Lecture # 29
Two-Point Boundary Value Problems and Other Matters

First things first.
There is a matrix A (actually many) such that

$$\rho(A) < \|A\|$$

for any induced norm $\| \cdot \|$. One such matrix is

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}. $$

Note that

$$\rho(A) = 0,$$

but since $A \neq 0$, for any norm

$$\|A\| > 0.$$

One common form for the two-point boundary value problem is

\begin{align*}
y''(x) &= f(x, y, y') \quad (1) \\
y(a) &= \beta_1, \quad y(b) = \beta_2. \quad (2)
\end{align*}

Using our usually first order system transformation this is

$$y_1 = y, \quad y_2 = y'.$$

and becomes

\begin{align*}
y_1'(x) &= y_2(x) \\
y_2'(x) &= f(x, y_1, y_2) \\
y_1(a) &= \beta_1, \quad y_1(b) = \beta_2.
\end{align*}

Notice that there are no conditions on $y_2(\cdot)$ at all. Some existence conditions are discussed in your book. Below is one example.
Example 1

\[y''(x) = y \]
\[y(0) = 27, \quad y(\pi/2) = -33 \]

All of the solutions of the first equation are of the form

\[y(x) = \alpha_1 \sin x + \alpha_2 \cos x. \]

Using the boundary conditions

\[y(0) = 27 = \alpha_2, \quad y(\pi/2) = -33 = \alpha_1. \]

Thus

\[y(x) = -33 \sin x + 27 \cos x. \]

To simplify the discussion (this is just a taste, after all), we consider the linear two-point boundary value problem

\[y'(x) = A(x)y(x) + \phi(x), \quad a < x < b \]
\[B_a y(a) + B_b y(b) = \beta \]

(3)

To solve this correctly, we have solve a lot of initial value problems.

Last time, we did simple shooting. First, we solve for a matrix function \(Y(x) \in \mathbb{R}^{n \times n} \) such that

\[Y'(x) = A(x)Y(x) \]
\[Y(a) = I \]

The matrix \(Y(x) \) is the general solution to this ordinary differential equation. Then we solve for a particular solution to

\[v'(x) = A(x)v(x) + \phi(x) \]
\[v(a) = 0 \]

Sometimes we choose \(v(a) = \alpha \), but zero initial conditions are usually convenient.

All solutions to this ordinary differential equation have the form

\[y(x) = Y(x)s + v(x) \]
We note that
\[y(a) = s, \]
so we are, in effect, choosing the initial conditions. To find \(s \), we plug \(y(x) \) into the initial conditions, thus
\[B_a y(a) + B_b y(b) = \beta \]
so that
\[B_a s + B_b (Y(b)s + v(b)) = \beta. \]
Thus,
\[Ms = \hat{\beta} \]
where
\[M = B_a + B_b Y(b) \]
and
\[\hat{\beta} = \beta - B_b v(b). \]

Since the \((n + 1)\) ordinary differential equations are solved on different meshes, we have to solve the \((n + 2)^{nd}\) equation
\[y'(x) = A(x)y(x) + \phi(x) \]
\[y(a) = s \]
to get the solution.

Simple shooting has some difficulties. The computed \(y \) may not satisfy the boundary conditions that well and the matrix \(M \) can be very badly conditioned.

Instead, we use multiple shooting. We still do about the work of solving \((n + 1)\) initial value problems. We pick mesh points
\[a = x_0 < x_1 < \ldots < x_N < x_{N+1} = b. \]
For each interval \([x_j, x_{j+1}], j = 0, 1, \ldots, N\) we solve
\[Y'_j(x) = A(x)Y_j(x) \]
\[Y_j(x_j) = F_j \]
Usually, \(F_j \) is chosen to be \(I_n \). We then solve
\[v_j(x) = A(x)v_j(x) + \phi(x) \]
\[v_j(x_j) = \alpha_j \]
Again, α_j is often chosen to be 0, but not always.

Then

$$y(x_j) = Y_j(x_j)s_j + v_j(x_j) = F_j s_j + \alpha_j, \quad j = 0, \ldots, N$$

and

$$y(x_{N+1}) = Y_N(x_{N+1})s_N + v_N(x_{N+1}).$$

We exploit continuity, note that

$$y(x_{j+1}) = Y_j(x_{j+1})s_j + v_j(x_{j+1}) = F_{j+1} s_{j+1} + \alpha_{j+1}$$

so that

$$Y_j(x_{j+1})s_j - F_{j+1} s_{j+1} = \alpha_{j+1} - v_j(x_{j+1}), \quad j = 0, \ldots, N - 1.$$

We then add the boundary conditions. Namely,

$$B_a y(x_0) + B_b y(x_N) = \beta$$

which leads to

$$B_a (F_0 s_0 + \alpha_0) + B_b (Y_N(x_{N+1})s_N + v_N(x_{N+1}) = \beta.$$

Some rearranging yields

$$B_a F_0 s_0 + B_b Y_N(x_{N+1})s_N = \beta - B_a \alpha_0 - B_b v_N(x_{N+1}).$$

Thus, we can solve for

$$s = (s_0, \ldots, s_N)^T.$$

This leads to the equation

$$Ms = \hat{\beta},$$

where

$$M = \begin{pmatrix}
B_a F_0 & \cdots & \cdots & \cdots & \cdots & B_b Y_N(x_{N+1}) \\
Y_0(x_1) & -F_1 & \cdots & \cdots & \cdots & \cdots \\
0 & Y_1(x_2) & -F_2 & \cdots & \cdots & \cdots \\
0 & 0 & Y_2(x_3) & -F_3 & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & Y_{N-1}(x_N) & -F_N
\end{pmatrix}$$
and

\[
\hat{\beta} = \begin{pmatrix}
\beta - B_a \alpha_0 - B_b v_N(x_{N+1}) \\
\alpha_1 - v_0(x_1) \\
\alpha_2 - v_1(x_2) \\
\alpha_3 - v_2(x_3) \\
\vdots \\
\alpha_N - v_{N-1}(x_N)
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\hat{\beta}_0 \\
\hat{\beta}_2 \\
\hat{\beta}_3 \\
\vdots \\
\hat{\beta}_N
\end{pmatrix}
\]

