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Abstract

Spatial Joins are important and time consuming opera-
tions in spatial database management systems. It is crucial
to be able to accurately estimate the performance of these
operations so that one can derive efficient query execution
plans, and even develop/refine data structures to improve
their performance. While estimation techniques for ana-
lyzing the performance of other operations, such as range
queries, on spatial data has come under scrutiny, the prob-
lem of estimating selectivity for spatial joins has been lit-
tle explored. The limited forays into this area have used
parametric techniques, which are largely restrictive on the
data sets that they can be used for since they tend to make
simplifying assumptions about the nature of the datasets to
be joined. Sampling and histogram based techniques, on
the other hand, are much less restrictive. However, there
has been no prior attempt at understanding the accuracy of
sampling techniques, or developing histogram based tech-
niques to estimate the selectivity of spatial joins. Apart from
extensively evaluating the accuracy of sampling techniques
for the very first time, this paper presents two novel his-
togram based solutions for spatial join estimation. Using
a wide spectrum of both real and synthetic datasets, it is
shown that one of our proposed schemes, calledGeometric
Histograms (GH), can accurately quantify the selectivity of
spatial joins.

1. Introduction

Spatial Database Management Systems (SDBMS) [22]
need to provide a range of specialized and optimized spa-
tial operations, such as spatial selection, nearest neighbor
query and spatial join. Of these operations, spatial joins are
particularly important because they are not only commonly
used, but can also serve as building blocks for more com-
plex spatial predicates. Spatial joins also present interesting
challenges because of their high CPU and I/O costs.

A spatial join finds pairs of objects (from different
datasets) that meet a given spatial predicate, such as in-
tersection/overlap, containment, etc. For example, the
query “find all the major highways in Pennsylvania that
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cross a major river” can be answered by performing a spa-
tial join on the highway and river datasets of Pennsyl-
vania. In SDBMS, a spatial data object is typically ab-
stracted/represented by its Minimum Bounding Rectangle
(MBR), which is the smallest axis-parallel rectangle that
fully contains this spatial object. Using MBRs, spatial joins
are performed in two steps [19]: the filter step and the re-
finement step. The filter step retrieves all Minimum Bound-
ing Rectangles (MBRs) that satisfy the given spatial predi-
cate. The refinement step then examines the exact geometry
of the pairs produced by the filter step to discard any false
hits. Although the refinement step is an important issue,
most prior research (as is this paper) has focused on the fil-
ter step.

A good deal of research [7, 20, 13, 16, 3] has been done
on optimizing the filter step of spatial join processing. How-
ever, there is another important problem related to spatial
joins: How do we predict the performance (selectivity in
particular) of spatial joins?The spatial join selectivity of
two datasets is the ratio of the resultant size of the spatial
join to the size of the Cartesian product of both partici-
pants. As most prior research, this work considers only the
filter step of the spatial join, and we thus deal only with
two sets of axis-parallel rectangles (in a 2-D space). The
spatial predicate for the join in this paper extracts pairs of
intersecting MBRs from the two datasets. Even with this
simplication, accurately estimating the spatial join selectiv-
ity poses problems because (a) data items are located in a
multidimensional space (instead of a single dimension in
the traditional RDBMS), and (b) size of the spatial objects
can vary significantly.

Selectivity estimation is crucial in a query optimizer for
choosing a good execution plan for a given query. Selec-
tivity estimates of spatial joins can themselves be used as
responses to specialized user queries that are seeking ap-
proximate figures. For instance, finding the approximate
number of bridges in a given spatial extent may simply be
satisfied by doing a join selectivity estimation between the
streets and rivers datasets for that extent (and may not ne-
cessitate performing the actual join). Finally, spatial join
selectivity can also be used for evaluating the correlation
between datasets [8].

The utility of selectivity estimation for spatial operations
is widely recognized [22]. While there have been a large
number of forays into this topic in the context of range
queries [15, 24, 5, 27, 26, 14], the problem of selectivity
estimation for spatial joins has been little explored. There
are two prior studies, [12] and [25], that have extended



prior analytical models for range query costs, to estimate
the I/O performance of joins using R-trees. To our knowl-
edge, there have been very few attempts [2, 6, 8] at selec-
tivity estimation for spatial joins. Taking one dataset as the
source of query windows, and the other as the underlying
data, [2] simply applies the technique proposed in [15] for
range query estimation, and sums these results to get a con-
venient closed form formula. Alternatively, [6] uses fractal
concepts to estimate the selectivity of spatial self-join for
point datasets. Along the same line, [8] uses a power law
to model the distribution of pair-wise distance between two
real multidimensional point datasets. Using this law, a fairly
accurate selectivity estimation is derived for the spatial join
of two point datasets.

