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Abstract

Analysis of range queries on spatial (multidimensional)
data is both important and challenging. Most previous
analysis attempts have made certain simplifying assump-
tions about the datasets and/or queries to keep the analysis
tractable. As a result, they may not be universally applica-
ble. This paper proposes a set of five analysis techniques
to estimate the selectivity and number of index nodes ac-
cessed in serving a range query. The underlying philos-
ophy behind these techniques is to maintain an auxiliary
data structure called a density file, whose creation is a one-
time cost, which can be quickly consulted when the query is
given. The schemes differ in what information is kept in the
density file, how it is maintained, and how this information
is looked up. It is shown that one of the proposed schemes,
called Cumulative Density (CD), gives very accurate re-
sults (usually less than5% error) using a diverse suite of
point and rectangular datasets, that are uniform or skewed,
and a wide range of query window parameters. The esti-
mation takes a constant amount of time, which is typically
lower than1% of the time that it would take to execute the
query, regardless of dataset or query window parameters.

1. Introduction

Spatial databases are gaining importance and are becom-
ing prevalent in numerous applications. Geographical Infor-
mation Systems (GIS), navigation/positioning, image pro-
cessing, demography, epidemiology, terrain analysis, min-
ing, military planning and logistics, computer-aided design
and robotics, are just few of the domains that can benefit
from spatial databases. Efficient storage, retrieval and pro-
cessing of spatial data to reduce processing and I/O costs is
crucial in these applications.

Analysis of the performance of spatial operations be-
comes even more essential with the choice of numerous
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index structures [BKSS90, FB74, Gut84, HN83, HSW89,
Rob81, SRF87, Sam95]. Performance analysis can help
better understand the suitability of a data structure for dif-
ferent input datasets (both size and spatial distribution).
Given a dataset, we could use analysis results to objec-
tively choose between different indexing alternatives. After
choosing an index structure, analysis results could then be
used to efficiently build/layout/fine-tune the structure within
the purview of its definition. Finally, analysis is extremely
important for query optimization. The cost and number of
data items that are retrieved by a query would be very useful
to determine the execution plan of a query for best perfor-
mance.

There are several interesting queries that could be posed
to a spatial database. These include range queries (selecting
items that overlap a given query window), nearest neighbor
queries, joins and other topological queries. Of these, the
range query is, perhaps, the most common, and has been
widely used as the subject of analysis in other related stud-
ies [TP95, FK94, PF99, TS96, KF93, TSS97, PSTW93] as
well. With range queries, one is interested in finding out
how many data items will be retrieved (selectivity) and what
will be the I/O complexity (number ofnodes accessedin the
index structure) in servicing the query. These two measures
reflect the I/O and CPU processing costs that would be in-
curred by the query, with the former factor usually being
more dominant. This paper focuses on estimating (analyz-
ing) the selectivity of range queries on spatial databases.
We can also use these techniques to estimate the nodes that
would be accessed in servicing a range query in the associ-
ated spatial index structure. We demonstrate this by using
the packed R-tree [KF93] as a case-study.

The underlying philosophy of the analysis techniques
presented in this paper is that they make little or no as-
sumption about the dataset. Any information that is dataset
dependent should be drawn from the dataset itself. As a
result, these techniques are universally applicable, regard-
less of the dataset or the application that they are used for.
The common theme between these different techniques is
to use an auxiliary data structure, called thedensity file,
which maintains sufficient information (histograms) about
the dataset that is necessary to conduct the estimation. The
density file creation is a one-time cost. When the query is



given, the density file is “quickly” looked up to determine
selectivity and nodes accessed.

Using 2-dimensional space as an example (extension to
multi-dimensional space is straightforward), this paper pro-
poses five analysis schemes for point (sizeless and shape-
less objects) datasets, and two for rectangular datasets. It
should be noted that rectangles can also be used to abstract
more complex spatial objects (as Minimum Bounding Rect-
angles), and the proposed schemes can be used in such
cases. These schemes differ in what information is main-
tained in the density file, how it is maintained, and how it is
looked up for estimation. With a diverse (both real and syn-
thetic, that are uniform or skewed) suite of datasets and dif-
ferent query window parameters (size, location and aspect
ratio), it is shown that one of our schemes (calledCumula-
tive Density), gives very accurate estimations for selectivity
and nodes accessed for each query window, with errors less
than 5%. It gives much lower errors than most of the pre-
viously proposed techniques. It provides this accuracy at a
(time) cost that is less than 1% of the actual query execution
time. The storage overheads of maintaining the density file
are tolerable as well.

The rest of this paper is organized as follows. The
next section gives a quick overview of previous analysis
attempts on range query performance. Section 3 presents
the proposed analysis techniques for point and rectangular
datasets. Section 4 gives results from the analyses using a
spectrum of datasets and query windows. Finally, Section 5
summarizes the contributions of this paper.

2. Related work

Estimation of range query performance on spatial data
has been shown to be extremely important [AS91, MD88].
Consequently, there is a large body of literature [FSR87,
TP95, FK94, BF95, PF99, TS96, TSS97, PSTW93, KF93]
on this topic. These techniques, however, are limited either
to the kind of datasets that they can analyze (points, rectan-
gles, etc.), and/or make simplifying assumptions about the
dataset (uniform, skewed following a certain rule, etc.) or
query windows. The reader is referred to [Jin99] for de-
tails on these techniques, and a comparison of the accuracy
of these techniques with those presented here is given in
[JAS99].

