domain to Xen

• Xen to Domain
 ‣ Asynchronous Event Mechanism
 • Replaces device interrupts
 ‣ e.g., received data
 • Similar to traditional UNIX signals (must register callback)
Data Transfer

- **I/O Descriptor Rings**
 - For transferring data between a Domain and Xen
 - Indirectly reference Guest OS managed I/O buffers
 - Four pointers \{(Producer, Consumer) × (Xen, Domain)\}
 - Domains *produce* requests
 - Xen *consumes* requests
 - Xen *produces* responses
 - Domains *consume* responses

Figure 2: The structure of asynchronous I/O rings, which are used for data transfer between Xen and guest OSes.
Virtual Address Translation

• Hardware page tables cause problems
 ‣ No ASID tags on TLB = flush on address space switch

• VMWare: “shadow” page tables (hurts performance)

• Paravirtualization allows Xen to avoid this
 ‣ Xen registers Guest OS page tables directly with MMU
 • Restricts Guest OSes to read-only access
 • Guest OS manages page tables (hypercalls)
 • Xen need only be involved in page table updates
 • Xen in top 64MB
Figure 3: Relative performance of native Linux (L), XenoLinux (X), VMware workstation 3.2 (V) and User-Mode Linux (U).
Applications of VMMs

- Server Consolidation
- Co-Located Hosting Facilities
- Distributed Web Services
- Secure Computing Platforms
- Application Mobility
Xen Since 1.0

• I/O changes
• Live Migration
• SMP for DomUs
• Support for Intel VT-x and AMD Pacifica
 ‣ No more paravirtualization!