
Fuzzy Extractors: How to Generate Strong Keys from Biometrics and

Other Noisy Data∗

Yevgeniy Dodis† Rafail Ostrovsky‡ Leonid Reyzin§ Adam Smith¶

November 11, 2005

Abstract

We provide formal definitions and efficient secure techniques for

• turning biometric information into keys usable for any cryptographic application, and

• reliably and securely authenticating biometric data.

Our techniques apply not just to biometric information, but to any keying material that, unlike
traditional cryptographic keys, is (1) not reproducible precisely and (2) not distributed uniformly. We
propose two primitives: a fuzzy extractor reliably extracts nearly uniform randomness R from its input;
the extraction is error-tolerant in the sense that R will be the same even if the input changes, as long as it
remains reasonably close to the original. Thus, R can be used as a key in any cryptographic application.
A secure sketch produces public information about its input w that does not reveal w, and yet allows
exact recovery of w given another value that is close to w. Thus, it can be used to reliably reproduce
error-prone biometric inputs without incurring the security risk inherent in storing them.

In addition to formally introducing our new primitives, we provide nearly optimal constructions
of both primitives for various measures of “closeness” of input data, such as Hamming distance, edit
distance, and set difference.

∗A preliminary version of this work appeared in Eurocrypt 2004 [DRS04].
†dodis@cs.nyu.edu. New York University, Department of Computer Science, 251 Mercer St., New York, NY 10012 USA.
‡rafail@cs.ucla.edu. University of California, Los Angeles, Department of Computer Science, Box 951596, 3732D BH,

Los Angeles, CA 90095 USA.
§reyzin@cs.bu.edu. Boston University, Department of Computer Science, 111 Cummington St., Boston MA 02215 USA.
¶adam.smith@weizmann.ac.il. Weizmann Institute of Science, Faculty of Mathematics and Computer Science, Rehovot

76100, Israel. The research reported here was done while the author was a student at the Computer Science and Artificial
Intelligence Laboratory at MIT.

Contents

1 Introduction 2

2 Preliminaries 6

3 New Definitions 8
3.1 Average Min-Entropy . 8
3.2 Secure Sketches . 9
3.3 Fuzzy Extractors . 10

4 Metric-Independent Results 10
4.1 Construction of Fuzzy Extractors from Secure Sketches . 11
4.2 Secure Sketches for Transitive Metric Spaces . 12
4.3 Changing Metric Spaces via Biometric Embeddings . 13

5 Constructions for Hamming Distance 14

6 Constructions for Set Difference 15
6.1 Small Universes . 17
6.2 Improving the Construction of Juels and Sudan . 18
6.3 Large Universes via the Hamming Metric: Sublinear-Time Decoding 20

7 Constructions for Edit Distance 21

8 Probabilistic Notions of Correctness 23
8.1 Random Errors . 24
8.2 Randomizing Input-dependent Errors . 25
8.3 Handling Computationally-Bounded Errors Via List Decoding 26

9 Secure Sketches and Efficient Information Reconciliation 28

References 29

A Lower Bounds from Coding 32

B Details of Average-Case Sketches and Extractors 33

C On Smooth Variants of Average Min-Entropy and the Relationship to Smooth Rényi
Entropy 34

D Analysis of the Original Juels-Sudan Construction 35

E BCH Syndrome Decoding in Sublinear Time 36

1

1 Introduction

Cryptography traditionally relies on uniformly distributed random strings for its secrets. Reality, however,
makes it difficult to create, store, and reliably retrieve such strings. Strings that are neither uniformly
random nor reliably reproducible seem to be more plentiful. For example, a random person’s fingerprint
or iris scan is clearly not a uniform random string, nor does it get reproduced precisely each time it is
measured. Similarly, a long pass-phrase (or answers to 15 questions [FJ01] or a list of favorite movies [JS02])
is not uniformly random and is difficult to remember for a human user. This work is about using such
nonuniform and unreliable secrets in cryptographic applications. Our approach is rigorous and general,
and our results have both theoretical and practical value.