Most of these techniques fall under what has been char-
acterized as parametric techniques [APR99], which try to
mathematically model the data based on certain assump-
tions. Spatial datasets are likely to be very diverse. Con-
sequently, not all of the above techniques can be used to
analyze the performance of all datasets. We believe that an
estimation technique should make little or no assumptions
about the input dataset. Any information that it would need
should come from the dataset being analyzed itself, and this
information should be provided without adding significant
overheads. This is the underlying philosophy of this paper.
Techniques adhering to this philosophy would be univer-
sally applicable, regardless of the dataset or the application
that it is being used for. These techniques, typically, use
auxiliary data structures called histograms, which partition
the space into buckets and keep track of how many data

items fall within each bucket.
A very recent study [APR99], undertaken concurrently

with this work, has examined different ways of construct-
ing histograms for spatial databases to estimate selectivity.
There are several similarities between some of their sug-
gestions and the techniques presented here. For instance,
our DH scheme uses the equi-area partitioning suggested
in [APR99], with the difference that it does not optimize
empty spaces/regions. Our DHC scheme is intended for
such optimizations. The NDH scheme discussed here, is al-
most identical to the R-tree index-based grouping suggested
in [APR99]. However, there is a key difference between the
two studies. Except for the NDH scheme, all the others in
this paper use equi-width (equi-area) and non-overlapping
buckets unlike the ones used in [APR99]. As a result, it
is rather straightforward in our schemes to find the relevant
buckets for a query window. Query estimation is thus fast
and has very low memory requirements. Estimation for the
schemes in [APR99], on the other hand, requires a search to
find the relevant buckets. As a result, those schemes try to
keep the number of buckets relatively small so that they fit
in main memory. The techniques detailed here do not have
such restrictions, and we can potentially go for a large num-
ber of buckets for better accuracy. We are able to maintain
non-overlapping buckets even with rectangular data items,
using a novel idea (derived from simple geometric proper-
ties of rectangles) whereby a rectangular object is counted
in exactly one bucket. To our best knowledge, no previous
study has pursued such an idea.

Another common observation about all the above stud-
ies, is that the estimation accuracy is evaluated using aver-
age case behavior (i.e. numerous query windows are fed to
the model and the error in estimation is averaged over all
these queries). While this may be a viable approach to dis-
cuss the overall quality of different modeling techniques, it
is important to note that there can be gross inaccuracies for
certain specific windows (and such windows may be impor-
tant workloads for an application). Instead, one should try
to conduct studies with different query window sizes and lo-
cations, and try to understand the accuracy of the estimation
for each of these windows.

3. Analysis techniques

There are two main costs in searching for objects inter-
secting a rectangular query window. The first is the cost
of computing the intersection between the data entries and
the query window. The second is the cost of retrieving the
items from the disks. The number of data items that will be
retrieved (called theselectivity (s)) has a direct bearing on
both these costs. Further, the retrieval cost will also depend
on thenumber of nodes (n)in the index structure that will
be touched by the query. In the rest of this discussion, we
present a set of techniques for estimating the selectivity for
point and rectangular spatial data sets. We also illustrate
how these techniques can be used to estimate the number of
nodes in the index structure that will be accessed, using the
packed R-tree structure [KF93] as a case-study.



3.1. Overview

Our techniques can be briefly summarized as follows.
We construct an auxiliary data structure (which we call the
density file) from the original dataset, in addition to the R-
Tree at the time of building. This density file contains suf-
ficient information - how many data items are contained
in different regions/cells of the spatial extent - about the
dataset. When a query is given, the density file isquickly
looked up to procure the necessary information. The size of
the density file, the time for constructing this file, and the
time for looking up the required information are the issues
that one needs to keep in mind, as will be discussed for each
technique. The techniques differ in what information is kept
in the density file, how it is kept, and how the information
is looked up.

3.2. Techniques for point datasets

Point data has only position information, making them
easier to process. When a (rectangular) query window is
given, we need to find out how many points of the dataset
fall within this window (selectivity). The leaf nodes (of the
packed R-tree index structure) that the selected points fall
on is determined by the Hilbert values of the points. Subse-
quently, we use a recursive procedure to find out how many
internal nodes of the R-tree will be accessed to get to these
leaf nodes.

The common theme in the following schemes is to first
partition the spatial extent into grid cells in the same way
that is used to assign a Hilbert ordering (number) for the
data items. The density file is then just a histogram of the
number of points that fall within a specific Hilbert range. It
is important for the reader to note that the Hilbert orderh
[Gri86] (the level to which the spatial extent is recursively
broken down) will have an important effect on the size of
the density file as well as on the accuracy of the estimation.
The schemes differ in how the histogram is maintained
within the density file.

3.2.1. The density histogram (DH) scheme.The DH
scheme uses a straightforward representation of the den-
sity information. The density file contains the number of
points that fall within each Hilbert grid cell, and the file
is maintained in increasing Hilbert cell order. The Hilbert
cell number can be used as an offset into the file to directly
get the corresponding density (number of points within this
cell). The size of the file is thus dependent on the number of
grid cells, which in turn is a function (4h) of the Hilbert or-
der that is used to recursively break down the spatial extent.
For a given query window, the selectivity (s) and number of
nodes traversed (n) can be estimated as follows.

