Information Preservation in Statistical Privacy and Bayesian Estimation of Unattributed Histograms

Bing-Rong Lin

Department of Computer Science & Engineering
Penn State University

August 14, 2013

(joint work with Daniel Kifer)
Outline

1. Introduction: Privacy, Utility, Usability
2. An Information Paradox
3. Properties for information preservation measures
4. A Consequence: Bayesian Decision Theory
5. Applications to Using Sanitized Data
Scenarios

- One-shot data publishing
 - Data owner publishes differentially private data
Scenarios

- One-shot data publishing
 - Data owner publishes differentially private data

Is it useful?
Scenarios

- One-shot data publishing
 - Data owner publishes differentially private data
 - Data publisher goes on vacation

Is it useful?

Query payment ? , ? , ?

Data user has limited privacy budget

Data owner sells privacy-preserving query answers for
Scenarios

- One-shot data publishing
 - Data owner publishes differentially private data
 - Data publisher goes on vacation
 - Data user must figure out how to use noisy data
Scenarios

- One-shot data publishing
 - Data owner publishes differentially private data
 - Data publisher goes on vacation
 - Data user must figure out how to use noisy data

- Query payment [?, ?, ?]
 - Data owner sells privacy-preserving query answers for
 - Data user has limited privacy budget
Utility Goals

- Scenarios incentivize the following behavior:
- First maximizes information content.
 - Data publishing: choose differentially private algorithm that best preserves statistical information.
 - Selling queries: choose ε-differentially private algorithm that maximizes information content for a fixed ε.
 - Choose algorithm M maximizing some measure $\mu(M)$
Utility Goals

Scenarios incentivize the following behavior:

First maximizes information content.
- Data publishing: choose differentially private algorithm that best preserves statistical information.
- Selling queries: choose ϵ-differentially private algorithm that maximizes information content for a fixed ϵ.
- Choose algorithm \mathcal{M} maximizing some measure $\mu(\mathcal{M})$

Then worry about usability
- Sanitized data may not be in the right form.
- Need to extract information
- Building statistical model
- Making business decisions
Utility Goals

- Scenarios incentivize the following behavior:
 - First maximizes information content.
 - Data publishing: choose differentially private algorithm that best preserves statistical information.
 - Selling queries: choose ϵ-differentially private algorithm that maximizes information content for a fixed ϵ.
 - Choose algorithm \mathcal{M} maximizing some measure $\mu(\mathcal{M})$
 - Then worry about usability
 - Sanitized data may not be in the right form.
 - Need to extract information
 - Building statistical model
 - Making business decisions
- How to define μ?
- How to use the sanitized data?
Outline

1. Introduction: Privacy, Utility, Usability
2. An Information Paradox
3. Properties for information preservation measures
4. A Consequence: Bayesian Decision Theory
5. Applications to Using Sanitized Data
Alice is conducting a survey.

Q: Do you like green eggs and ham?

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.75</td>
</tr>
<tr>
<td>No</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Algorithm M_1

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.6</td>
</tr>
<tr>
<td>No</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Algorithm M_2

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.5</td>
</tr>
<tr>
<td>No</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Alice must choose between sanitizers M_1 and M_2

μ: worst-case error probability?

- Worst-case error probability of M_1: 0.5
- Worst-case error probability of M_2: 0.4
Defining \(\mu \) can be tricky

- Alice is conducting a survey.
 - Q: Do you like green eggs and ham?

<table>
<thead>
<tr>
<th>Input</th>
<th>Algorithm (\mathcal{M}_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.75</td>
</tr>
<tr>
<td>No</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>Algorithm (\mathcal{M}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.6</td>
</tr>
<tr>
<td>No</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Alice must choose between sanitizers \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \)

- \(\mu \): worst-case error probability?
 - Worst-case error probability of \(\mathcal{M}_1 \): 0.5
 - Worst-case error probability of \(\mathcal{M}_2 \): 0.4
 - \(\mathcal{M}_2 \) is better?
Alice is conducting a survey.

- Q: Do you like green eggs and ham?

\mathcal{M}_2 is preferred by worst-case error.
Alice is conducting a survey.

Q: Do you like green eggs and ham?

