Floating Point Arithmetic.

Today I’ll discuss some important issues about simple computations.

Example. \(f(x) = \tan x - \sin x \), \(x \) near zero \(x = 10^{-10} \)

\[
\Rightarrow tx = \tan(x) \\
\Rightarrow sx = \sin(x) \\
\Rightarrow fx = tx - sx
\]

\(fx = 0 \) Loss of precision as we get closer to 0.

Now we can do this one of two ways

Use Trigonometric Identities.

\[
f(x) = \tan x - \sin x = \left(\frac{\sin x}{\cos x} - \sin x \right) \\
= \sin x \left(\frac{1}{\cos x} - 1 \right) = \sin x(\sec x - 1) \\
f(x) = \sin x \left(\sqrt{1 + \tan^2 x} - 1 \right) \\
= \sin x \left(\sqrt{1 + \tan^2 x} - 1 \right) \frac{\sqrt{1 + \tan^2 x} + 1}{\sqrt{1 + \tan^2 x} + 1} \\
= \frac{\sin x \tan^2 x}{\sqrt{1 + \tan^2 x} + 1} = \frac{\sin x \tan^2 x}{\sec x + 1} \\
f(x) \approx 5 \times 10^{-31}
\]

Or use Taylor Series – Only need a few terms

\[
\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + O(x^7) \\
\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7) \\
f(x) = \tan x - \sin x = \frac{x^3}{2} + \frac{7x^5}{120} + O(x^7)
\]

This is often much easier.

IEEE arithmetic – Closed system
Inf, - Inf, NaN special numbers

Operations that generate NaN (not a number)

\[
\begin{align*}
\text{Inf} + (-\text{Inf}) \\
0 \times \text{Inf} \\
\text{Inf}/\text{Inf} \\
0/0 \\
\sqrt{-3} \\
1/0 = \text{Inf} \\
-1/0 = -\text{Inf} \\
1/\text{Inf} = 0 \\
1/(\text{-Inf}) = -0
\end{align*}
\]

IEEE arithmetic has two zeroes, \(+0\) and \(-0\).

Closed System

\{floating point numbers, Inf, -Inf, NaN\} \rightarrow \{ floating point numbers, Inf, -Inf, NaN\}

operations

Taking Some Advantage

\[
f(x) = \sec x - \tan x \quad x \text{ near } \pi/2 \]

\[
f\left(\frac{\pi}{2}\right) = \infty - \infty = \text{NaN}
\]

MATLAB is smart enough not to give you Inf here.

\[
f(x) = (\sec x - \tan x) \frac{(\sec x + \tan x)}{\sec x + \tan x}
\]

\[
= \frac{\sec^2 x - \tan^2 x}{\sec x + \tan x} = \frac{1}{\sec x + \tan x} = \frac{1}{\infty} = 0
\]

It’s rare for floating point software to do this, but it can.

Now we consider a different type of computation

Linear Systems of Equations

\[
\frac{e_m}{10} x_1 + x_2 = 1 \\
x_1 + x_2 = 2
\]
Good approximate answer is $x_1 = x_2 = 1$.

$$ \begin{pmatrix} \epsilon_m/10 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \epsilon_m \text{ machine unit} $$

$$ \rightarrow \begin{pmatrix} \epsilon_m/10 & 1 & 1 \\ 0 & 1 - 10/\epsilon_m & 2 - 10/\epsilon_m \end{pmatrix} \epsilon_m \text{ round} $$

$$ \approx \begin{pmatrix} \epsilon_m/10 & 1 & 1 \\ 0 & -10/\epsilon_m & -10/\epsilon_m \end{pmatrix} $$

Back solve $x_1 = 0$, $x_2 = 1$

Again there is a “fix”. Partial Pivoting —

put largest uneliminated entry in the column in pivot or diagonal position

$$ \begin{pmatrix} 1 & 1 & 2 \\ \epsilon_m/10 & 1 & 1 \end{pmatrix} $$

$$ \begin{pmatrix} 1 & 1 & 2 \\ 0 & \epsilon_m/10 & 1 - 2 \cdot \epsilon_m/10 \end{pmatrix} \text{ round} $$

$$ \approx \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \text{ Yield } x_1 = x_2 = 1 $$

Sometimes, changing the algorithm does no good at all.

$$(1 + 2\epsilon_m)x_1 + (1 + w\epsilon_m)x_2 = 2$$

$$(1 + \epsilon_m)x_1 + x_2 = 2$$

Use augmented matrix approach

$$ \begin{pmatrix} 1 + 2\epsilon_m & 1 + 2\epsilon_m & 2 \\ 1 + \epsilon_m & 1 & 2 \end{pmatrix} $$

$$ \alpha = \frac{1 + \epsilon_m}{1 + 2\epsilon_m} \times 1 - \epsilon_m $$
\[
\begin{pmatrix}
1 + 2\epsilon_m & 1 + 2\epsilon_m & 2 \\
0 & -\epsilon_m & 2\epsilon_m
\end{pmatrix}
\]

\[x_1 = 4, \quad x_2 = -2 \quad x = \begin{pmatrix} -2 \\ 4 \end{pmatrix}\]

Correct to machine precision

Small change in right hand side

\[
\begin{pmatrix}
1 + 2\epsilon_m & 1 + 2\epsilon_m & 2 + 4\epsilon_m \\
1 + \epsilon_m & 1 & 2 + \epsilon_m
\end{pmatrix}
\]

Correct answer is \(x_1 = x_2 = 1\)

With rounding, I get, \(x_1 = 0, x_2 = 2\) Why?

Every trick I know except increasing the precision, yields similar wrong answers.

Reason.

Coefficient matrix

\[
A = \begin{pmatrix}
1 + 2\epsilon_m & 1 + 2\epsilon_m \\
1 + \epsilon_m & 1
\end{pmatrix}
\]

is very close to singular. \(A\) is called ill-conditioned. Thus any algorithm could have difficulty solving a linear system with coefficient matrix \(A\).

More on this next time.