Selectivity: The query window is broken down into a se-
quence of (potentially non-contiguous) Hilbert ranges that it
covers, based on the Hilbert order that has been used to cre-
ate the density file. There is an approximation being made
here in aligning/extending the query window to the bound-
aries of grid cells. These ranges are looked up in the density
file to find out how many points fall within each range (den-
sity), and then the densities are added up to get the selectiv-

ity. To make it more efficient, we keep cumulative densities
(sum of densities from grid cell 0 until that grid cell) in the
density file, so that finding the density within a range will
require looking up just two values (the ends of the range)
and subtracting one from the other.

Nodes Accessed: We could find the number of nodes
accessed by a query if we had some knowledge about
which leaf nodes the selected data items reside on. It is
rather easy to figure out this information from the packed
R-tree algorithm, since the leaf nodes contain data items
sorted by Hilbert order (and each leaf node contains the
same number of data items). As with the selectivity
method, we can break the query window into Hilbert
ranges. For a range, we could look up the density (specified
as a cumulative density from grid cell 0) information for
the lower end of the range. This number divided by the
number of data items pointed to by a leaf node, would
specifically identify the leaf node where the range starts.
Similarly, the density information for the end of the range
can be used to find out on which leaf node the range
ends. Once we identify all the leaf nodes that will be ac-
cessed, we can use the same method to recursively move up
the tree to find out what nodes will be accessed at each level.

3.2.2. The density histogram compression (DHC)
scheme. The problem of the DH Scheme is the storage
space. For each Hilbert cell, a (cumulative) density value
is stored in the file, regardless of whether there are any
data items present in that cell or not. The size of the den-
sity file grows exponentially with the Hilbert order. Note
that higher the order, higher would be the level of accu-
racy most of the time. The DHC scheme tries to com-
press the density file information of the DH scheme, with
the same underlying algorithms used to find selectivity and
nodes accessed. Specifically, this scheme attempts to com-
press/merge neighboring grid cells that have similar (in-
cluding zero) densities.

We initially start with the density file of the DH scheme.
We compare the density of each set of 4 consecutive grid
cells (recall that Hilbert ordering recursively breaks down
the space into 4 regions). If they are similar (close enough),
then they are represented by only one entry in the density
file. The “similarity” check is done by comparing the coef-
ficient of deviation (standard deviation divided by mean of
the density values for the four cells) with a certain thresh-
old. If the value is less than the threshold, then the 4 cells
are combined into one value, else they are left as four cells.
This procedure is then recursively carried out for the next
lower level of the Hilbert order, and so on. The recursion
stops when either there are no more grid cells to be merged,
or when the number of grid cells to be considered is just
one.

This scheme is expected to lower the size of the density
file compared to the DH scheme, albeit at a higher cost
required to build the density file. Further, finding the
offset in the file for a particular grid cell is no longer
straightforward as in the DH scheme. A slightly higher
price has to be paid during estimation. We use a simple
index structure to improve the performance of the lookup
operation on the compressed density file. Other than this,



the selectivity and nodes accessed estimation algorithms
are the same as for the DH scheme.

3.2.3. The node-based density histogram (NDH) scheme.
Another way of reducing the size of the density file is by
keeping the information at a slightly coarser level. In the
DH scheme, the information was maintained at a grid cell
granularity, thus (potentially) giving a finer level of accu-
racy in estimating both selectivity and nodes accessed. In-
stead, we maintain the file on an R-tree leaf node basis (i.e.
one entry in the density file for each leaf node of the tree,
with each entry containing the Hilbert range of the cells cov-
ered by that node together with the number of data items
within that range). The selectivity and nodes accessed are
calculated as follows.

Selectivity: Convert the query window into a sequence of
Hilbert ranges as before. Next, we find the leaf nodes that
intersect these ranges from the density file. Experimentally
we have found that using a binary search within the density
file to find the leaf node that intersects with the start of the
first range, and then a linear search from that point for sub-
sequent ranges works rather well. For each intersecting leaf
node, we approximate the number of data items that would
be retrieved asx% of the items within that node, wherex is
the percentage of the node’s Hilbert range that intersects the
query window. This approximation assumes that the data
items within a leaf node are uniformly distributed within
the Hilbert range of that node. By summing this number
over all the intersecting leaf nodes, we get the required se-
lectivity.

Nodes Accessed: The same algorithm used in the DH
scheme, which calculates the internal nodes that are ac-
cessed after the leaf nodes have been identified, is used here
as well.

It should be noted that the density file of NDH essentially
maintains equi-depth histograms [MD88]. Each bucket cor-
responds to an R-tree node, with the fanout determining the
depth of the bucket. A similar scheme has been used as
one of the options in a more recent study [APR99]. How-
ever, since the points are sorted by Hilbert order in our ap-
proach, there is not much (consecutive buckets may at most
have one Hilbert value in common) of a overlap between
the buckets.

3.3. Techniques for rectangle datasets

Rectangle datasets pose a more difficult problem than
point datasets since they contain size information in addi-
tion to position. The point dataset schemes may not nec-
essarily work for rectangle datasets, because of this extra
dimension to the problem. One could think about extending
two dimensional Hilbert space into three or more dimen-
sions (as was mentioned in [KF93]), but that would need
a high amount of computation. Further, it is not straight-
forward to convert a query window into three dimensional
Hilbert ranges while still maintaining the spatial relation-
ships, i.e. objects that fall into those ranges should spatially
intersect the query window.

