Pinning Down “Privacy” in Statistical Databases

Adam Smith
Computer Science & Engineering Department
Penn State
Privacy in Statistical Databases

Large collections of personal information
- census data
- medical/public health data
- social networks
- recommendation systems
- trace data: search records, etc
- intrusion-detection systems

Recently:
- larger data sets
- more types of data
Privacy in Statistical Databases

- Published “statistics” may be tables, graphs, microdata, decision trees, neural networks, confidence intervals...
- Data may be numbers, categories, tax forms, web searches...
- May be interactive
Published “statistics” may be tables, graphs, microdata, decision trees, neural networks, confidence intervals...

Data may be numbers, categories, tax forms, web searches...

May be interactive
Privacy in Statistical Databases

- What information can be released?
- Two conflicting goals
 - **Utility**: Users can extract “global” properties
 - **Privacy (“confidentiality”)**: Individual information stays hidden
- How can these be formalized?
Privacy in Statistical Databases

- Variations on model studied in
 - Statistics ("statistical disclosure control")
 - Data mining ("privacy-preserving data mining" *)
- No coherent theory
- Recently: crypto & theoretical CS
 - Focused on rigorous approach to privacy
How can we formalize “privacy”?

- “Privacy” is harder to reason about than “utility”
 - Utility is what we’re used to
- Existing definitions problematic
 - Many are not specified precisely
 - Fail in the presence of external information
External Information

Individuals: \(x_1, x_2, \ldots, x_n \)

Server/agency: \(A \)

Users: Government, researchers, businesses (or) Malicious adversary

External Information:
- Internet
- Social network
- Other anonymized data sets

Local random coins: \(x_1, x_2, \ldots, x_n \)

Queries: \(q \)

Answers: \(a \)
Users have external information sources
 ➢ Can’t assume we know the sources

Anonymization schemes regularly broken
External Information

- Users have external information sources
 - Can’t assume we know the sources
- Anonymization schemes regularly broken
- **Example**: two hospitals independently release statistics about overlapping populations
 - Combining information “breaks” several current techniques [Ganta, S.]
How can we formalize “privacy”?
How can we formalize “privacy”?

• **Goal #1: Rigor**
 - Raise the bar for how we think about privacy
 - Especially external information
 - Make clear and refutable statements/conjectures
How can we formalize “privacy”?

• **Goal #1: Rigor**
 - Raise the bar for how we think about privacy
 - Especially external information
 - Make clear and refutable statements/conjectures

• **Goal #2: Interesting science**
 - (New) Computational phenomenon
 - Unify different approaches
 - Algorithmic, statistical, cryptographic challenges
This talk

• “Differential” privacy
 ➢ Handles arbitrary external information
 ➢ What can we compute privately?

• Example technique: Output perturbation
 ➢ Calibrating noise to “sensitivity”
 ➢ Sample-aggregate methodology
This talk

• “Differential” privacy
 - Handles arbitrary external information
 - What can we compute privately?

• Example technique: Output perturbation
 - Calibrating noise to “sensitivity”
 - Sample-aggregate methodology
• Intuition:
 - Changes to my data *not noticeable by users*
 - Output is “independent” of my data
• **Data set** \(x = (x_1, \ldots, x_n) \in D^n \)
 - Domain \(D \) can be numbers, categories, tax forms
 - Think of \(x \) as **fixed** (not random)

• **\(A \) = randomized** procedure run by the agency
 - \(A(x) \) is a random variable distributed over possible outputs
 Randomness might come from adding noise, resampling, etc.
Defining Privacy [DiNi,DwNi,BDMN,DMNS]

x' is a neighbor of x if they differ in one data point.
Defining Privacy \([\text{DiNi}, \text{DwNi}, \text{BDMN}, \text{DMNS}]\)

- \(x_1, x_2, \ldots, x_n\) are inputs.
- \(A(x)\) is a function that processes the inputs.
- Local random coins are used.

- \(x'\) is a neighbor of \(x\) if they differ in one data point.