There is a very straightforward algorithm to solve this linear system. We will compute its PLU decomposition (by Gaussian elimination).

\[M = LR.\]

The matrix is already in block bidiagonal form except for the last block row. It is somewhat large, \(n(N+1) \times n(N+1)\), but it has only two \(n \times n\) blocks per block row, so the storage is \(2n^2(N+1)\). You do not need any special data structures for this matrix either.

We let \(L\) be the result of be the product of \(N\) PLU factorizations.

\[L = L_1 \cdots L_N\]

described below. For instances, we construct \(P_1\) and \(L_1\) from \(\tilde{P}_1\) and \(\tilde{L}_1\) such that

\[
\begin{pmatrix}
1 & 2 & N+1 & rhs \\
1 & 2 & N+1 & rhs
\end{pmatrix}
\begin{pmatrix}
B_a F_0 & 0 & B_b v_N(x_{N+1}) & \hat{\beta}_0 \\
Y_0(x_1) & -F_1 & 0 & \hat{\beta}_1
\end{pmatrix}
= \tilde{P}_1 \tilde{L}_1
\begin{pmatrix}
1 & 2 & N+1 & rhs \\
1 & 2 & N+1 & rhs
\end{pmatrix}
\begin{pmatrix}
R_{11} & R_{32} & R_{1, N+1} & \tilde{\beta}_0 \\
0 & \tilde{R}_{22} & R_{2, N+1} & \tilde{\beta}_1
\end{pmatrix}
\]

and let

\[L_1 = \begin{pmatrix}
\tilde{P}_1 \tilde{L}_1 & 0 \\
0 & I_{(N-1)n}
\end{pmatrix}.
\]
Then for $k = 2, \ldots, N - 1$ we have

$$
\begin{pmatrix}
 k & k + 1 & N + 1 & \text{rhs} \\
 k + 1 & 0 & \tilde{R}_{k,N+1} & \tilde{\beta}_{k-1} \\
 Y_k(x_{k+1}) & -F_{k+1} & 0 & \tilde{\beta}_k
\end{pmatrix} = \tilde{P}_k \tilde{L}_k
\begin{pmatrix}
 k & k + 1 & N + 1 & \text{rhs} \\
 k + 1 & 0 & \tilde{R}_{k+1,N+1} & \tilde{\beta}_{k-1} \\
 0 & \tilde{R}_{k+1,k+1} & 0 & \tilde{\beta}_k
\end{pmatrix}
$$

Then

$$
L_k = \begin{pmatrix}
 I_{(k-1)n} & 0 & 0 \\
 0 & \tilde{P}_k \tilde{L}_k & 0 \\
 0 & 0 & I_{(N-k)n}
\end{pmatrix}
$$

For the last block row, we have

$$
\begin{pmatrix}
 N & N + 1 & \text{rhs} \\
 k + 1 & 0 & \tilde{R}_{N+1,N+1} & \tilde{\beta}_{N-1} \\
 Y_{N-1}(x_N) & -F_N & 0 & \tilde{\beta}_N
\end{pmatrix} = \tilde{P}_N \tilde{L}_N
\begin{pmatrix}
 N & N + 1 & \text{rhs} \\
 k + 1 & 0 & \tilde{R}_{N+1,N+1} & \tilde{\beta}_{N-1} \\
 0 & \tilde{R}_{N+1,N+1} & 0 & \tilde{\beta}_N
\end{pmatrix}
$$

Then

$$
L_N = \begin{pmatrix}
 I_{(N-1)n} & 0 \\
 0 & \tilde{P}_N \tilde{L}_N
\end{pmatrix}
$$

Thus we recover s from

$$Rs = \tilde{\beta}
$$

where

$$R = \begin{pmatrix}
 R_{11} & R_{12} & 0 & 0 & R_{1,N+1} \\
 0 & R_{22} & R_{23} & 0 & R_{2,N+1} \\
 0 & 0 & R_{33} & R_{34} & R_{3,N+1} \\
 \cdots & \cdots & \cdots & \cdots & \cdots \\
 \cdots & \cdots & \cdots & R_{N,N} & R_{N,N+1} \\
 \cdots & \cdots & \cdots & \cdots & R_{N+1,N+1}
\end{pmatrix}
$$

and

$$\tilde{\beta} = \begin{pmatrix}
 \tilde{\beta}_1 \\
 \tilde{\beta}_2 \\
 \tilde{\beta}_3 \\
 \vdots \\
 \tilde{\beta}_{N+1}
\end{pmatrix}$$
We then use back substitution to get

\[
\begin{align*}
R_{N+1,N+1}s_N & = \tilde{\beta}_{N+1} \\
R_{NN}s_{N-1} & = \tilde{\beta}_N - R_{N,N+1}s_N \\
R_{kk}s_{k-1} & = \tilde{\beta}_k - R_{k,k+1}s_k - R_{k,N+1}s_N, \quad k = N - 1, \ldots, 1.
\end{align*}
\]

Each Q–R decomposition is \(O(n^3)\) operations, so altogether this requires \(O(Nn^3)\) operations.