We propose two schemes below that use simple geomet-
rical properties of rectangles to address this problem, while

still providing non-overlapping buckets. There are a cou-
ple of differences from the previous schemes. In the point
dataset schemes, Hilbert space and ordering was used to
grid the spatial extent. In the following two schemes, we
do not really care, because there is no need to get a lin-
earization of the spatial extent. The spatial extent is, in-
stead, gridded into cells (4h) by just drawing a number of
vertical (columns) and horizontal (rows) lines. A cell is then
denoted by its row and column. The density file is looked
up by using a 2-dimensional offset (a row and column num-
ber).

The second difference from the point schemes is in
what each entry of the density file contains. We cannot just
keep the center point information of the rectangular items
(i.e. each cell contains the number of rectangles whose
center points fall within that cell), since this would loose
the size information. Neither can we record how many
rectangles intersect each cell either, since we would end up
double/multiple counting the rectangles in estimation. In
the following two schemes, we illustrate what we need to
maintain within each grid cell to avoid multiple counting of
rectangles without sacrificing size information.

3.3.1. The incremental density (ID) scheme. In this
scheme, the density file keeps track of the information on
an incremental basis. Specifically, for each grid cell we
keep two values: (a) the number of rectangles whose bot-
tom side/edge falls (intersects) on that cell (DS(i; j)); (b)
the number of rectangles whose top side/edge falls (inter-
sects) on that cell (DE(i; j)). This is shown pictorially on
the right side of Figure 1 for the rectangular dataset on the
left side.
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Figure 1. Density Information in ID

Selectivity: We can find out how many rectangles
(N(qxl; qyl; qxh; qyh)) intersect with a query window
(qxl; qyl; qxh; qyh) (the lower-left corner is(qxl; qyl) and
the upper-right corner is(qxh; qyh)) as follows. Let
S(xl; yl; xh; yh) denote the number of rectangles that start
in region(xl; yl; xh; yh) (i.e. whose lower edges intersect
with this region), and letE(xl; yl; xh; yh) denote the num-
ber of rectangles whose top edges intersect with this region.
We can then use the following equation to calculateN :

N(qxl;qyl;qxh;qyh)=S(qxl;0;qxh;qyh)�E(qxl;0;qxh;qyl�1) (1)

Figure 2 illustrates this observation with an example.
The query window covers(1; 2; 2; 3), for the dataset with
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Figure 2. Rectangles in a Query Window

11 rectangles numbereda through k. For this exam-
ple, S(1; 0; 2; 3) = 11 (i.e. all the 11 rectangles), and
E(1; 0; 2; 1) = 4 (i.e. rectanglesa,b,c and d). So
N(1; 2; 2; 3) = 11� 4 = 7.

We can determineS andE, from DS andDE respec-
tively, as follows. LetRS([xl; xh]; j) represent the number
of rectangles whose lower edges intersect with grid cells of
row j between columnsxl andxh.

RS([xl;xh];j) = DS(xl;j)+
P

xh

i=xl+1
MIN(DS(i;j)�DS(i�1;j);0) (2)

For example, in Figure 1,RS([0; 2]; 0) = 3+(5�3)+0 =
5, which means that there are five rectangles whose lower
edges intersect with grid cells (0,0), (0,1) and (0,2). The
following equation can then be used to calculateS,

S(xl;yl;xh;yh)=
P

yh

j=yl
RS([xl;xh];j) (3)

Similarly, let RE([xl; xh]; j) represent the number of
rectangles whose top edges intersect with grid cells of rowj
between columnsxl andxh. We can then calculateE from
DE as follows,

RE([xl;xh];j) = DE(xl;j)+
P

xh

i=xl+1
MIN(DE(i;j)�DE(i�1;j);0) (4)

E(xl;yl;xh;yh) =
P

yh

j=yl
RE([xl;xh];j) (5)

This scheme, however, is not always accurate. It does
not differentiate between two neighboring rectangles with
edges that fall on adjacent columns of a row, and a single
large rectangle covering both columns (see [Jin99]).

Nodes Accessed: We cannot use selectivity information
directly to estimate the nodes accessed (as in the point
dataset schemes), because the density information is not
maintained as Hilbert grids i.e. after the selectivity is ob-
tained, we do not know the Hilbert values for the data items.
Although it is possible to divide the universe using Hilbert
order as in the point dataset schemes, we would need extra
storage and longer computation times (the above equations
for selectivity are based on simple geometric properties of

rectangles, and there needs to be a level of translation be-
fore they can be used if we used Hilbert gridding). Instead,
we use an alternate solution, using the property that each
node in the R-tree can itself be represented by a rectangle in
the spatial extent (the Minimum Bounding Rectangle cover-
ing its subtree). It is thus sufficient to examine if this MBR
intersects the query window to find out if this node would
be accessed. As a result, we maintain the MBRs of all the
R-tree nodes (this doubles the space requirement if we use
the same degree of gridding as with the selectivity), and use
these MBRs themselves as the data for the above selectiv-
ity procedure. This would directly give us the number of
MBRs (nodes) that intersect the query window.

It should be noted that since we are not using Hilbert
grids, or making any other assumptions about the way
the R-tree is built, the ID scheme is independent of the
algorithm that is used to create the R-tree.

3.3.2. The cumulative density (CD) scheme.The main
problem with the ID scheme is in the time it takes for es-
timation, and to a lesser extent the inaccuracy that was
pointed out earlier. We need to go through each row be-
tween0 andqyh, and check the columns in the[qxl; qxh]
range to serve a query(qxl; qyl; qxh; qyh). This becomes
expensive with a fine level of gridding (which would in-
crease accuracy), or with large query windows. There is
a similar problem with the point dataset schemes, and we
have used a cumulative density information to alleviate this
problem there. This technique can be used here as well,
which gives us the CD scheme.