M_2 is preferred by worst-case error

But consider algorithm A

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.8</td>
</tr>
<tr>
<td>No</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm A</th>
</tr>
</thead>
<tbody>
<tr>
<td>data \rightarrow M_1 \rightarrow A \rightarrow output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.75</td>
</tr>
<tr>
<td>No</td>
<td>0.25</td>
</tr>
</tbody>
</table>

| Algorithm M_1 |

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.6</td>
</tr>
<tr>
<td>No</td>
<td>0.4</td>
</tr>
</tbody>
</table>

| Algorithm M_2 |

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.6</td>
</tr>
<tr>
<td>No</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Alice is conducting a survey.
 Q: Do you like green eggs and ham?

M_2 is preferred by worst-case error

But consider algorithm A

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.8</td>
</tr>
<tr>
<td>No</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.75</td>
</tr>
<tr>
<td>No</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.6</td>
</tr>
<tr>
<td>No</td>
<td>0.4</td>
</tr>
</tbody>
</table>

M_2 can be simulated by running M_1 on data then A on the result.

$A \circ M_1 = M_2$

So M_1 preserves more information.

Need M_2? Post-process output of M_1.

We want a μ that never prefers M_2 over M_1.
Choose the set of outputs \emptyset

Choose loss function $\mathcal{L}(D, \omega)$

- What we “lose” if we output ω when input is D.

Worst-case error $\mu(\mathcal{M}) = \max_D \sum_{\omega \in \emptyset} \mathcal{L}(D, \omega) P(\mathcal{M}(D) = \omega)$

Average error $\mu(\mathcal{M}) = E_D \left[\sum_{\omega \in \emptyset} \mathcal{L}(D, \omega) P(\mathcal{M}(D) = \omega) \right]$
Choose the set of outputs \emptyset

Choose loss function $\mathcal{L}(D, \omega)$
- What we “lose” if we output ω when input is D.

Worst-case error $\mu(\mathcal{M}) = \max_D \sum_{\omega \in \emptyset} \mathcal{L}(D, \omega) P(\mathcal{M}(D) = \omega)$

Average error $\mu(\mathcal{M}) = E_D \left[\sum_{\omega \in \emptyset} \mathcal{L}(D, \omega) P(\mathcal{M}(D) = \omega) \right]$

Theorem: Counterexamples always exist unless μ is constant.
- $\mu(\mathcal{M}_2) > \mu(\mathcal{M}_1)$ but $\mathcal{M}_2 = A \circ \mathcal{M}_1$

Conclusion: They do not measure information the way we want.

Conclusion: Heuristically derived utility measure may have undesirable properties.

Conclusion: Need a testable approach to define μ.
• Axiomatic approach is testable
• \(\mu \) should be chosen based on desirable properties.
• Goal: list properties, then derive \(\mu \).
1. Introduction: Privacy, Utility, Usability
2. An Information Paradox
3. Properties for information preservation measures
4. A Consequence: Bayesian Decision Theory
5. Applications to Using Sanitized Data
Properties for information preservation measures

Sufficiency

- intuition: if M_2 can be simulated by M_1, then $\mu(M_2) \leq \mu(M_1)$.

Axiom (Sufficiency Axiom)

If $M_2 = A \circ M_1$ then $\mu(M_2) \leq \mu(M_1)$

- Caveat: can be violated in other applications
 - M_1 or A are computationally expensive
 - M_1 or A are difficult to implement
 - Aspects of usability
 - Violations of Sufficiency axiom imply information/usability tradeoff (future work).
Intuition: small changes to M_1 cause small changes to amount of information preserved.

Axiom (Continuity)

μ should be continuous in some metric.

$$d(M_1, M_2) = \sup_{i \in I} \| P(M_1(i) = \bullet) - P(M_2(i) = \bullet) \|_1$$
Branching

bullet intuition: the loss in utility (μ) should only depend on the loss in information.
Properties for information preservation measures

Branching

- **Intuition**: The loss in utility (μ) should only depend on the loss in information.