To illustrate the use of random strings on a simple example, let us consider the task of password
authentication. A user Alice has a password w and wants to gain access to her account. A trusted server
stores some information y = f(w) about the password. When Alice enters w, the server lets Alice in only
if f(w) = y. In this simple application, we assume that it is safe for Alice to enter the password for the
verification. However, the server’s long-term storage is not assumed to be secure (e.g., y is stored in a
publicly readable /etc/passwd file in UNIX [MT79]). The goal, then, is to design an efficient f that is
hard to invert (i.e., given y it is hard to find w′ s.t. f(w′) = y), so that no one can figure out Alice’s
password from y. Recall that such functions f are called one-way functions.

Unfortunately, the solution above has several problems when used with passwords w available in real
life. First, the definition of a one-way function assumes that w is truly uniform, and guarantees nothing if
this is not the case. However, human-generated and biometric passwords are far from uniform, although
they do have some unpredictability in them. Second, Alice has to reproduce her password exactly each
time she authenticates herself. This restriction severely limits the kinds of passwords that can be used.
Indeed, a human can precisely memorize and reliably type in only relatively short passwords, which do not
provide an adequate level of security. Greater levels of security are achieved by longer human-generated and
biometric passwords, such as pass-phrases, answers to questionnaires, handwritten signatures, fingerprints,
retina scans, voice commands, and other values selected by humans or provided by nature, possibly in
combination (see [Fry00] for a survey). However, two biometric readings are rarely identical, even though
they are likely to be close; similarly, humans are unlikely to precisely remember their answers to multiple
question from time to time, though such answers will likely be similar. In other words, the ability to
tolerate a (limited) number of errors in the password while retaining security is crucial if we are to obtain
greater security than provided by typical user-chosen short passwords.

The password authentication described above is just one example of a cryptographic application where
the issues of nonuniformity and error tolerance naturally come up. Other examples include any crypto-
graphic application, such as encryption, signatures, or identification, where the secret key comes in the
form of slightly variable nonuniform data.

Our Definitions. We propose two primitives, termed secure sketch and fuzzy extractor.
A secure sketch addresses the problem of error tolerance. It is a (probabilistic) function outputting a

public value s about its input w, that, while revealing little about w, allows its exact reconstruction from
any other input w′ that is sufficiently close. The price for this error tolerance is that the application will
have to work with a lower level of entropy of the input, since publishing s effectively reduces the entropy
of w. However, in a good secure sketch, this reduction will be small, and w will still have enough entropy
to be useful, even if the adversary knows s. A secure sketch, however, does not address nonuniformity of
inputs.

A fuzzy extractor addresses both error tolerance and nonuniformity. It reliably extracts a uniformly
random string R from its input w in an error-tolerant way. If the input changes but remains close, the

2

Figure 1: (a) secure sketch; (b) fuzzy extractor; (c) a sample application: user who encrypts a sensitive
record using a cryptographically strong, uniform key R extracted from biometric w via a fuzzy extractor;
both P and the encrypted record need not be kept secret, because no one can decrypt the record without
a w′ that is close.

extracted R remains the same. To assist in recovering R from w′, a fuzzy extractor outputs a public string
P (much like a secure sketch outputs s to assist in recovering w). However, R remains uniformly random
even given P .

Our approach is general: our primitives can be naturally combined with any cryptographic system.
Indeed, R extracted from w by a fuzzy extractor can be used as a key in any cryptographic application,
but, unlike traditional keys, need not be stored (because it can be recovered from any w′ that is close
to w). We define our primitives to be information-theoretically secure, thus allowing them to be used in
combination with any cryptographic system without additional assumptions (however, the cryptographic
application itself will typically have computational, rather than information-theoretic, security).

For a concrete example of how to use fuzzy extractors, in the password authentication case, the server
can store (P, f(R)). When the user inputs w′ close to w, the server recovers the actual R and checks if f(R)
matches what it stores. Similarly, R can be used for symmetric encryption, for generating a public-secret
key pair, or any other application. Secure sketches and extractors can thus be viewed as providing fuzzy
key storage: they allow recovery of the secret key (w or R) from a faulty reading w′ of the password w,
by using some public information (v or P). In particular, fuzzy extractors can be viewed as error- and
nonuniformity-tolerant secret key key-encapsulation mechanisms [Sho01].