We grid the spatial extent as in the ID scheme, and we
keep four values for each cell(i; j):

� BS0(i; j) (if BS(i; j) is the number of rectangles
whose lower-left corners lie in the range(0; j) to (i; j),
BS0(i; j) =

Pj

x=0BS(i; x));

� BE0(i; j) (if BE(i; j) is the number of rectangles
whose lower-right corners lie in the range(0; j) to
(i; j), BE0(i; j) =

Pj

x=0BE(i; x));

� US0(i; j) (if US(i; j) is the number of rectangles
whose upper-left corners lie in the range(0; j) to (i; j),
US0(i; j) =

Pj

x=0 US(i; x));

� UE0(i; j) (if UE(i; j) is the number of rectangles
whose upper-right corners lie in the range(0; j) to
(i; j), UE0(i; j) =

Pj

x=0 UE(i; x)).

The selectivityN(qxl; qyl; qxh; qyh) can then be calcu-
lated as follows:

S(xl;0;xh;yh)=BS0(xh;yh)�BE0(xl�1;yh) (6)
E(xl;0;xh;yh)=US0(xh;yh)�UE0(xl�1;yh) (7)

N(qxl;qyl;qxh;qyh)=BS0(qxh;qyh)�BE0(qxl�1;qyh)

�[US0(qxh;qyl�1)�UE0(qxl�1;qyl�1)] (8)

Instead of examining all density values in the range
[xl; xh], we need to access only two values for calculat-
ing S, and two for E. Thus, the estimation of selectivity and
nodes accessed (a similar method of calculating selectivity



with the MBRs of the R-tree nodes as explained with ID
can be used to find out nodes accessed) require constant (4
disk accesses and 3 arithmetic operations) time. This time
does not depend on the query window size nor the level of
gridding (we can use a very fine level for higher accuracy
without compromising on estimation time). Further, the CD
scheme avoids the inaccuracies of the ID scheme mentioned
earlier.

It is also interesting to note that a point dataset can be
viewed as a special class of rectangular data (of size 0).
Consequently,the rectangle dataset schemes can be used
to estimate selectivity and nodes accessed of point datasets
as well. We have used the CD scheme for estimation of
point datasets in the following evaluation studies, and com-
pare it with the point dataset schemes. The reader is referred
to [Jin99] for a detailed comparison of the five schemes in
terms of both space and time complexity, as well as accu-
racy.

4. Evaluating the analysis techniques

To evaluate the different schemes described in the previ-
ous section, we conduct extensive experiments with several
point and rectangle datasets, and several query windows.
These studies have been conducted on a 170 MHz SUN
UltraEnterprise 1 server. In the following discussion, we
briefly discuss the datasets considered, examine the met-
rics/criteria used for comparing the schemes, and present
the results for the point and rectangle datasets.

4.1. Datasets

We have considered a wide spectrum of point and rectan-
gular datasets, that are either uniformly distributed in space
or exhibit some kind of clustering (we use the terms clus-
tered and skewed synonymously in this paper). Some of
them have been obtained from actual/real datasets (such as
the Tiger [Mar86] data), while others have been syntheti-
cally generated. Due to space limitations, we are not able
to present the results for all of them or show them picto-
rially here. The reader is referred to [Jin99] for further
information. In this paper, we present results for (a) two
point datasets:TOP: Topological Point dataset taken from
[Pre], with478; 786 points following an interesting pattern
(points are arranged in regular rows with significant gaps
between successive rows),CFD: Computation Fluid Dy-
namics dataset taken from [Mav95], with208; 688 points
that are clustered; and (b) two rectangular datasets:PAR:
a dataset containing the MBRs of rivers of Pennsylvania
from the TIGER database [Mar86], with30; 218 rectangles,
CAR: a dataset containing the MBRs of the streets of Cali-
fornia from the TIGER database, with248; 643 rectangles.

We have considered different query window sizes (1%,
5%, 25%, 50% and 100% of the spatial extent), aspect ratios
and locations (that cover both sparse and clustered regions
of the extent) for each of these datasets. We believe that
the chosen datasets and query windows capture sufficiently
diverse workloads with interesting properties to stress the
pros and cons of different schemes.

4.2. Metrics/criteria

We have developed a bulk-loaded packed R-tree based
on Hilbert order [Gri86, Jag90] for each of the above
datasets, which we use for comparison. We use six crite-
ria for discussing the pros and cons of each scheme:

� Selectivity Estimation (s): This measures the accuracy
of the scheme in estimating the number of data items
retrieved for the specific query. It is expressed as an
absolute percentage error with respect to the number
of items retrieved by the query on the actual R-tree.

� Selectivity Estimation Time (st): This measures the
time taken by a scheme to estimate selectivity for the
specific query. It is expressed as a percentage of the
time to execute the query on the actual R-tree.

� Node Access Estimation (n): This measures the accu-
racy of the scheme in estimating the number of nodes
accessed/touched in serving the specific query. It is ex-
pressed as an absolute percentage error with respect to
the number of nodes touched by the query on the actual
R-tree.

� Node Access Estimation Time (nt): This measures the
time taken by a scheme to estimate the number of
nodes accessed/touched by the specific query. It is ex-
pressed as a percentage of the time to execute the query
on the actual R-tree.