(Data Sanitizer \mathcal{M})

| Output ω_1 | $P(\omega_1 | i_1)$ | $P(\omega_1 | i_2)$ | ... | $P(\omega_1 | i_n)$ |
|-------------------|---------------------|---------------------|-----|---------------------|
| Output ω_2 | $P(\omega_2 | i_1)$ | $P(\omega_2 | i_2)$ | ... | $P(\omega_2 | i_n)$ |
| Output ω_3 | $P(\omega_3 | i_1)$ | $P(\omega_3 | i_2)$ | ... | $P(\omega_3 | i_n)$ |
| ... | ... | ... | ... | ... |

(Data Sanitizer \mathcal{M}^* – merge first two rows of \mathcal{M})

| Output ω^* | $P(\omega_1 \lor \omega_2 | i_1)$ | $P(\omega_1 \lor \omega_2 | i_2)$ | ... | $P(\omega_1 \lor \omega_2 | i_n)$ |
|-------------------|-----------------------------------|-----------------------------------|-----|-----------------------------------|
| Output ω_3 | $P(\omega_3 | i_1)$ | $P(\omega_3 | i_2)$ | ... | $P(\omega_3 | i_n)$ |
| ... | ... | ... | ... | ... |

What information is lost in \mathcal{M}^*?
- To distinguish between the case where \mathcal{M} outputs ω_1 and the case where \mathcal{M} outputs ω_2
Likelihood principle tells us
All of the information in a sample is contained in the likelihood function
- If output is ω_1, statistical analysis should only depend on probabilities of generating ω_1.
- If output is ω_2, statistical analysis should only depend on probabilities of generating ω_2.
- If output is $\omega_1 \lor \omega_2$ (we don’t know which one) then analysis should depend only on the probabilities of generating $\omega_1 \lor \omega_2$.

Axiom (Branching)

$$\mu(M) = \mu(M^*) + G(\begin{pmatrix} P(\omega_1 | i_1), & P(\omega_1 | i_2), & \ldots & P(\omega_1 | i_n) \\ P(\omega_2 | i_1), & P(\omega_2 | i_2), & \ldots & P(\omega_2 | i_n) \end{pmatrix})$$

This is a loss in utility (increase in error). Change only depends on
- Probabilities of generating ω_1
- Probabilities of generating ω_2
Outline

1. Introduction: Privacy, Utility, Usability
2. An Information Paradox
3. Properties for information preservation measures
4. A Consequence: Bayesian Decision Theory
5. Applications to Using Sanitized Data
What is Bayesian Decision Theory?

- Example: Data Analysis
- States: set of possible databases $\mathcal{I} = \{D_1, D_2, \ldots \}$
- Prior: $P(\text{data} = D_i)$
- Evidence: sanitized output $\omega = \mathcal{M}(\text{data})$
- Actions: \mathcal{A}
 - Set of possible model parameter values
 - Set of possible query answers
- Cost function $\mathcal{L} : \mathcal{A} \times \mathcal{I} \rightarrow \mathbb{R}$
- Choose action minimizing expected cost.

$$a^* = \arg\min_{a \in \mathcal{A}} \sum_{i=1}^{\infty} \mathcal{L}(a, D_i) P(\text{data} = D_i \mid \mathcal{M}(\text{data}) = \omega)$$

$$\text{cost for}(\mathcal{M}, \omega) = \min_{a \in \mathcal{A}} \sum_{i=1}^{\infty} \mathcal{L}(a, D_i) P(\text{data} = D_i \mid \mathcal{M}(\text{data}) = \omega)$$
A Consequence: Bayesian Decision Theory

Consequence of 3 Axioms

Axiom (Sufficiency Axiom)

If $\mathcal{M}_2 = A \circ \mathcal{M}_1$ then $\mu(\mathcal{M}_2) \leq \mu(\mathcal{M}_1)$

Axiom (Continuity)

μ should be continuous in some metric.

$$d(\mathcal{M}_1, \mathcal{M}_2) = \sup_{i \in I} ||P(\mathcal{M}_1(i) = \bullet) - P(\mathcal{M}_2(i) = \bullet)||_1$$

Axiom (Branching)

$$\mu(\mathcal{M}) = \mu(\mathcal{M}^*) + G \left(P(\omega_1 | i_1), P(\omega_1 | i_2), \ldots, P(\omega_1 | i_n) \right) + G \left(P(\omega_2 | i_1), P(\omega_2 | i_2), \ldots, P(\omega_2 | i_n) \right)$$
Theorem

\(\mu \) satisfies the three axioms if and only if \(\mu \) is (negative) average error of a Bayesian decision maker.

