Write a MATLAB (or octave) code to implement either multiple shooting, the midpoint method, or the trapezoid method to solve the two-point boundary value problem

\[x'(t) = A(t)x(t) + q(t), \quad a \leq t \leq b \]

(1)

\[B_a x(a) + B_b x(b) = \beta \]

(2)

You should produce a MATLAB function of the form

\[
\text{function } [x,t]=\text{BVPsolve}(f,f0,a,b,Ba,Bb,beta,N)\text{ function}
\]

where \(f \) is a function handle (or string) denoting the function

\[f(t,x) = A(t)x(t) + q(t), \]

\(f0 \) is a function handle or string denoting the function

\[f_0(t,x) = A(t)x(t), \]

\(a \) and \(b \) are the boundary points, \(\beta \) is the vector of boundary values, and \(N \) is the number of shooting points. Thus the shooting points will be \(a = t_0 < t_1 < \ldots < t_N = b \) with \(t_j = a + jh \).

If you are doing multiple shooting use the Dormand–Prince method developed earlier this semester with \(tol = 1e-7 \) and \(hmin = 1e-5 \). This should be accurate enough for our purposes. None of the test problems are “stiff.”

You may assume that the boundary conditions are separable. That is,

\[
\begin{pmatrix}
B_a & B_b \\
\bar{B}_a & 0 \\
0 & \bar{B}_b
\end{pmatrix}
\]

If you elect to make this assumption, your program is better off to input \(\bar{B}_a \) and \(\bar{B}_b \). In creating the large linear system that you need to solve, use the command

\[M = \text{sparsel}(M) \]

1
just do the commands
$\gg [L,U]=lu(M)$;
$\gg d = L\backslash r$
$\gg c = U\backslash d$

For this project, you should turn in your MATLAB code, the value of x and t at the shooting points, and graphs of the functions. That is turn in the plot of

\[
\text{plot}(t,x(1,:),t,x(2,:), \text{ etc, } t,x(n,:))
\]

where n is the number of components of x. The value of n is either 2 or 3 for the sample problems.

The test problems are as follows **Test Problem 1**

\[
u'' = 2u'' + u' - 2u + e^{-2t} \]

\[
u'(0) = 1, \quad u(1) - u'(1) = 0, \quad u(1) = 1.
\]

Choose $N = 10$.

Test Problem 2 Same as test problem 1 except

\[
u'(0) = 1, \quad u(1) - u'(1) = 0, \quad u(0) = 1.
\]

The general solution to this differential equation is

\[
u(t) = \gamma_1 e^t + \gamma_2 e^{2t} + \gamma_3 e^{-t} - \frac{1}{12} e^{-2t}.
\]

Test Problem 3

\[-(p(t)u')' + r(t)u = 0\]

where

\[p(t) = 1 - t^2, \quad r(t) = -n(n + 1).\]

Test this problem with $n = 0, 1, 2, 3$ using the boundary conditions

\[
u(0) = 1, \quad u'(0.5) = 0, \quad n = 0,
\]

\[
u(0) = 0, \quad u'(0.5) = 1, \quad n = 1,
\]

\[
u(0) = -0.5, \quad u'(0.5) = 1.5, \quad n = 2,
\]

2
\[u(0) = 0, \quad u'(0.5) = 3/8, \quad n = 3. \]

The solutions to this test problem are the first four Legendre polynomials.

\[u(t) = P_0(t) = 1, \]

\[u(t) = P_1(t) = t, \]

\[u(t) = P_2(t) = 1.5t^2 - 0.5, \]

\[u(t) = P_3(t) = 2.5t^3 - 1.5t. \]

For this test problem, use \(N = 5 \). I will discuss in class a way of writing this as a system other than the standard one.