Selectivity estimation techniques can be broadly cate-
gorized into three classes: parametric, sampling and his-
tograms. Parametric techniques typically make some as-
sumptions about the dataset to present convenient closed-
form formulae for estimation, at little cost. For instance,
[2] assumes that the data items are uniformly distributed in
the two datasets to be joined, while [6] and [8] assume that
the data items exhibit fractal behavior or obey a power law
respectively. However, these assumptions restrict their ap-
plicability since real datasets may not necessarily adhere to
such properties. Further, [6] and [8] can work only with
point datasets. The other two classes of estimation tech-
niques, sampling and histogram-based, try to draw suffi-
cient information from the given dataset to predict query se-
lectivity. As a result, they are applicable to a larger class of
datasets than their parametric counterparts. Sampling tech-
niques actually perform the query on a much smaller ver-
sion of the dataset, called the sample , and use the results to
project the selectivity on the entire dataset.

The difficulty in picking a representative sample with
low overheads makes sampling somewhat undesirable.
Histogram-based techniques, on the other hand, keep cer-
tain information for different regions of the spatial extent in
an auxiliary data structure (histograms), and quickly consult
this structure to find the selectivity when the query is given.
The trick with histograms is in finding out what informa-
tion to maintain and at what granularity, so that duplication
across buckets of the histogram or the lack of information
within each bucket does not significantly impact accuracy.

This paper intends to fill a crucial void in selectivity es-
timation of spatial joins by proposing and evaluating differ-
ent sampling and histogram based techniques. While sam-
pling techniques [10, 11, 4] have been used in estimation
for conventional databases, less effort has been spent to in-
vestigate their usability in SDBMS: [18] dealt with tech-
niques for obtaining random sample points of the query re-
sults and [28] intended to obtain approximate answers of
aggregate queries using random sampling algorithms. This
paper, on the other hand, studies three well-known sampling
techniques to estimate the selectivity of spatial joins. In ad-
dition, two novel histogram based techniques are proposed.
Using a diverse spectrum of real and synthetic datasets, that
exhibit wide spatial distributions/patterns, these techniques
are examined in terms of the estimation error and the esti-
mation costs (both time and space), compared to performing
the actual join.

It is shown that in most cases, picking samples randomly,
with a sample size of 5-10% of the dataset, gives less than
10% errors at a overhead that is around 10% of the join
time when the R-trees for the two datasets are not available.

However, this is not a worthwhile option if the R-trees are
available since the join itself is not as expensive. One of
the undesirable properties of sampling is that the results are
unstable i.e. it is highly dataset and sample dependent, and
it is difficult to draw concrete conclusions.

On the other hand, one of the histogram based tech-
niques that we propose in this paper, called the Geometric
Histogram (GH) scheme, is shown to bring errors down to
less than 5% with little overheads. This scheme uses exten-
sive adjustments within and across buckets to avoid multi-
ple and/or false counting of pairs in the join estimation. It
is shown that both of our proposed histogram schemes can
give much more accurate (and stable) results than the only
known prior parametric technique for join selectivity esti-
mation that has been discussed in [2].

The rest of the paper proceeds as follows. Sections 2 and
3 present the sampling and histogram based techniques for
estimating spatial join selectivity. These techniques are then
experimentally compared in section 4 using a wide range of
datasets. Finally, Section 5 summarizes the contributions of
this paper, and offers suggestions for future work.

2. Sampling Techniques

While sampling techniques have been used [10, 11, 4]
to estimate the selectivity of equi-join, which is the coun-
terpart of the spatial join in the relational DBMS, there has
been few prior investigation, to our knowledge, of the ap-
plicability of these techniques to spatial data. In this study,
we pick samples from both input datasets to be joined, and
an R-tree [9] is then constructed for each of these samples.
While one could try to directly perform a plane sweep al-
gorithm [21] on the two samples, we have found that con-
structing an R-tree for the samples, then performing an R-
tree join [7] is a better alternative, since even a small per-
centage of the datasets (which can be large) can result in a
large number of data items to be joined. Suppose the sample
sizes are�% and�% of the the original datasets respec-
tively, the estimated join selectivity is given by R

�%��% ,
whereR is the selectivity of the join on the samples. We
consider the following three techniques to pick samples
from the two datasets:

1. Regular Sampling (RS): If the sample size isn and
the dataset size isN , RS generates a sample by taking
everykth data item (k = dN

n
e).