- There exists a set \(A \) of actions
- There exists a cost function \(\mathcal{L} \)
- There exists a prior \(P(\text{data} = D_i) \)
- Such that
 \[
 \mu(M) = -\sum_\omega \text{cost}_{\text{for}}(M, \omega)P(\omega)
 \]

Consequence: an optimization criteria in algorithm design.

Consequence: suggestion for how to analyze sanitized data.
 - Axioms do not mention priors, Bayes’ rule, etc.
 - Another (noncircular) justification for Bayesian methods.
 - Axiomatic approach is somewhat testable.
Outline

1. Introduction: Privacy, Utility, Usability
2. An Information Paradox
3. Properties for information preservation measures
4. A Consequence: Bayesian Decision Theory
5. Applications to Using Sanitized Data
Choosing a data sanitizer M to maximize information measure μ
 \[\approx \text{choose } M \text{ to make sure Bayesian Decision Theory works well.} \]

Validation: Need to try Bayesian Decision Theory on many problems.

One problem: sorted histogram [?].

Add Laplace noise to each bucket for Differential Privacy

Goal: estimate the original sorted histogram
Choosing a data sanitizer \mathcal{M} to maximize information measure μ
 - \approx choose \mathcal{M} to make sure Bayesian Decision Theory works well.

Validation: Need to try Bayesian Decision Theory on many problems.

One problem: sorted histogram $[?]$.

Add Laplace noise to each bucket for Differential Privacy

Goal: estimate the original sorted histogram

Nontrivial Problem
 - Prior methods not applicable (e.g., $[?]$).
Sorted Histogram Problem

- **What does Bayesian decision do?**
- **Components of Bayesian decision**
 - Prior: uniform over sorted histograms
 - Set of actions: sorted histograms
 - Loss function: squared loss between original and reconstructed histogram
 - Evidence: a sanitized output $\omega = M(data)$
- **Best action**: expected posterior sorted histogram $E_{D|\omega}[D]$.
- **But how?**
 - The problem can be modeled by hidden Markov Model (HMM) and the algorithm is based on forward-backward algorithm.
- **Comparisons**
 - Least-squares (LS) [?] (does not use probabilities of output).
 - Maximum likelihood (ML) (does not use loss function).
Number of bins (n): 11,342
Maximum value (m): 1,678
Running Time:
- LS: $O(n)$
- ML: $O(n \log(n))$
- HMM: $O(nm^2)$
Error Results - Social Network

<table>
<thead>
<tr>
<th>Estimator</th>
<th>(\mu(\text{error}))</th>
<th>(\sigma(\text{error}))</th>
<th>Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{S}_{HMM})</td>
<td>577.2</td>
<td>49.1</td>
<td>100</td>
</tr>
<tr>
<td>(\hat{S}_{LS})</td>
<td>1,111.2</td>
<td>66.2</td>
<td>0</td>
</tr>
<tr>
<td>(\hat{S}_{ML})</td>
<td>889.4</td>
<td>52.0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\epsilon = 1 \)

<table>
<thead>
<tr>
<th>Estimator</th>
<th>(\mu(\text{error}))</th>
<th>(\sigma(\text{error}))</th>
<th>Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{S}_{HMM})</td>
<td>1,494.5</td>
<td>114.0</td>
<td>100</td>
</tr>
<tr>
<td>(\hat{S}_{LS})</td>
<td>2,793.7</td>
<td>163.4</td>
<td>0</td>
</tr>
<tr>
<td>(\hat{S}_{ML})</td>
<td>2,197.8</td>
<td>147.6</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\epsilon = 0.5 \)

<table>
<thead>
<tr>
<th>Estimator</th>
<th>(\mu(\text{error}))</th>
<th>(\sigma(\text{error}))</th>
<th>Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{S}_{HMM})</td>
<td>7,376.5</td>
<td>1,360.3</td>
<td>100</td>
</tr>
<tr>
<td>(\hat{S}_{LS})</td>
<td>21,983.1</td>
<td>2,324.9</td>
<td>0</td>
</tr>
<tr>
<td>(\hat{S}_{ML})</td>
<td>16,430.9</td>
<td>1,720.4</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\epsilon = 0.1 \)
Applications to Using Sanitized Data

