THEORY OF RESIDUAL KRYLOV METHODS

Che Rung Lee
G. W. Stewart
Department of Computer Science
University of Maryland
BACKGROUND

- We will be concerned with Krylov sequence methods for finding eigenpairs of a matrix A of order n.
- Typically such methods produce a sequence of orthonormal matrices
 $$U_k = (u_1 \ u_2 \ \cdots \ u_k)$$
 spanning the kth Krylov subspace $\mathcal{K}_k(A, u_1)$.
- Eigenpair approximations are recovered by the Rayleigh–Ritz procedure.
 - Form the Rayleigh quotient $B = U_k^* A U_k$.
 - Compute selected eigenpairs (μ, y) of B.
 - Test the Ritz pair $(\mu, z = U y)$ for convergence.
THE EFFECTS OF ERRORS

- Errors in the u_k are fatal.

- For example, a single error in u_2 of size ϵ will cause the Ritz pairs to stagnate at a level proportional ϵ.
 - Heuristically, the reason is that the error destroys the polynomial character of the Krylov sequence.

- An arbitrary starting subspace can be regarded as a big error.
 - If U_2 is not a Krylov subspace, the iteration will stagnate.
 - Even if the desired eigenvector x is well represented in U_2.

Expansion by Residuals
EXPANSION BY RESIDUALS

• In the Arnoldi process, U_k is expanded by orthogonalizing Au_k.

• In the residual Krylov method, we compute a candidate Ritz pair (μ, z) approximating a target eigenpair (λ, x) and orthogonalize the residual

$$r = A z - \mu z.$$

• Without error this is the same as the Arnoldi expansion.
 ○ In fact the residuals all line up with u_{k+1}.

• With error the two methods behave differently.
SHIFT-INVERT ENHANCEMENT

- In the Arnoldi method, one frequently iterates with
 \((A - \sigma I)^{-1}\), where \(\sigma\) is a shift near the desired eigenpairs.
- In this case the system
 \[(A - \sigma I)w = u_k\]
 must be solved to full accuracy.
- The RK method orthogonalizes the vector
 \[w = (A - \sigma I)^{-1}(Az - \mu z),\]
 where \((z, \mu)\) is a candidate Ritz pair (wrt \(A\)).
 - This method is related to the Cayley transform method investigated by Lehoucq and Meerbergen.
- These mathematically equivalent methods behave differently in the presence of error.
SOME EXAMPLES

• The matrix is

\[A = X \text{diag}(1, .95, .95^2, \ldots, .95^{99}) X^{-1}, \]

where \(X \) consists of random normal deviates.

• Four experiments.
 - Arnoldi with and without error.
 - Residual Krylov with target 1.0.
 - Residual Krylov switching targets midstream.
 - Residual Krylov with shift-invert.

• The relative error was \(10^{-3} \).
THE RESULTS

1. Krylov with and without error

2. Residual Krylov: target 1.0

3. Residual Krylov: target 1.0 then 0.95

4. IPM and Residual Krylov
SOME HISTORY

- In writing my book on eigensystems, I introduced the Jacobi–Davidson method as a variant of Newton's method.
 - Jacobi–Davidson with error is an inexact Newton method and converges linearly.
- During a visit (spring 2001) to Utrecht, I tried some experiments and observed the Krylov-like superlinear convergence.
- Henk van der Vorst and I showed that the same held for simple shift-invert with errors.
- Gerard Sleijpen suggested we try residual expansion on simple Arnoldi without inverses.
ANALYSIS: A PREVIEW

- The problem is to explain the Krylov-like convergence.

- The strategy is to show that the kth RK subspace is an exact Krylov subspace of $\tilde{A}_k = A + E_k$.

- We will argue that that the \tilde{A}_k contain increasingly accurate approximations to the target x.

- If the the Ritz vectors \tilde{x}_k of the \tilde{A}_k corresponding to x exhibit typical convergence, then they converge to x.
THE RESIDUAL KRYLOV EQUATION I

• When error is present, we orthogonalize

\[r_k = \hat{r}_k + f_k = (AU_ky_k - \mu_kU_ky_k) + f_k \]

against \(U_k \) to get \(u_{k+1} \).