� Density File Size (d): This is a measure of the storage
overhead (in bytes) to maintain the density information
required by each scheme. It is expressed as a percent-
age of the storage taken by the actual R-tree.

� Time for Building Density File (dt): This measures the
time taken by a scheme to create the density file. It is
expressed as a percentage of the time taken to build the
actual R-tree.

The reader should note that a relatively smalls andn is
preferable with lowst andnt. Though one would like to
have a lowdt andd as well, it should be noted thatdt is a
one-time cost, andd may not be a big issue with ever in-
creasing disk storage capacities (as long as density files are
not larger or become a large fraction of the actual dataset/R-
tree).

4.3. Point dataset results

Figure 3 shows a part of the results for the different
schemes. We present representative results from four query
windows for each dataset (the window coordinates are given
in the Figure). We have obtained results for each scheme us-
ing different levels/orders (h=5,6,7,8,9) for the density file.
Instead of presenting all those results, for each workload-
scheme combination, we present only those for the lowest
level/order (since this will have the lowestd anddt) which
gives a satisfiable degree (less than 5% error) of accuracy.
In case, none of these levels gives an error lower than 5%,
then we give the results forh=9. Consequently, different



s st n nt d dt
TOP

0.1
1

10
100

1000

DH(h = 9)
DHC/0.6(h = 9)
DHC/1.2(h = 9)
DHC/1.8(h = 9)
NDH(h = 9)
CD(h = 9)

0.1
1
10
100
1000

DH(h = 9)
DHC/0.6(h = 9)
DHC/1.2(h = 9)
DHC/1.8(h = 9)
NDH(h = 9)
CD(h = 7)

0
0.1

1
10

100

P
er

ce
nt

al
ge

(%
) DH(h = 9)

DHC/0.6(h = 9)
DHC/1.2(h = 9)
DHC/1.8(h = 9)
NDH(h = 9)
CD(h = 9)

0.01
0.1
1
10
100

 

DH(h = 9)
DHC/0.6(h = 9)
DHC/1.2(h = 9)
DHC/1.8(h = 9)
NDH(h = 9)
CD(h = 7)

(0.05,0.90,
 0.30,0.98)

(0.60,0.90,
 0.90,0.94)

(0.50,0.90,
 0.90,0.99)

(0.10,0.90,
 0.25,0.99)

s st n nt d dt
CFD

0
0.01

0.1
1

10
100

1000

DH(h = 9)
DHC/0.6(h = 9)
DHC/1.2(h = 9)
DHC/1.8(h = 9)
NDH(h = 9)
CD(h = 6)

0
0.01
0.1
1
10
100
1000

P
ercentage(%

)

DH(h = 8)
DHC/0.6(h = 9)
DHC/1.2(h = 9)
DHC/1.8(h = 9)
NDH(h = 8)
CD(h = 8)

0.01
0.1

1
10

100

DH(h = 6)
DHC/0.6(h = 6)
DHC/1.2(h = 6)
DHC/1.8(h = 6)
NDH(h = 6)
CD(h = 6)

0
0.01
0.1
1
10
100

DH(h = 5)
DHC/0.6(h = 5)
DHC/1.2(h = 5)
DHC/1.8(h = 5)
NDH(h = 5)
CD(h = 5)

(0.20,0.20,

 

 0.70,0.70)

(0.52,0.40,
 0.67,0.55)

(0.10,0.13,
 0.81,0.48)

(0.10,0.61,

 0.96,0.90)

Figure 3. Point Datasets

schemes could have different orders/levels (h) for a partic-
ular workload (a scheme with a higherh usually indicates
that it does not do as well as a scheme with a lowerh), and
the corresponding value is shown in the legends.

Accuracy (s and n): As can be expected, the DH and
NDH schemes give better accuracy with higherh. This is
specifically the case for selectivity estimation since these
schemes modify the query window to align the query win-
dow with the grid cells. In general, higherh will reduce
the change in query window that is needed, giving higher
accuracy. There are certain situations where a finer level
of gridding can result in a higher percentage change in area
of query window compared to a coarser level of gridding
(see [Jin99] for some examples). The overall trend, how-
ever, indicates that there will be a higher level of accuracy
with these schemes with higherh. In fact, one could the-
oretically hypothesize that at very highh, these schemes
should come very close to the actual R-tree results. But we
find that the estimated selectivities and nodes accessed are
much lower. After a closer examination, we found that this
is due to some points falling directly on cell boundaries.
Such points are histogrammed into only one of the buck-
ets to avoid double-counting (see [Jin99]). Consequently,
a query which is aligned to that grid cell and does not in-
clude the Hilbert value assigned to the point, will not count
the point in its estimation. This also explains why the TOP
dataset (where several points could lie on grid cell bound-
aries because of the nature of the dataset) shows unstable
results. Despite this, we find that these inaccuracies are not
a major problem from our experiments, and we can still get
less than 5% error in most cases.

In terms of node access estimation, NDH uses the same
technique as the DH scheme, and gives similar results. For
selectivity estimation, NDH assumes that data items are uni-
formly distributed in space within each leaf node (or at least
at the nodes which are at the boundaries of a Hilbert range
covered by the query). This assumption does not seem
to hurt accuracy very much. This is, perhaps, because of
two factors. The assumption is made only for the nodes
that partially overlap a Hilbert range covered by a query,

and this number is relatively low (as a percentage) com-
pared to the total number of selected data items. Further,
even clustered datasets, have some semblance of uniformity
within small/isolated regions and can be approximated ac-
cordingly.