2. Random Sampling With Replacement (RSWR): Every
data item of the given dataset has an equal probability
of being selected, with a chosen data item potentially
being picked more than once.

3. Sorted Sampling (SS): This follows the same proce-
dure as RS, except that the input dataset is first sorted
based on the Hilbert values [15] of the data items.

3. Histogram Based Techniques

The following subsections present two histogram based
techniques to estimate spatial join selectivity. The common
theme between these techniques is that an auxiliary data
structure, histogram file, is constructed from the original
dataset beforehand. The spatial extent is first gridded into



equi-sized cells with a number of vertical (2h) and horizon-
tal (2h) lines, whereh denotes the level of gridding. The
histogram file stores the necessary information for each of
the resulting4h cells. Later, when estimating a spatial join
selectivity, these files for the two datasets (to be joined) are
consulted. The following techniques differ in what infor-
mation is kept in each cell.

3.1. Parametric Histogram (PH) Scheme

In this subsection, we first describe one prior parametric
scheme [2], and see how it estimates the spatial join
selectivity. A simple and straightforward extension is then
proposed to overcome its shortcoming.

3.1.1. Prior Approach. Assuming that both range queries
and data are uniformly distributed over the entire spatial
extent, Kamel and Faloutsos [15] developed an analytical
formula to evaluate the average response time for a range
query. This was later extended to estimate the selectivity
of spatial joins [2]. The basic idea is to consider one data
set as the underlying database and the other as a source for
query windows. The sum of the estimated range query se-
lectivities would then give an estimation of the spatial join
selectivity.

Suppose we have the following parameters for dataset
DSk:

� A: the area of the entire given spatial extent.
� Nk: the number of all data items in the datasetDSk .
� Ck: the data coverage, i.e. the ratio of the sum of the

areas of each data item in the datasetDSk toA.
� Wk: the average width of all data items in the dataset
DSk.

� Hk: the average height of all data items in the dataset
DSk.

Then, the selectivity of the spatial join between datasets
DS1 andDS2 is estimated in [2] as:

Size1 2 = N1 � C2 + C1 �N2 + N1 �N2

�

W1 �H2 +W2 �H1

A
(1)

Selectivity1 2 =
Size1 2

N1 �N2

(2)

3.1.2. Proposed Ex-
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Figure 1. Extending PH

tension (PH). While
the parametric tech-
nique discussed in [2]
incurs negligible time
and space overheads
(only requires comput-
ing Equation 1), the
underlying assumption
is that the data items are
uniformly distributed
in the spatial extent.
Deviations from this
assumption can result
in significant errors in

estimation as will be shown later in this paper. One way of
fixing this problem is to grid the spatial extent into cells,
with the hope that the uniformity assumption holds better

within each cell. This leads us to propose a technique
called Parametric Histogram (PH), wherein we maintain the
necessary information (the parameters in Equation 1), for
each grid cell in the histogram file. Selectivity estimation
is then a sum of the selectivity over all the grid cells.
While PH may appear straightforward, it has a drawback
of multiple counting the intersections. For instance, in
Figure1, MBRsa3 and b3 that span more than one cell
actually intersect only once, but could be counted four
times (in the four cells). Finer the gridding level (to better
approximate uniformity within a cell), worse is the multiple
counting problem. To alleviate this problem, our proposed
PH scheme categories the MBRs from datasetDSk that
intersect with a cell(i,j) into two groups:Contk(i; j) which
contains MBRs that are fully contained within cell(i; j);
andIsectk(i; j) which contains MBRs that intersect with
cell(i; j), but are not fully contained within it. For dataset
a in Figure 1,Conta(0; 0) includes MBRsa5 anda6 while
Isecta(0; 0) includes MBRsa1, a3 anda4.