Secure sketches, fuzzy extractors and a sample encryption application are illustrated in Figure 1.
Because different biometric information has different error patterns, we do not assume any particular

notion of closeness between w′ and w. Rather, in defining our primitives, we simply assume that w comes
from some metric space, and that w′ is no more that a certain distance from w in that space. We only
consider particular metrics when building concrete constructions.

General Results. Before proceeding to construct our primitives for concrete metrics, we make some
observations about our definitions. We demonstrate that fuzzy extractors can be built out of secure sketches
by utilizing (the usual) strong randomness extractors [NZ96], such as, for example, pairwise-independent
(also known as universal2) hash functions [CW79, WC81]. We also provide a general technique for

3

constructing secure sketches, which is instantiated in concrete constructions later in the paper. Finally, we
define a notion of a biometric embedding of one metric space into another, and show that the existence of
a fuzzy extractor in the target space implies, combined with a biometric embedding of the source into the
target, the existence of a fuzzy extractor in the source space.

These general results help us in building and analyzing our constructions.

Our Constructions. We provide constructions of secure sketches and fuzzy extractors in three metrics:
Hamming distance, set difference, and edit distance.

Hamming distance (i.e., the number of bit positions that differ between w and w′) is perhaps the
most natural metric to consider. We observe that the “fuzzy-commitment” construction of Juels and
Wattenberg [JW99] based on error-correcting codes can be viewed as a (nearly optimal) secure sketch. We
then apply our general result to convert it into a nearly optimal fuzzy extractor. While our results on the
Hamming distance essentially use previously known constructions, they serve as an important stepping
stone for the rest of the work.

The set difference metric (i.e., size of the symmetric difference of two input sets w and w′) comes up
naturally whenever the unreliable input is represented as a subset of features from a universe of possible
features.1 We demonstrate the existence of optimal (with respect to entropy loss) secure sketches (and
therefore also fuzzy extractors) for this metric. However, this result is mainly of theoretical interest,
because (1) it relies on optimal constant-weight codes, which we do not know how construct and (2)
it produces sketches of length proportional to the universe size. We then turn our attention to more
efficient constructions for this metric in order handle exponentially large universes. We provide two such
constructions.

First, we observe that the “fuzzy vault” construction of Juels and Sudan [JS02] can be viewed as a
secure sketch in this metric (and then converted to a fuzzy extractor using our general result). We provide
a new, simpler analysis for this construction, which bounds the entropy lost from w given s. This bound
is quite high unless one makes the size of the output s very large. We then provide an improvement to the
Juels-Sudan construction to reduce the entropy loss and the length of s to near optimal. Our improvement
in the running time and in the length of s is exponential for large universe sizes. This construction has the
drawback of being able to handle only sets of the same fixed size (in particlar, |w′| must equal |w|.)

Second, we note that in the case of a small universe, a set can be simply encoded as its characteristic
vector (1 if an element is in the set, 0 if it is not), and set difference becomes Hamming distance. However,
the length of such a vector becomes unmanageable as the universe size grows. Nonetheless, we demonstrate
that this approach can be made to work efficiently even for exponentially large universes. This involves a
result that may be of independent interest: we show that BCH codes can be decoded in time polynomial in
the weight of the received corrupted word (i.e., in sublinear time if the weight is small). The resulting secure
sketch scheme compares favorably to the modified Juels-Sudan construction: it has the same near-optimal
entropy loss and sketch length, but can handle sets of arbitrary size.

Finally, edit distance (i.e., the number of insertions and deletions needed to convert one string into the
other) naturally comes up, for example, when the password is entered as a string, due to typing errors
or mistakes made in handwriting recognition. We construct a biometric embedding from the edit metric
into the set difference metric, and then apply our general result to show such an embedding yields fuzzy
extractors and secure sketches for edit distance, because we already have them for set difference.
�The below two sentences are false given the Ostrovsky-Rabani paper; anyone care to add something here

1A perhaps unexpected application of the set difference metric was explored in [JS02]: a user would like to encrypt a file
(e.g., her phone number) using a small subset of values from a large universe (e.g., her favorite movies) in such a way that
those and only those with a similar subset (e.g., similar taste in movies) can decrypt it.