The performance of the DHC schemes with three differ-
ent thresholds (0.6, 1.2 and 1.8) for the coefficient of devi-
ation are given in Figure 3. Accuracy for thresholds of 1.2
and 1.8, is not acceptable in several cases, and only 0.6 even
comes close to the other schemes.

We can observe that CD gives similar accuracies as DH
for selectivity estimation and higher precision for node ac-
cess estimation. This is because it uses the actual R-tree
information (MBRs of nodes) to estimate this information.
So any approximation made in determining selectivities is
not carried over to node estimation.

For most combinations of datasets and query windows,
the DH scheme estimations were less than 10% error at or-
der/level 6, and less than 5% error at order/level 8 [Jin99].
A similar observation holds for CD as well. Hence, level 8
seems to be an appropriate operating point.

Apart from the nature of the dataset (uniform/clustered)
and level of gridding, three other factors have an important
effect on the accuracy of these schemes, namely, the loca-
tion of query window, the size of the query window, and the
size of the data set. The query window (0.10,0.61,0.96,0.90)
covers a relatively sparse area of the CFD dataset. Conse-
quently, the number of nodes accessed for this window is
quite low. This small value can result in a higher percent-
age error (even though the deviation from the value may not
be much in absolute terms). Similarly, a window located on
a dense area, may cause more aberrations when the window
is aligned to the nearby grid cell boundaries, resulting in a
larger number of data points being included/excluded than
actual. A small query window can also give low selectivi-
ties and node accesses, and even a minor deviation from the
actual number can mean a large percentage error. These fac-
tors, together with the impact of dataset size on estimation
accuracy have been studied in [Jin99].

Estimation Time (nt and st): For some of the datasets,
the estimation times for the DH and NDH schemes are quite
expensive relative to the actual time taken for serving the
query. All the benefits of estimating R-tree performance
will be lost, if the estimation time is as high as20� 50% of
the query time itself. Higher the order (for better accuracy),
the higher is this time since the query window needs to be
broken into several finer Hilbert ranges, and these ranges
need to be looked up in the density file. The estimation
times for the DHC scheme are even worse, since it needs
to look up index information to get to the appropriate den-
sities. However, as the selectivity becomes larger, the esti-
mation time as a percentage of the query time gets smaller,
and these schemes may not be as bad in such cases. The
CD scheme is clearly a winner for this criteria, because it
takes a constant amount of time regardless of the dataset
and order/level. As a result, the CD estimation time rarely
exceeds even 1% of the query execution time for any of the
workloads.

Density File Size and Creation Time (d and dt): The
theoretical observations in the previous chapter about the



density file size are well borne out by the experimental re-
sults. The size quadruples in the DH scheme as we move to
the next order/level. However, for the datasets considered,
the size goes only as high as 10% of the space occupied by
the actual R-tree (and that too in only a few cases). Given
that space is not really a severe problem (as important as
time), the DH scheme may not be a bad choice. Moving to
the DHC scheme, we observe that the savings due to com-
pression is not very significant. At low thresholds, there
are not many nearby grid cells to merge, and the index that
is necessitated for this file can offset any gains due to com-
pression. There is some saving in DHC for certain clustered
datasets (like CFD), where there are regions in space with
little or no points that can be merged. The CD scheme re-
quires nearly 8 times the size of the DH scheme for a given
level. This is because there are 4 variables stored for each
grid cell (DH requires only one), and we need to maintain
the information for not only the data points, but also for the
node MBRs. In terms ofd, the NDH scheme is the win-
ner. The space that it requires is directly proportional to the
number of R-tree nodes, and this is much smaller than the
actual space in bytes taken by the R-tree (much less than
1%). Further, this size is independent of the order/level of
gridding.

The DH, DHC and NDH schemes require the Hilbert
values be assigned to all the data points, and then exter-
nally sorted before they are histogrammed. DHC requires
additional time for compression, which seems to be signif-
icantly higher from the results. The CD scheme does not
require Hilbert values to be generated or sorted, but it re-
quires additional time to calculate the cumulative informa-
tion. These two factors more or less compensate each other,
and the density file creation for CD takes roughly the same
time as DH/NDH.

4.4. Rectangular dataset results

As in the point dataset results, Figure 4 shows the results
of the ID and CD schemes on PAR and CAR with different
query windows.

The ID scheme has significant errors for selectivity and
node estimation even at level 9. In fact, we need to go higher
than level 12 to get errors within 5%. This is because of ap-
proximation errors that were explained earlier. The estima-
tion times are very high as well, and in many cases even ex-
ceed the actual query execution times on the R-tree. These
results suggest that ID is not a feasible approach, and we do
not discuss it further.