For given datasetsDS1 andDS2, the selectivity estima-
tion for each cell(i; j) now needs to handle four cases: (a)
intersection ofCont1 andCont2; (b) intersection ofCont1
andIsect2; (c) intersection ofIsect1 andCont2; and (d)
intersection ofIsect1 andIsect2.

Parameters Description

average number of cells spanned by MBRs
AvgSpank spanning cell boundaries
Areacell area of a cell.

number of MBRs that are fully contained in
Numk(i; j) this cell (i.e.Contk(i; j)).

ratio of the sum of areas of MBRs
Covk(i; j) in Contk(i; j) toAreacell.
Xavgk average width of MBRs inContk(i; j).
Y avgk average height of MBRs inContk(i; j).

number of MBRs that intersect this cell andNum0

k(i; j) cross cell boundaries (i.e.Isectk(i; j)).
ratio of the sum of intersecting areas of MBRsCov0

k(i; j) in Isectk(i; j) with cell(i; j), toAreacell.
average width ofintersectionsof MBRs in

Xavg0

k(i; j) Isectk(i; j) with cell(i; j).
average height ofintersectionsof MBRs inY avg0

k(i; j) Isectk(i; j) with cell(i; j).

Table 1. PH Parameters

Table 1 summarizes the parameters that are used to im-
plement the PH technique for a given datasetDSk. Note
that except for the first two (which are for the entire dataset),
the other parameters are maintained for each cell. The esti-
mation for the above four cases (Sa, Sb, Sc, Sd) can then be
calculated using these parameters as follows (directly drawn
from Equation 1):

Sa(i; j) = Num1(i; j) � Cov2(i; j) + Cov1(i; j) �Num2(i; j) +

Num1(i; j) �Num2(i; j) �

Xavg1(i; j) � Y avg2(i; j) + Y avg1(i; j) �Xavg2(i; j)

Areacell

Sb(i; j) = Num1(i; j) � Cov
0

2(i; j) + Cov1(i; j) �Num
0

2(i; j) +

Num1(i; j) �Num
0

2(i; j) �

Xavg1(i; j) � Y avg0

2(i; j) + Y avg1(i; j) �Xavg0

2(i; j)

Areacell

Sc(i; j) = Num
0

1(i; j) � Cov2(i; j) + Cov
0

1(i; j) �Num2(i; j) +

Num
0

1(i; j) �Num2(i; j) �

Xavg0

1(i; j) � Y avg2(i; j) + Y avg0

1(i; j) �Xavg2(i; j)

Areacell



Sd(i; j) = Num
0

1(i; j) � Cov
0

2(i; j) + Cov
0

1(i; j) �Num
0

2(i; j) +

Num
0

1(i; j) �Num
0

2(i; j)�

Xavg0

1(i; j) � Y avg0

2(i; j) + Y avg0

1(i; j) �Xavg0

2(i; j)

Areacell

The basic idea behind these formulations is to break up
rectangles spanning multiple cells into smaller ones (at cell
boundaries), and handle the resulting rectangles in their ap-
propriate cells. Of the above four cases, onlySd(i; j) may
cause multiple counting when we sum up the values from
all the cells (only this case deals with rectangles that inter-
sect in multiple cells). To adjust for this multiple count-
ing, we can divideSd(i; j) by the mean ofAvgSpan1 and
AvgSpan2 i.e. the number of cells in which a rectangle in
one dataset is likely to intersect with one rectangle in the
other dataset. It should be noted that this is only an approx-
imation to lessen the impact of multiple counting of inter-
sections, and is not exact. Finally, PH uses the following
formula to estimate the required spatial join selectivity.

Size1 2 =
X

Sa(i; j) +
X

Sb(i; j) +
X

Sc(i; j)

+

P
Sd(i; j)

AvgSpan1+AvgSpan2
2

(3)

3.2. Geometric Histogram(GH) Scheme

This is a completely
CASE 1 CASE 4CASE 2 CASE 3

CASE 5 CASE 6 CASE 7 CASE 8

CASE 9 CASE 11 CASE 12CASE 10

Figure 2. Intersections
of Two Rectangles

novel approach to
spatial join selectiv-
ity estimation that is
proposed in this paper.
From Figure 2, one can
observe that whenever
two MBRs (rectangles)
intersect with each
other, the intersection
is always another
rectangle with four
corners (let us call them
intersecting points).
Each intersecting point

could be the result of one of the following two situations:
(a) A corner point of one MBR falls inside another MBR
(in Figure2, there are two such points in cases 1 through 4,
two points in cases 7 through 10, and four points in cases
11 through 12); (b) A horizontal line of one MBR intersects
with a vertical line of another MBR (in Figure2, there are
two such points in cases 1 through 4, four points in cases
5 through 6, and two points in cases 7 through 10). If we
can accurately estimate how many intersecting points exist
between the two datasets, simply dividing this estimate by
four will provide us the desired spatial join selectivity. To
estimate the number of intersecting points between the two
datasets, we propose a novel approach called the Geometric
Histogram (GH) Scheme.