Neighboring databases induce close distributions on outputs.
Defining Privacy [DiNi,DwNi,BDMN,DMNS]

\[x' \text{ is a neighbor of } x \]
\[\text{if they differ in one data point} \]

Definition: A is \(\epsilon \)-differentially private if,
for all neighbors \(x, x' \),
for all subsets \(S \) of outputs
\[
\Pr(A(x) \in S) \leq e^{\epsilon} \cdot \Pr(A(x') \in S)
\]
Defining Privacy \([DiNi,DwNi,BDMN,DMNS]\)

- \(\epsilon\) cannot be too small (think \(\frac{1}{10}\), not \(\frac{1}{2^{50}}\))
- Distance measure on distributions matters
- This is a condition on the algorithm (process) \(A\)
 - Saying “this output is safe” doesn’t take into account how it was computed
 - Common problem in the literature...

Definition: A is \(\epsilon\)-differentially private if, for all neighbors \(x, x'\), for all subsets \(S\) of outputs

\[
\Pr(A(x) \in S) \leq e^\epsilon \cdot \Pr(A(x') \in S)
\]
Example: Perturbing the Average

Let x_1, x_2, \ldots, x_n be the inputs. We define

$$A(x) = \bar{x} + \text{noise}$$

where

$$\bar{x} = \frac{1}{n} \sum_i x_i$$

and $x_i \in \{0, 1\}$. The local random coins are used to perturb the average.
Example: Perturbing the Average

- Data points are binary responses $x_i \in \{0, 1\}$
- Server wants to release average $\bar{x} = \frac{1}{n} \sum_i x_i$

$$A(x) = \bar{x} + \text{noise}$$
Example: Perturbing the Average

- Data points are binary responses $x_i \in \{0, 1\}$
- Server wants to release average $\bar{x} = \frac{1}{n} \sum_i x_i$
- **Claim**: If noise $\sim \text{Lap} \left(\frac{1}{\epsilon n} \right)$ then A is ϵ-differentially private
Example: Perturbing the Average

- Data points are binary responses \(x_i \in \{0, 1\} \)
- Server wants to release average \(\bar{x} = \frac{1}{n} \sum_i x_i \)
- **Claim**: If noise \(\sim \text{Lap}\left(\frac{1}{\epsilon n}\right) \) then A is \(\epsilon \)-differentially private

\[
A(x) = \bar{x} + \text{noise} \\
\approx \bar{x} \pm \frac{1}{\epsilon n}
\]

If \(x \) is a random sample from an underlying population, then get sampling noise \(\approx \frac{1}{\sqrt{n}} \).
Example: Perturbing the Average

- Data points are binary responses $x_i \in \{0, 1\}$
- Server wants to release average $\bar{x} = \frac{1}{n} \sum_i x_i$
- **Claim:** If noise $\sim \text{Lap}(\frac{1}{\epsilon n})$ then A is ϵ-differentially private

- Laplace distribution $\text{Lap}(\lambda)$ has density $h(y) \propto e^{-|y|/\lambda}$
- Sliding property: $\frac{h(y)}{h(y+\delta)} \leq e^{\delta/\lambda}$
Example: Perturbing the Average

- Data points are binary responses \(x_i \in \{0, 1\} \)
- Server wants to release average \(\bar{x} = \frac{1}{n} \sum_i x_i \)
- **Claim:** If noise \(\sim \text{Lap}(\frac{1}{\epsilon n}) \) then \(A \) is \(\epsilon \)-differentially private

- Laplace distribution \(\text{Lap}(\lambda) \) has density \(h(y) \propto e^{-|y|/\lambda} \)
- Sliding property: \(\frac{h(y)}{h(y+\delta)} \leq e^{\delta/\lambda} \)

If \(x \) is a random sample from an underlying population, then get sampling noise \(\approx \frac{1}{\sqrt{n}} \).
Example: Perturbing the Average

- Data points are binary responses $x_i \in \{0, 1\}$
- Server wants to release average $\bar{x} = \frac{1}{n} \sum_i x_i$
- **Claim:** If noise $\sim \text{Lap}(\frac{1}{\epsilon n})$ then A is ϵ-differentially private

- Laplace distribution $\text{Lap}(\lambda)$ has density $h(y) \propto e^{-|y|/\lambda}$
- Sliding property: $\frac{h(y)}{h(y+\delta)} \leq e^{\delta/\lambda}$
- $A(x) = \text{blue curve}$, $A(x') = \text{red curve}$
- $\delta = |\bar{x} - \bar{x}'| \leq \frac{1}{n} \implies \text{blue curve} \leq e^\epsilon$
Why is this a good definition?