Error Results - Network

- **Number of bins (n):** 65,536
- **Maximum value (m):** 1,423
- **Running Time:**
 - LS: $O(n)$
 - ML: $O(n \log(n))$
 - HMM: $O(nm^2)$

Number of bins (n): 65,536
Maximum value (m): 1,423
Running Time:
- LS: $O(n)$
- ML: $O(n \log(n))$
- HMM: $O(nm^2)$
Error Results - Network

<table>
<thead>
<tr>
<th>Estimator</th>
<th>μ(error)</th>
<th>σ(error)</th>
<th>Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{S}_{HMM}</td>
<td>166.3</td>
<td>29.4</td>
<td>100</td>
</tr>
<tr>
<td>\hat{S}_{LS}</td>
<td>264.9</td>
<td>33.9</td>
<td>0</td>
</tr>
<tr>
<td>\hat{S}_{ML}</td>
<td>227.3</td>
<td>31.7</td>
<td>0</td>
</tr>
<tr>
<td>$\epsilon = 0.5$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\hat{S}_{HMM}</td>
<td>438.8</td>
<td>73.2</td>
<td>100</td>
</tr>
<tr>
<td>\hat{S}_{LS}</td>
<td>751.8</td>
<td>98.8</td>
<td>0</td>
</tr>
<tr>
<td>\hat{S}_{ML}</td>
<td>630.6</td>
<td>87.6</td>
<td>0</td>
</tr>
<tr>
<td>$\epsilon = 0.1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\hat{S}_{HMM}</td>
<td>4,576.0</td>
<td>1,336.4</td>
<td>99</td>
</tr>
<tr>
<td>\hat{S}_{LS}</td>
<td>8,297.5</td>
<td>1,750.0</td>
<td>0</td>
</tr>
<tr>
<td>\hat{S}_{ML}</td>
<td>6,972.9</td>
<td>1,556.7</td>
<td>1</td>
</tr>
</tbody>
</table>
Number of bins (n): 32,768

Maximum value (m): 496

Running Time:
- LS: $O(n)$
- ML: $O(n \log(n))$
- HMM: $O(nm^2)$
Error Results - Query Log

<table>
<thead>
<tr>
<th>Estimator</th>
<th>μ(error)</th>
<th>σ(error)</th>
<th>Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{S}_{HMM}</td>
<td>384.6</td>
<td>35.0</td>
<td>100</td>
</tr>
<tr>
<td>\hat{S}_{LS}</td>
<td>779.1</td>
<td>49.5</td>
<td>0</td>
</tr>
<tr>
<td>\hat{S}_{ML}</td>
<td>624.2</td>
<td>43.2</td>
<td>0</td>
</tr>
<tr>
<td>$\epsilon = 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimator</th>
<th>μ(error)</th>
<th>σ(error)</th>
<th>Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{S}_{HMM}</td>
<td>1,024.5</td>
<td>111.5</td>
<td>100</td>
</tr>
<tr>
<td>\hat{S}_{LS}</td>
<td>2,121.6</td>
<td>144.5</td>
<td>0</td>
</tr>
<tr>
<td>\hat{S}_{ML}</td>
<td>1,664.2</td>
<td>124.9</td>
<td>0</td>
</tr>
<tr>
<td>$\epsilon = 0.5$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimator</th>
<th>μ(error)</th>
<th>σ(error)</th>
<th>Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{S}_{HMM}</td>
<td>8,277.5</td>
<td>1,454.6</td>
<td>100</td>
</tr>
<tr>
<td>\hat{S}_{LS}</td>
<td>17,261.3</td>
<td>2,070.7</td>
<td>0</td>
</tr>
<tr>
<td>\hat{S}_{ML}</td>
<td>13,062.2</td>
<td>1,507.6</td>
<td>0</td>
</tr>
<tr>
<td>$\epsilon = 0.1$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applications to Using Sanitized Data

Conclusions

- Formal justification on using expected error of Bayesian decision maker as a information preservation measure
- Bayesian decision theory should play a role in processing sanitized data
- Need efficient algorithms for
 - Bayesian decision for complex noise distribution
 - Designing privacy algorithm maximizing information retention
- Information preservation and usability tradeoff need to be studied more formally
Questions?