3.2.1. Basic GH.GH builds a histogram file for each dataset
by gridding the spatial extent into cells (buckets) as dis-
cussed for PH. For an intuitive explanation of how GH
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Figure 3. Example for Basic GH

works, let us say we record the following information for
each grid cell(i; j): (a) how many vertical edges of MBRs
pass through it (Vk(i; j)); (b) how many horizontal edges
of MBRs pass through it (Hk(i; j)); (b) how many MBRs
intersect it (Ik(i; j)); and (c) how many corner points of
MBRs lie inside it (Ck(i; j)).

Then an estimate for the number of intersection points
between datasetsa andb can be made as follows:

Na b =
X

(Ca(i; j) � Ib(i; j) + Ia(i; j)� Cb(i; j)

+Va(i; j) �Hb(i; j) +Ha(i; j) � Vb(i; j)) (4)

One can better understand this equation by examining
the 16 cases of intersection in Figure 2 assuming that the
gridding is done to such a fine granularity that the inter-
secting points between the two MBRs fall in different grid
cells. In all these 16 cases, the above equation will correctly
estimate four intersecting points (the first two terms calcu-
late intersecting points corresponding to the sides of the two
MBRs crossing each other, and the last two terms calculate
intersecting points corresponding to a corner of one MBR
falling within the other MBR). As an example, using equa-
tion 4, the number of intersecting points over the four grid
cells that is shown in Figure 3 for MBRsa andb can be
calculated to be 4.

We then divide the number of intersecting points by 4 to
get the desired spatial join selectivity (1 in this case).

3.2.2. Revised GH.Equation 4 is based on the assumption
that within a given cell, (a) every corner of the MBRs of
one dataset falls inside all the MBRs of the other dataset
which intersect this cell; and (b) every horizontal edge of
the MBRs of one dataset intersecting this cell will intersect
all the vertical edges of the MBRs of the other dataset inter-
secting this cell.

Intersection Points: 16 Intersection Points: 0 Intersection Points: 16 Intersection Points: 4

False Counting Multiple Counting

Figure 4. Inaccuracies in Basic GH

This can lead to errors that are illustrated in Figure 4
due to the granularity of gridding. As we go for a very



fine level of gridding, these errors would diminish, mak-
ing the basic GH scheme more accurate. This is illustrated
in Figure 4 which shows that the inaccuracies go away with
a higher level of gridding. However, with a high level of
gridding (number of grid cells grows exponentially), comes
the high storage and processing costs, making it impracti-
cal. Instead, we propose to fix these inaccuracies by refin-
ing the basic GH scheme (with little additional overhead) as
discussed below. The refinement is based on the assumption
that data items are more or less uniformly distributed within
each grid cell.

To facilitate our discussion, we use the notations in Ta-
ble 2 representing the information GH will be needing for
datasetDSk in each grid cell(i; j).

Parameters Description

number of corner pointsCk(i; j) that fall within cell(i; j).
sum of the ratios of the intersection areaOk(i; j) (with cell (i; j) of MBRs to the cell area
sum of the ratios of horizontal intersectionsHk(i; j) (with cell (i; j)) of MBRs to the cell width
sum of the ratios of vertical intersections

Vk(i; j) (with cell (i; j)) of MBRs to the cell height

Table 2. GH Parameters

Suppose we want to estimate the selectivity of spatial
join between datasetDS1 andDS2.