Definition: A is ϵ-differentially private if, for all neighbors x, x', for all subsets S of transcripts

$$\Pr(A(x) \in S) \leq e^{\epsilon} \cdot \Pr(A(x') \in S)$$

Neighboring databases induce **close** distributions on transcripts.
Why is this a good definition?

• “Composition”: If algorithms A_1 and A_2 are ϵ-differentially private then the outputting results of both algorithms $A_1(x), A_2(x)$ is 2ϵ-differentially private

• “Group privacy”: $k\epsilon$-differential privacy for groups of size $\leq k$

• Meaningful in the presence of arbitrary external information

Definition: A is ϵ-differentially private if, for all neighbors x, x', for all subsets S of transcripts

$$
\Pr(A(x) \in S) \leq e^\epsilon \cdot \Pr(A(x') \in S)
$$

Neighboring databases induce close distributions on transcripts
Why is this a good definition?
Why is this a good definition?

• A naïve hope:

Your beliefs about me are the same after you see the output as they were before

• Suppose you know I am the height of average Canadian

 ➢ You could learn my height from database!
 But it didn’t matter whether or not my data was part of it.
 ➢ Has my privacy been compromised? No!
 ➢ **Theorem** (Dwork-Naor): Learning things about individuals is unavoidable in the presence of external information
Why is this a good definition?

• A naïve hope:

 Your beliefs about me are the same after you see the output as they were before

• Suppose you know I am the height of average Canadian

 ➢ You could learn my height from database!
 But it didn’t matter whether or not my data was part of it.
 ➢ Has my privacy been compromised? No!
 ➢ **Theorem** (Dwork-Naor): Learning things about individuals is **unavoidable** in the presence of external information
Why is this a good definition?

- A naïve hope:

 Your beliefs about me are the same after you see the output as they were before.

- Suppose you know I am the height of average Canadian

 - You could learn my height from database!
 But it didn’t matter whether or not my data was part of it.
 - Has my privacy been compromised? No!
 - **Theorem** (Dwork-Naor): Learning things about individuals is **unavoidable** in the presence of external information.

- [DM] Differential privacy implies:
 No matter what you know ahead of time,

 You learn the same things about me whether or not I am in the database.
Why is this a good definition?
Why is this a good definition?

- Consider an intruder trying to infer personal information
 - “Background knowledge” = prior distribution on data x
 - “Conclusions you draw” = posterior \(p(\cdot | \text{output}) \)
 - Experiment 0: Run \(A(x) \)
 - Experiment \(i \): Run \(A(x_{-i}) \) where \(x_{-i} = (x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) \)
Why is this a good definition?

- Consider an intruder trying to infer personal information
 - “Background knowledge” = prior distribution on data x
 - “Conclusions you draw” = posterior p(·|output)

- Experiment 0: Run A(x)
- Experiment i: Run A(x_{-i}) where x_{-i} = (x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)

- **Lemma:** \(\forall \) prior, \(\forall \) output, \(p_0(\cdot | \text{output}) \approx p_i(\cdot | \text{output}) \)

\[
\begin{align*}
\text{Bayes’ rule with} & \\
\Pr(y | x) &= \Pr(A(x) = y) \\
\rightarrow & \\
\Pr(y | x) &= \Pr(A(x_{-i}) = y) \\
\rightarrow & \\
p_0(x | y) & \approx p_i(x | y) \\
\end{align*}
\]
Why is this a good definition?