On the other hand, the CD scheme appears to give re-
markably accurate results for both selectivity and node ac-
cess estimation. We need to go only up to levels 8 or 9 to
get the errors within 5%. It achieves this goal with a con-
stant estimation time that is usually much less than 1% of
the actual query execution time. The reader should note that
the storage taken by the density file for CD (for DH and ID
as well) is independent of the dataset size. It is purely a
function of the level/order. The reason whyd is quite high
for PAR is because the dataset is itself quite small (the cor-
responding R-tree is smaller) compared to CAR. The same
argument holds for the density file creation time (dt). In

summary, as the dataset size grows larger, the space over-
head of the CD scheme gets smaller (as a percentage).
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Figure 4. Rectangle Datasets

4.5. Average case accuracy

One of the points we are trying to make is that it is im-
portant to examine individual estimation errors with a spec-
trum of different query windows as we have done in the
previous experiments. Averaging the errors over a large
number of windows as many previous studies have done
[APR99, KF93, TS96, PF99], could hide some of the gross
inaccuracies for certain specific query windows (and these
windows could be important for a particular application).
To address any concerns that the reader may have with
this approach, we have also run numerous query windows
(1000) over the datasets, and present the average (mean)
estimation error for the CD scheme with level 9 in Table
1 expressed as a percentage of the actual mean (s andn),
together with the minimum and maximum of these errors.
The reader should note that the maximum error captures the
results for just one of the query windows, and this is usu-
ally for a window which has very low selectivity. A very
low selectivity, can result in large percentage errors even if
the absolute number is not significantly different from the
actual value (for instance, an estimate of 2 for a selectivity
of 1 will give 100% error).

Selectivity(%) Node Access(%)Workload
Min Max Avg Min Max Avg

TOP-uni 0 72.73 2.34 0 44.85 1.70
CFD-uni 0 54.55 1.93 0 31.28 1.09
PAR-uni 0 53.85 1.23 0 35.71 1.05
CAR-uni 0 50.00 1.50 0 100.00 1.24

TOP-skew 0 158.70 5.52 0 65.58 3.61
CFD-skew 0 14.58 0.12 0 13.58 0.13
PAR-skew 0 25.10 0.64 0 20.00 0.95
CAR-skew 0 8.28 0.71 0 21.05 0.92

Table 1. Average Case Errors for CD

For the query windows, we use two workloads (uni and
skew). In both these workloads, the aspect ratio of the query



window is uniformly varied between 0.33 to 3.0, and the
size is varied between 0.1% to 25% of the spatial extent. In
uni, the center point of the query window is uniformly dis-
tributed within the spatial extent. Inskew, the center point
of the query window is located based on a distribution of
the points (in point datasets) or rectangle center-points (in
rectangle datasets) in the actual dataset i.e. a spatial Cumu-
lative Distribution Function (CDF) of the dataset has been
obtained and the query window location is drawn from the
probability density function determined by this CDF. Many
previous studies have used workloads similar touni to con-
duct average case experiments, and we feel thatskewmay
be a better approximation to actual workloads. Regardless
of the workload used for average case estimation, we still
find that CD gives very good estimates (typically less than
5% error) over all the datasets as in the previous individual
query estimations.

4.6. Summary

In summary, the point dataset results clearly show that
CD (and DH to a certain extent) does the best, giving fairly
accurate results (less than 5% error for CD) in a short time
(in CD it takes much less than 1% of the query execution
time for estimation). For the rectangular datasets, CD is
the clear winner. For the datasets that were considered, we
need to go only up to levels 8 or 9 for these schemes, and
the density storage overheads are not overly demanding at
these levels. As the datasets get larger (which is when anal-
ysis is really meant to be useful), the storage overhead as
a percentage of the dataset size becomes smaller. Further,
one is usually interested in lowering estimation times rather
than space overheads.

We have also compared accuracy of the DH and CD
schemes with several previously proposed analysis tech-
niques [KF93, TS96, PF99, APR99]. CD gives much better
accuracy than these techniques and the reader is referred to
[JAS99] for further details on these comparisons.

5. Concluding remarks

This paper has presented a novel set of schemes to an-
alyze range query performance on spatial data. Three of
these schemes can analyze point datasets, and the other two
can be used for both point and rectangular datasets. These
schemes make very little assumptions about the dataset, and
use an auxiliary data structure (histograms) called a density
file which can be constructed when the index structure is
created (one-time cost). When a query is given, the den-
sity file is “quickly” looked up to get sufficient information
about the dataset which is then used to calculate the selec-
tivity. We have also illustrated how this information can
be used to estimate the number of nodes that would be ac-
cessed in the index structure using the packed R-tree as a
case-study.

With a diverse suite of real and synthetic datasets, which
fall under both uniform and skewed classifications, this pa-
per has shown that one of the schemes, calledCumulative
Density(CD) scheme, gives very accurate results, with er-
rors that are much lower (usually less than 5% errors) than

many previously proposed analysis techniques. This accu-
racy is observed over a spectrum of query window sizes,
locations and aspect ratios, and not just in the average case.
This makes the CD scheme more universally applicable.
The estimation with the CD scheme takes a constant amount
of time (at most 4 disk accesses and 3 arithmetic opera-
tions), regardless of dataset or query window parameters.
This time tends to be typically lower than 1% of the time
that it would take to actually execute the query using an R-
tree. As a result, the CD scheme is very practical and would
be extremely useful in a query optimizer.

This paper has opened several interesting directions for
future research. One issue is regarding how we can decide
on the level/order for the density file (the query window pa-
rameters are not known at the time the density file is cre-
ated). We have been examining different real datasets and
our examination suggests that we do not really need to go to
high levels (relative to the dataset size) with the CD scheme
to limit estimation errors within reasonable bounds. Fur-
ther, we are trying to develop techniques that can be used
to decide on the level at the time of density file creation us-
ing workload information. We are also trying to find out
if the proposed schemes can be extended (or new ones can
be developed) to more complicated queries, such as spatial
joins.
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