We will use

I_b

hb

CH

CW

P_a

vb

a

b

Figure 5. GH Adjustment
for Corner Intersection
Points

MBRs a and b
shown in Figure
5, which are from
DS1 and DS2
respectively, to ex-
plain the basic idea
of our approach
when the estimation
is done for the cell
with widthCW and
height CH . The
estimation of the
intersecting points
within a given cell
is done as follows:

� Estimating corner intersecting points (such asP a
falling within b in Figure 5):

The shaded areaI b represents the intersection of
MBR b with the given cell, with the width and height
of I b beinghb andvb respectively. Following the uni-
form distribution assumption, the probability ofP a
falling in I b is given by the ratio of the area ofI b
(shaded area) to the area of the underlying cell, i.e.
hb�vb

CW�CH
. If DS1 hasN corner points inside this cell,

statisticallyN � hb�vb
CW�CH

of these points are likely
to intersectI b. Similarly estimating the intersections
with the other MBRs ofDS2, givesO2(i; j)�C1(i; j)
intersecting corner points ofDS1. Symmetrically
there areO1(i; j)�C2(i; j) intersecting corner points
of DS2. Summing these two gives the total number of
corner intersecting points in cell(i; j).

� Estimating vertical and horizontal line intersection:

The probability that a vertical line of sizev intersects
with a horizontal line of sizeh inside a 2-dimensional
space ofCW � CH , is given by h�v

CH�CV
. The

reader is referred to [1] for a proof of this observa-
tion. Adding this probability for all the vertical lines
of DS1 and horizontal lines ofDS2, we are likely to
haveH2(1; j) � V1(i; j) such intersecting points. In-
tuitively, we can get to this reasoning by going back to
Equation 1 which estimates the number of intersecting
rectangles in a 2-D space. If we simply set the areas
C1 andC2 to zero, since we are dealing here with lines
instead of rectangles, equation 1 degenerates to the for-
mula used here. Symmetrically, we are likely to have
H1(i; j)�V2(i; j) horizontal lines ofDS1 intersecting
with vertical lines ofDS2 in cell (i; j).

Putting these arguments together, we estimate the num-
ber of intersecting points (IP )using the following equation:

IP =
X

(C1(i; j) � O2(i; j) + C2(i; j) � O1(i; j) +H1(i; j)

�V2(i; j) +H2(i; j) � V1(i; j)) (5)

This number is then divided by 4 to get the desired se-
lectivity estimation.

4. Evaluating the analysis techniques

In this section, we evaluate the accuracy and costs of the
different sampling and histogram based techniques in esti-
mating spatial join selectivity.

4.1. Datasets

To stress the pros and cons of the different schemes
and their universal applicability, we have considered a
wide spectrum of real and synthetic datasets. The selected
datasets are quite diverse, and include both uniform and
skewed spatial distributions. While the real datasets con-
tain points, polylines and polygons, these are abstracted by
their bounding boxes (MBRs) in our experiments, and the
spatial join predicate is to find intersecting MBRs across
the two datasets. Due to space limitations, we are not able
to present the results for all the datasets. The reader is ref-
fered to [1] for further information. In this paper, we present
results for (a)TS with TCB: data of Iowa, Kansas, Mis-
souri and Nebraska taken from the TIGER/Line(R) datasets
[17] where TS contains the MBRs of 194,971 streams
(polylines) and TCB contains the MBRs of 556,696 cen-
sus blocks(polygons); (b)CAS with CAR: data of Cali-
fornia taken from [17] where CAS contains the MBRs of
98,451 streams (polylines) and CAR contains 2,249,727
roads (polylines); (c)SP with SPG: data taken from the
Sequoia benchmark [23] where SP contains the MBRs
of 62,555 points and SPG contains 79,607 polygons; (d)
SCRC with SURA: data synthetically generated in a 1�1
space where SCRC contains 100,000 rectangles clustered
around (0.4,0.7) and SURA contains 100,000 rectangles
uniformly distributed.

Using these datasets we consider different combinations
of spatial joins that capture interesting and diverse facets:
joins between datasets of different types such as TS with
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Figure 6. Sampling Techniques Results

TCB (polylines with polygons), joins between datasets of
the same number of data items, joins between datasets of
unequal cardinalities, joins between datasets with different
spatial skews, and joins between datasets with similar spa-
tial skews.

4.2. Metrics of interest

To evaluate the pros and cons of the different techniques,
we consider the following metrics:

� Estimation Error, which is the difference between that
predicted by the techniques and the actual join selec-
tivity normalized as a percentage with respect to the
actual join selectivity.

� Estimation Time, which is the time to conduct the es-
timation relative to the time to perform the actual join
using R-tree indices for the datasets

� Space Cost, which is the overhead in bytes for storing
the required information for each technique, expressed
as a percentage of the space required to maintain the
R-trees for the actual datasets.