• Let \(g_k = U_k^*\hat{r}_k \). Then

\[\gamma_ku_{k+1} = \hat{r}_k - U_kg_k + f_k^\perp = AU_ky_k - \mu_kU_ky_k - U_kg_k + f_k^\perp, \]

where \(f_k^\perp \) is the projection of \(f_k \) onto the orthogonal complement of \(U_k \).
THE RESIDUAL KRYLOV EQUATION II

\[\gamma_k u_{k+1} = AU_k y_i - \mu_k U_k y_k - U_k g_k + f_k^\perp, \]

- Let
 - \(\hat{g}_i = (g_i^* \ \gamma_i \ 0_{k-i-1})^* \) and \(G_k = (\hat{g}_1 \cdots \hat{g}_{k-1} \ g_k) \).
 - \(Y_k \) be the upper triangular matrix consisting of the \(y_i \).

Then

\[AU_k Y_k = U_k (Y_k M_k + G_k) + \gamma_k u_{k+1} e_k^* + F_k^\perp \]

where \(F_k^\perp = (f_1^\perp \cdots f_k^\perp) \) and \(M_k = \text{diag}(\mu_1, \ldots, \mu_k) \).

- Multiplying by \(Y_k^{-1} \) we get

\[AU_k = U_k (Y_k M_k + G_k) Y_k^{-1} + \frac{\gamma_k}{\eta_k} u_{k+1} e_k^* + F_k^\perp Y_k^{-1} \]

where \(\eta_k \) is the last component of \(y_k \).
THE CANDIDATE RITZ VECTOR

\[AU_k = U_k (Y_k M_k + G_k) Y_k^{-1} + \frac{\gamma_k}{\eta_k} u_{k+1} e_k^* + F_k^\perp Y_k^{-1}. \]

- The vector \(y_k \) is an eigenvector of the Rayleigh quotient

\[U_k^T A U_k = (Y_k M_k + G_k) Y_k^{-1} + U_k^* F_k^\perp Y_k^{-1}. \]

- \(U_k^* F_k^\perp Y_k^{-1} \) is strictly lower triangular.

- The last column of \(U_k^* F_k^\perp \) is zero. Hence

\[[(Y_k M_k + G_k) Y_k^{-1} + U_k^* F_k^\perp Y_k^{-1}] y_k = (Y_k M_k + G_k) Y_k^{-1} y_k, \]

so that \(y_k \) is also an eigenvector of \((G_k + Y_k D_k) Y_k^{-1} \).
THE BACKWARD ERROR

\[AU_k = U_k(Y_k M_k + G_k)Y_k^{-1} + \frac{\gamma_k}{\eta_k} u_{k+1} e_k^* + F_k^\perp Y_k^{-1}. \]

If we set

\[E_k = -F_k^\perp Y_k^{-1} U_k^\ast \]

Then

\[\tilde{A}_k U_k = (A + E_k) U_k = U_k (Y_k M_k + G_k) Y^{-1} + \frac{\gamma_k}{\eta_k} u_{k+1} e_k^*. \]

Thus \(\mathcal{R}(U_k) \) is a Krylov subspace of a perturbed \(A \).

\(\circ \) However, the perturbation is not small.

Note that the primitive Ritz vector \(\tilde{y}_k \) of \(\tilde{A}_k \) and \(y_k \) of \(A_k \) are the same.
PROPERTIES OF \(E \)

\[
E_k = -F_k^\perp Y_k^{-1} U_k^*
\]

\(\diamondsuit\)

- We now make the assumption that the error \(f_k \) satisfies
 \[
 \|f_k\| \leq \epsilon \|r_k\|.
 \]

- To analyze the residual Krylov method, we need to make the following assumption.

 There is a constant \(C_1 \) such that
 \[
 \|E_k\| \leq C_1 \epsilon
 \]

- We are not able to prove this, but empirically it appears to hold.

- The problem is that \(Y_k^{-1} \) blows up as the process converges.
\[E_k = -F_k^\perp Y_k^{-1}U_k^* \]

- \(E_k \) consists of two parts: \(F_k^\perp \) and \(Y^{-1} \).

- The \(i \)th column of the matrix \(F \) is bounded by \(\epsilon \| r_i \| \equiv \epsilon \rho_i \).