- Consider an intruder trying to infer personal information

 \[\text{“Background knowledge”} = \text{prior distribution on data } x\]

 \[\text{“Conclusions you draw”} = \text{posterior } p(\cdot|\text{output})\]

 \[\text{Experiment 0: Run } A(x)\]

 \[\text{Experiment } i: \text{Run } A(x_{-i}) \text{ where } x_{-i} = (x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n)\]

- **Lemma:** \(\forall \text{ prior}, \forall \text{ output}, p_0(\cdot|\text{output}) \approx p_i(\cdot|\text{output})\)

- **Proof:**

 \[
p_0(x) = \frac{\Pr(A(x) = \text{output}) \times \text{prior}(x)}{\int_t \Pr(A(t) = \text{output}) \times \text{prior}(t)\}
 \approx \frac{\Pr(A(x_{-i}) = \text{output}) \times \text{prior}(x)}{\int_t \Pr(A(t_{-i}) = \text{output}) \times \text{prior}(t)\}
 = p_1(x)
 \]

- Similar lemmas hold for relaxations of definition
What can we compute privately?

- “Privacy” = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- Research so far
 - Function approximation [DN, DN, BDMN, DMNS, NRS, BCDKMT, BLR]
 - Mechanism Design [MT]
 - Learning [BDMN, KLNRS]
 - Statistical estimation [S]
 - Synthetic Data [MKAGV]
 - Distributed protocols [DKMMN, BNO]
 - Impossibility results / lower bounds [DiNi, DMNS, DMT]
This talk

• “Differential” privacy
 - Handles arbitrary external information
 - What can we compute privately?

• Example technique: Output perturbation
 - Calibrating noise to “sensitivity”
 - Sample-aggregate methodology
This talk

• “Differential” privacy
 - Handles arbitrary external information
 - What can we compute privately?

• Example technique: Output perturbation
 - Calibrating noise to “sensitivity”
 - Sample-aggregate methodology
Output Perturbation, more generally

- May be interactive
 - Non-interactive: release pre-defined summary stats + noise
 - Interactive: respond to user requests
- May be repeated many times
 - Composition: q releases are jointly $q\epsilon$-differentially private
- How much noise is enough? (How much is too much?)

![Diagram](image-url)
Global Sensitivity [DMNS06]

- Intuition: \(f(x) \) can be released accurately when \(f \) is insensitive to individual entries \(x_1, x_2, \ldots, x_n \)

- Global Sensitivity: \(\text{GS}_f = \max_{\text{neighbors } x, x'} \| f(x) - f(x') \|_1 \)

- Example: \(\text{GS}_{\text{average}} = \frac{1}{n} \)
Global Sensitivity [DMNS06]

- **Intuition**: $f(x)$ can be released accurately when f is insensitive to individual entries x_1, x_2, \ldots, x_n

- **Global Sensitivity**: $\text{GS}_f = \max_{\text{neighbors } x, x'} \| f(x) - f(x') \|_1$

- **Example**: $\text{GS}_{\text{average}} = \frac{1}{n}$

Theorem: If $A(x) = f(x) + \text{Lap} \left(\frac{\text{GS}_f}{\epsilon} \right)$, then A is ϵ-differentially private.
Global Sensitivity [DMNS06]

Theorem: If $A(x) = f(x) + \text{Lap} \left(\frac{\text{GS}_f}{\epsilon} \right)$, then A is ϵ-differentially private.

Laplace distribution $\text{Lap}(\lambda)$ has density $h(y) \propto e^{-\frac{||y||_1}{\lambda}}$.
Global Sensitivity [DMNS06]

Theorem: If \(A(x) = f(x) + \text{Lap} \left(\frac{\text{GS}_f}{\epsilon} \right) \), then \(A \) is \(\epsilon \)-differentially private.

Laplace distribution \(\text{Lap}(\lambda) \) has density \(h(y) \propto e^{-\frac{\|y\|_1}{\lambda}} \)

Sliding property of \(\text{Lap} \left(\frac{\text{GS}_f}{\epsilon} \right) \): \(\frac{h(y)}{h(y+\delta)} \leq e^{\epsilon \cdot \frac{\|\delta\|}{\text{GS}_f}} \) for all \(y, \delta \)
Global Sensitivity \[\text{[DMNS06]}\]

Theorem: If \(A(x) = f(x) + \text{Lap}\left(\frac{\text{GS}_f}{\epsilon}\right)\), then \(A\) is \(\epsilon\)-differentially private.