� Building Time, which is the time taken to con-
struct the necessary information (histogram file for the
histogram-based schemes, and samples for the sam-
pling schemes), expressed as a percentage of the time
taken to build the R-trees for the actual datasets.

A low estimation error and estimation time will be pre-
ferred. While building time is important if the target of
the estimation is intermediary result(s) of a complex query,
space cost is less important given the large amount of stor-
age availability these days (as long as the storage require-
ments do not become comparable or exceed the dataset size
itself). The statistics on the actual join of these datasets,
together with the details on their R-trees can be found in
[1].

4.3. Results for sampling techniques

Figure 6 shows the results for the estimation of the spa-
tial join selectivity with the various sampling schemes. All
the bar graphs in these figures follow the same convention.

The x-axis represents different sample size combinations.
The first three sets of bars in these figures use samples (of
sizes 0.1%, 1% and 10% of the datasets) from both datasets
for the estimation. The fourth to ninth sets of bars use a
sample from only one of the datasets, with the entire other
dataset (shown as 100) being used. The individual bars
within each set show the performance for the three sampling
techniques discussed in Section 2.

All these graphs show the estimation error as defined
in the previous subsection. The time cost is shown in two
forms: Est. Time 1is the time overhead in selecting sam-
ples, building the R-trees from the samples and then per-
forming the join, as a percentage of the time to do the actual
join assuming the R-trees on the datasets are not available
(i.e. they are built before the join is performed); andEst.
Time 2is the same overhead assuming that R-trees are avail-
able, in which case the R-trees need not to be constructed
for the original datasets. Obviously, Est. Time 1 is lower (as
a relative percentage) compared to Est. Time 2. The space
overheads are not explicitly shown here since they are ap-
parent from the size (in percentage) of the samples that are
chosen.

One can intuitively hypothesize that larger the sample,
the more accurate the estimation. While this is an overall
trend, we do find exceptions in some cases (such as RS for
CAS with CAR when we go from 1/1 to 10/10, etc.). This is
because the sampling idea is based on statistical arguments,
and it is impossible to definitely say that a larger sample
will necessarily give a more accurate estimate. However, it
is fairly obvious from the graphs that larger samples incur
higher time and space costs.

We find in Figure 6 that using all of one dataset and
picking samples from only the other dataset does not pay
off. The accuracy of this approach is not significantly better
than picking a 10% sample from both datasets, and is in fact
worse in many cases. Further, the time overheads are much
worse than taking samples from both datasets if the R-trees
on the two datasets are not available.

The other important consideration is the impact of the
dataset size (or rather, the difference between the sizes of
the two inputs to be joined) on the effectiveness of sam-
pling. In general, we find that taking a smaller fraction from
the larger dataset results in better estimation accuracy than
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Figure 7. Histogram-based Techniques Results

taking the same fraction from the smaller dataset. This re-
sults in a much better statistical approximation of the two
datasets. This also makes sense from the time cost view-
point, since a larger fraction of the larger dataset incurs
higher estimation overhead.

Between the three ways of picking samples, we find that
Sorted Sampling (SS) is a poor choice. While its accuracy is
not significantly better than the other two (in fact, it is worse
in some cases), the sorting significantly adds to the time
costs compared to the other two strategies. Regular (RS)
and Random (RSWR) are more or less comparable, partic-
ularly for the synthetic datasets, where the data items are
anyway generated randomly. With the real datasets, their
relative performance really depends on the vagaries of the
dataset (RSWR does better in two cases, and is comparable
in the third). Hence, it is suggested that samples be gener-
ated randomly (RSWR) from the datasets.

In general, we find that if the R-trees are not available
for the datasets, we can get the estimation error within
10% with sample sizes of 10% (i.e. 10/10), with time
overheads that are also within 10% for random sampling
(RSWR). This suggests that random sampling may be a
viable option for spatial join estimation for intermediate
steps/results (where the dataset is not previously available)
of a long/complex query execution. When the R-trees are
already available for the datasets, the results show that the
estimation time costs (Est. Time 2) are much higher to get
reasonable accuracy. However, one could argue that if R-
trees are already available, then the samples for a dataset
(and the R-trees on these samples) could also be made avail-
able beforehand. As shown in [1], with the availability of
the R-trees on the samples, RSWR becomes once again a
possible option with the estimation time cost being less than
10%.