Hence we can represent the norms of the \(f_i \) by

\[\epsilon e^T \text{diag}(\rho_i). \]
HEURISTIC JUSTIFICATION II

\[E_k = -F_k \perp Y_k^{-1} U_k^* \]

- We have \(y_{ij} \rightarrow u_i^T x \equiv \beta_i \)

- Suppose (by some miracle) the convergence is immediate. Then

\[Y_k = \text{diag}(\beta_k) \ast \text{triu(ones(k))}. \]

Hence

\[Y_k^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \\ 1 & -1 \\ \cdots & \cdots \end{pmatrix} \text{diag}(\beta_i)^{-1}. \]
HEURISTIC JUSTIFICATION III

\[E_k = -F_k^\perp Y_k^{-1} U_k^* \]

\[\epsilon \mathbf{e}^T \begin{pmatrix} \rho_1/\gamma_1 & -\rho_1/\gamma_2 \\ \rho_2/\gamma_2 & -\rho_2/\gamma_3 \\ \rho_3/\gamma_3 & -\rho_3/\gamma_4 \\ \vdots & \vdots \end{pmatrix} \]

- Hence \(F_k^\perp \) should have the structure

- If the \(\rho_i \) and \(\gamma_i \) are proceeding apace to zero, \(E_k \) will be of order \(\epsilon \).

- The actual \(Y_k^{-1} \) has elements that shrink as one proceeds to the northeast.
HITTING THE TARGET

• Let the target be \((\lambda, x)\), where \(\lambda\) is simple.

• By a rather technical argument, we can show that there are constants \(c\) and \(C_2\) such that if \(\epsilon \leq c\) then there is a unique eigenpair \((\tilde{\lambda}_k, \tilde{x}_k)\) of \(\tilde{A}\) satisfying

\[
\|\tilde{x}_{k+1} - x_k\| \leq C_2\|r_k\|\epsilon
\]

• This says that if \(C_2\epsilon < 1\) then \(\tilde{A}_{k+1}\) contains a better approximation \(\tilde{x}_{k+1}\) to \(x\) than \(\|r_k\|\) indicates.
UNIFORM CONVERGENCE OF ARNOLDI

- Unfortunately, we are working with the Ritz vector \(\tilde{z}_k \) of \(A_k \), not \(\tilde{x}_k \). To handle this we will assume the following result.

- Let \(\hat{A} = A + E \). Then there are constants \(C_3 \) and \(\kappa_i \to 0 \) such that if \(\| E \| \leq C_3 \), then:
 - There is a unique eigenpair \((\hat{\lambda}, \hat{x}) \) approximating \((\lambda, x) \).
 - Moreover, the corresponding Ritz vectors \(\hat{z}_k \) satisfy
 \[\| \hat{z}_k - \hat{x} \| \leq \kappa_k. \]
PUTTING IT TOGETHER

For ϵ sufficiently small
\[
\|x - z_{k+1}\| = \|x - \tilde{z}_{k+1}\| \leq \|x - \tilde{x}_{k+1}\| + \|\tilde{x}_{k+1} - \tilde{z}_{k+1}\|
\]
\[
= C\|r_k\| \epsilon + \kappa_k
\]

Hence
\[
\|r_{k+1}\| \leq 6(C\|r_k\| \epsilon + \kappa_k)
\]
It follows that if $6C\epsilon < 1$ and $\sum_{k=1}^{\infty} \kappa_k < \infty$, then
\[
\|r_k\| \to 0.
\]

- The rate is essentially the slower of the rates of approach of $(6C\epsilon)^k$ and κ_k to zero.
 - For epsilon small, we get essentially Krylov-like convergence.
THE SHIFT-INVERT ALGORITHM

- Orthogonalize \((A - \sigma I)^{-1}(Az_k - \mu_k z_k)\) against \(U_k\).
 - The residual \(Az_k - \mu_k z_k\) must be calculated to full accuracy.
 - However, errors can be tolerated in the solves.
- A similar convergence result holds for the shift-invert algorithm.
- Once the target eigenpair has been found, one can switch to another target.
 - While the first target is being found, an approximation to the second is emerging—but only to the level of \(\epsilon\).
 - Convergence to the old target has not been observed.
INITIAL SUBSPACES

• Switching targets is an example of an initial subspace that is not Krylov.
 ○ However, it is a well prepared subspace.

• An arbitrary subspace may not initially work, even when it contains a modest approximation to the target vector.
 ○ The problem seems to be that the Rayleigh–Ritz process may not reproduce the approximation.
 ○ After a while the typical residual Krylov behavior sets in.

• This area needs further consideration.