Laplace distribution \(\text{Lap}(\lambda)\) has density \(h(y) \propto e^{-\frac{||y||_1}{\lambda}}\)

Sliding property of \(\text{Lap}\left(\frac{\text{GS}_f}{\epsilon}\right)\): \(\frac{h(y)}{h(y+\delta)} \leq e^{\frac{\epsilon}{\text{GS}_f} ||\delta||}\) for all \(y, \delta\)

Proof idea:
\(A(x)\): blue curve
\(A(x')\): red curve
\(\delta = f(x) - f(x') \leq \text{GS}_f\)
Examples of low global sensitivity

• Many natural functions have low GS, e.g.:
 ➢ Sample mean
 ➢ Histograms and contingency tables
 ➢ Covariance matrix
 ➢ Estimators with uniformly bounded sensitivity curve
 ➢ Distance to a property
 ➢ Functions that can be approximated from a random sample

• [BDMN] Many data-mining and statistical algorithms access the data via a sequence of low-sensitivity questions
 ➢ e.g. perceptron, some EM algorithms, “SQ” learning algorithms
When Does Noise Not Matter?

- **Average:** $A(x) = \bar{x} + \text{Lap}\left(\frac{1}{\epsilon n}\right)$

 - Suppose $X_1, X_2, X_3, ..., X_n$ are i.i.d. random variables
 - \bar{X} is a random variable, and $\sqrt{n} \cdot (\bar{X} - \mu) \xrightarrow{d} \text{Normal}$
 - $\frac{A(X) - \bar{X}}{\text{StdDev}(\bar{X})} \xrightarrow{P} 0$ if $\epsilon \sqrt{n} \to \infty$ with n

- No “cost” to privacy:
 - $A(X)$ is “as good as” \bar{X} for statistical inference*

![Graph showing \bar{X} and $A(X)$](image-url)
When Does Noise **Not** Matter?
When Does Noise Not Matter?

- **Theorem:** For any exponential family, can release “approximately sufficient” statistics
 - Suff. stats $T(X)$ are sums, add noise $\frac{d}{\epsilon n}$ for dimension d
 - $\frac{A(X) - T(X)}{\text{StdDev}(T(X))} \xrightarrow{P} 0$
When Does Noise **Not** Matter?

- **Theorem:** For any exponential family, can release “approximately sufficient” statistics
 - Suff. stats $T(X)$ are sums, add noise $\frac{d}{\epsilon n}$ for dimension d
 - $\frac{A(X) - T(X)}{\text{StdDev}(T(X))} \xrightarrow{p} 0$

- **Theorem:** For any well-behaved parametric family, one can construct a private **efficient** estimator A, if $\epsilon \sqrt[4]{n} \rightarrow \infty$
 - $A(X)$ converges to MLE
 - Requires additional techniques
When Does Noise **Not** Matter?

Theorem: For any exponential family, can release “approximately sufficient” statistics

- Suff. stats $T(X)$ are sums, add noise $\frac{d}{\epsilon n}$ for dimension d
- $\frac{A(X) - T(X)}{\text{StdDev}(T(X))} \xrightarrow{P} 0$

Theorem: For any well-behaved parametric family, one can construct a private **efficient** estimator A, if $\epsilon \frac{4}{\sqrt{n}} \to \infty$

- $A(X)$ converges to MLE
- Requires additional techniques

Bounds gets worse as dimension increases

- What is the “best” private estimator?
Example: Histograms

\[f(x) = (n_1, n_2, \ldots, n_d) \text{ where } n_j = \# \{ i : x_i \text{ in } j\text{-th interval} \} \]

\[\text{Lap}(1/\epsilon) \]
Example: Histograms

- Say x_1, x_2, \ldots, x_n in $[0,1]$
 - Partition $[0,1]$ into d intervals of equal size
 - $f(x) = (n_1, n_2, \ldots, n_d)$ where $n_j = \# \{ i : x_i \text{ in } j\text{-th interval} \}$
 - $\text{GS}_f = 2$
 - Sufficient to add noise $\text{Lap}(1/\epsilon)$ to each count
 - Independent of the dimension
Example: Histograms