4.4. Results for histogram based techniques

We next consider the two histogram-based techniques
proposed in this paper. In figure 7, which shows the per-
formance of the PH and GH schemes, the x-axis depicts the
level of gridding (h, where4h is the resulting number of
grid cells into which the spatial extent is histogrammed).
The results are then shown in terms of the estimation er-
ror, estimation time, building time (for constructing the his-
tograms), and the space overhead that have been described
earlier.

We focus first on the results for PH. It should be noted
that the PH results forh = 0 (the left most point in the
curves) denotes the parametric model that has been origi-
nally proposed in [2], where the universe is assumed to be
uniformly distributed and a simple formula is used to esti-
mate spatial join selectivity based on this assumption. The
other levels divide the space into equi-sized cells, and use
the uniformity assumption within each such cell. There are
two factors affecting the accuracy of the estimation as the
number of levels is increased. We can expect better accu-
racy since a finer level of gridding will help better adhere
to the uniformity assumption within each grid cell. How-
ever, finer gridding can result in data items spanning sev-
eral grid cells, causing the estimation to multiple count (in
several cells) the intersections (leading to an overestima-
tion). Consequently, we expect the accuracy curves to first
trend downward (the former factor is more significant) and
then trending upward (the latter factor becomes more sig-
nificant at higherh). This can be observed for TCB with TS
join. Since the datasets for this join are clustered, the uni-
formity assumption hurts at lower levels. However, we find
that we do not want to go beyond level 5, since the multi-
ple counting starts hurting accuracy. In the joins for CAR
with CAS and SPG with SP, the errors keep dropping even
upto level 9. Since these datasets are highly skewed, the
uniformity assumption is a severe restriction at lower lev-
els. In the joins for SCRC with SURA, the uniformity as-
sumption holds (SURA and SURB have been generated that
way) causing the multiple counting factor to become more
significant even at level 1. With increasing levels, the time
and space costs go up as well. However, even at level 9, the
estimation time takes less than 10% of the cost of perform-
ing the actual join, and the time for building the histogram
file is also a rather small percentage of the time to build the
R-trees. The sudden spike in building times at high levels is
because the histogram file gets too large to fit in memory. It
should be noted that the histogram file size is purely depen-
dent on the level of gridding and not on the dataset itself.
In summary, the PH scheme gives acceptable (10% errors)
accuracy at level 5, with the time and space costs being neg-
ligible at this level of gridding.

Moving on to the GH scheme, we find the estimation
errors monotonically decrease with the level of gridding.
One can recall that this scheme attempts to avoid the double
counting problem. As a result, it does not have the draw-
back that PH had with higher grid cells. Increasing the



gridding level makes the cells small enough so that the in-
formation within the cell is more accurately captured (false
intersections are discounted). Consequently, the errors only
decrease with gridding level. This is a nice property of GH
which makes it somewhat more attractive than PH or any of
the sampling schemes that are more unpredictable. The es-
timation time for GH is even lower than for PH. In fact, GH
is very accurate (less than 5% errors) in all the four joins
that are shown here, at level 7 (where the estimation time
is around 1% or less). The space overhead for storing the
histogram is typically 10% or lower for GH at this level.

In summary, GH is much more desirable than PH. Not
only is the accuracy better for GH, but the results are much
more stable as we increase the gridding level (PH requires
us to find a good sweet spot for the gridding level). GH
requires less space than PH (compare the information stored
for the two schemes in Tables 1 and 2 ,and is also slightly
less time consuming for each grid cell (compare Equations
3 and 5). These factors make GH a much better option than
PH.

5. Concluding remarks and future work

Shekhar et al. [22] identify analysis of common spatial
operations to be a crucial and daunting open problem for the
success of SDBMS. This paper attacks the selectivity esti-
mation of spatil joins by exploring the suitability of well-
known sampling techniques and proposing two histogram-
based techniques. One of the proposed histogram-based
techniques, called the Geometric Histogram (GH) scheme,
consistently brings error down to less than 5% with little
overheads on various datasets.

In the future, we would like to develop analysis tech-
niques for estimating selectivity and I/O costs for other
spatial database operations, in addition to developing a
SDBMS incorporating query optimizations based on these
analysis techniques.
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