• Say \(x_1, x_2, \ldots, x_n \) in \([0, 1]\)

 - Partition \([0, 1]\) into \(d\) intervals of equal size

 - \(f(x) = (n_1, n_2, \ldots, n_d) \) where \(n_j = \#\{i : x_i \text{ in } j\text{-th interval}\} \)

 - \(\text{GS}_f = 2 \)

 - Sufficient to add noise \(\text{Lap}(1/\epsilon) \) to each count

 - Independent of the dimension

• For any smooth density \(h \), if \(X_i \) i.i.d. \(\sim h \), noisy histogram converges to \(h \)

 - Expected \(L_2 \) error \(O\left(\frac{1}{\sqrt[3]{n}}\right) \) if \(\epsilon \geq \frac{1}{\sqrt[3]{n}} \)

 - Same as non-private estimator
Example: Histograms

- Say \(x_1, x_2, \ldots, x_n \) in \([0, 1]\) arbitrary domain \(D \)
 - Partition \([0, 1]\) into \(d \) intervals of equal size
 - \(f(x) = (n_1, n_2, \ldots, n_d) \) where \(n_j = \# \{ i : x_i \text{ in } j\text{-th interval} \} \)
 - \(GS_f = 2 \)
 - Sufficient to add noise \(\text{Lap}(1/\epsilon) \) to each count
 - Independent of the dimension

- For any smooth density \(h \), if \(X_i \) i.i.d. \(\sim h \), noisy histogram converges to \(h \)
 - Expected \(L_2 \) error \(O(\frac{1}{\sqrt[3]{n}}) \) if \(\epsilon \geq \frac{1}{\sqrt[3]{n}} \)
 - Same as non-private estimator
Contingency Tables

• Work horse of releases from US statistical agencies
 ➢ Frequencies of combinations of set of categorical attributes

• Treat as a “histogram”
 ➢ Eight bins (O+, O-, ..., AB+, AB-)
 ➢ Can add constant noise to counts
 ➢ Change to proportions is $O\left(\frac{1}{n}\right)$
 ➢ Below sampling noise if $n >> \#\text{bins}$

• Problem for practice:
 ➢ Some entries may be negative. Multiple tables inconsistent.
 ➢ [BCDKMT] Multiple noisy tables can be “rounded” to a consistent set of tables without increasing noise
Example: Distance to a Property

- Say $P =$ set of “good” databases
 - e.g. well-clustered databases
- Distance to $P =$ # points in x that must be changed to make x in P
 - Always has GS = 1
- Examples:
 - Distance to good clustering
 - Weight of minimum cut in graph
Global Sensitivity Summary

- Simple framework for output perturbation with strong privacy guarantees
 - Noise levels small enough to allow meaningful analysis
- Improved in several respects
 - **Worst case definition**: even if f is sensitive on only one input, must add lots of noise
 - [NRS] Add less noise on “good” instances
 - **One function at a time**: To answer q queries, naive analysis suggests making noise increase linearly with q
 - [BLR] Simultaneously answer many “simple” questions
 - **Focus on function approximation**: many tasks not so simple
 - Auction design [MT], supervised learning [KLNRS]
This talk

• “Differential” privacy
 - Handles arbitrary external information
 - What can we compute privately?

• Example technique: Output perturbation
 - Calibrating noise to “sensitivity”
 - Sample-aggregate methodology
High Global Sensitivity: Median

Example 1: median of $x_1, \ldots, x_n \in [0, 1]$

\[
x = 0 \cdots 0 \underbrace{1 \cdots 1}_{\frac{n-1}{2}}
\]

\[
\text{median}(x) = 0
\]

\[
x' = 0 \cdots 0 \underbrace{1 \cdots 1}_{\frac{n-1}{2}}
\]

\[
\text{median}(x') = 1
\]

\[
\text{GS}_{\text{median}} = 1
\]

- Noise magnitude: $\frac{1}{\varepsilon}$. Too much noise!
- But for most neighbor databases x, x',
 \[
 |\text{median}(x) - \text{median}(x')| \text{ is small.}
 \]
- Can we add less noise on ”good” instances?
High Global Sensitivity: MST Cost

Example 2: the weight of a minimum spanning tree

Database entries: edge weights in the range $[0, 1]$.

$G_{\text{MST-weight}} = 1$
High Global Sensitivity: MST Cost

Example 2: the weight of a minimum spanning tree

Database entries: edge weights in the range $[0, 1]$.

\[
\begin{array}{ll}
\text{MST-weight}(x) = 3 \\
\text{MST-weight}(x') = 2
\end{array}
\]

\[
\text{GS}_{\text{MST-weight}} = 1
\]
High Global Sensitivity: Cluster centers

Database entries: points in a metric space.

Global sensitivity of cluster centers is roughly the diameter of the space.

- But intuitively, if clustering is ”good”, cluster centers should be insensitive.
High Global Sensitivity: Cluster centers

Database entries: points in a metric space.

Global sensitivity of cluster centers is roughly the diameter of the space.

- But intuitively, if clustering is "good", cluster centers should be insensitive.
High Global Sensitivity: Cluster centers

Database entries: points in a metric space.

Global sensitivity of cluster centers is roughly the diameter of the space.

- But intuitively, if clustering is ”good”, cluster centers should be insensitive.
Getting Around Global Sensitivity

• **Local sensitivity** measures variability in neighborhood of specific data set [Nissim-Raskhodnikova-S, *STOC 2007*]

 ➢ Connections to robust statistics
 • Bounded influence function implies expected local sensitivity is small

 ➢ Local sensitivity needs to be smoothed
 • Interesting algorithmic/geometric problems

 ➢ Not this talk

• Instead: **Generic framework for smoothing functions so they have low sensitivity**
Intuition: Replace f with a less sensitive function \tilde{f}.

$$\tilde{f}(x) = g(f(sample_1), f(sample_2), \ldots, f(sample_s))$$
Example: Efficient Point Estimates

- Given a parametric model \(\{ f_\theta : \theta \in \Theta \} \)
- MLE = \(\arg\max_\theta (f_\theta(x)) \)
- Converges to Normal
 - Bias(MLE) = \(O(1/n) \)
 - Can be corrected so that bias(\(\hat{\theta} \)) = \(O(n^{-3/2}) \)
- **Theorem**: If model is well-behaved, then sample-aggregate using \(\hat{\theta} \) gives efficient estimator if \(\epsilon n^{1/4} \rightarrow \infty \)

- Question: What is the best private estimator?
 - Error bounds degrade with dimension...
Theorem

If f can be approximated on x
from small samples
then f can be released with little noise
Sample-and-Aggregate Methodology

Theorem

If f can be approximated on x within distance r
from small samples of size $n^{1-\delta}$
then f can be released with little noise $\approx \frac{r}{\varepsilon} + \text{negl}(n)$
Theorem

If f can be approximated on x within distance r

from small samples of size $n^{1-\delta}$

then f can be released with little noise $\approx \frac{r}{\varepsilon} + \text{negl}(n)$

• Works in several different metric spaces

• Example application: clustering

 ➢ I.i.d. random inputs: parametric estimation of mixture models

 ➢ Arbitrary inputs: approximate optimal k-means clustering if data is “separated” à la [OstrovksyRabaniSchulmanSwamy’06]
Conclusions

• Define privacy in terms of my effect on output
 - Meaningful despite arbitrary external information
 - I should participate if I get benefit

• What can we compute privately?
 - Lots of recent work
 - Existing techniques work best for highly structured computations. What about graph data, text, searches, ...?

• Data privacy is now (even) more challenging than in past
 - Data vastly more varied and valuable
 - External information more available
 - How should we think about data privacy? (This is one example.)