4

or should we just remove them? –Leo�
We note that the edit metric is quite difficult to work with, and the existence of such an embedding

is not a priori obvious: for example, low-distortion embeddings of the edit distance into the Hamming
distance are unknown and seem hard [ADG+03]. It is the particular properties of biometric embeddings,
as we define them, that help us construct this embedding.

Probabilistic Notions of Correctness. The definitions and constructions just described use a very
strong error model: we require that secure sketches and fuzzy extractors accept every secret w′ which
is sufficiently close to the original secret w, with probability 1. Such a stringent model is useful, as it
makes no assumptions on either the exact stochastic properties of the error process or the adversary’s
computational limits. However, slightly relaxing the error conditions allows constructions which tolerate a
(provably) much larger number of errors, at the price of restricting the settings in which the constructions
can be applied. In Section 8, we extend the definitions and constructions of earlier sections to several
relaxed error models.

It is well-known that in the standard binary channel, one can tolerate many more errors when the errors
are random and independent than when the errors are determined adversarially. We present two settings
with adversarial errors, but secure sketches and fuzzy extractors can meet Shannon’s bounds for correcting
random errors—in other words, settings in which adversarial errors are no stronger than random ones. The
constructions are quite simple, and draw on existing techniques from the coding literature [BBR88, Lip94,
Gur03, Lan04, MPSW05].

Relation to Previous Work. Since our work combines elements of error correction, randomness
extraction and password authentication, there has been a lot of related work.

The need to deal with nonuniform and low-entropy passwords has long been realized in the security
community, and many approaches have been proposed. For example, Kelsey et al [KSHW97] suggest using
f(w, r) in place of w for the password authentication scenario, where r is a public random “salt,” to make
a brute-force attacker’s life harder. While practically useful, this approach does not add any entropy to
the password, and does not formally address the needed properties of f . Another approach, more closely
related to ours, is to add biometric features to the password. For example, Ellison et al. [EHMS00] propose
asking the user a series of n personalized questions, and use these answers to encrypt the “actual” truly
random secret R. A similar approach using user’s keyboard dynamics (and, subsequently, voice [MRLW01a,
MRLW01b]) was proposed by Monrose et al [MRW99]. Of course, this technique reduces the question to
that of designing a secure “fuzzy encryption”. While heuristic approaches were suggested in the above
works (using various forms of Shamir’s secret sharing), no formal analysis was given. Additionally, error
tolerance was addressed only by brute force search.

A formal approach to error tolerance in biometrics was taken by Juels and Wattenberg [JW99] (for
less formal solutions, see [DFMP99, MRW99, EHMS00]), who provided a simple way to tolerate errors
in uniformly distributed passwords. Frykholm and Juels [FJ01] extended this solution and provided en-
tropy analysis to which ours is similar. Similar approaches have been explored earlier in seemingly unre-
lated literature on cryptographic information reconciliation, often in the context of quantum cryptography
(where Alice and Bob wish to derive a secret key from secrets that have small Hamming distance), particu-
larly [BBR88, BBCS91]. Our construction for the Hamming distance is essentially the same as a component
of the quantum oblivious transfer protocol of [BBCS91].

Juels and Sudan [JS02] provided the first construction for a metric other than Hamming: they construct
a “fuzzy vault” scheme for the set difference metric. The main difference is that [JS02] lacks a crypto-
graphically strong definition of the object constructed. In particular, their construction leaks a significant
amount of information about their analog of R, even though it leaves the adversary with provably “many

5

valid choices” for R. In retrospect, their informal notion is closely related to our secure sketches. Our con-
strucitons in Section 6 improve exponentially over the construction of [JS02] for storage and computation
costs, in the setting when the set elements come from a large universe.

Linnartz and Tuyls [LT03] define and construct a primitive very similar to a fuzzy extractor (that line
of work was continued in [VTDL03].) The definition of [LT03] focuses on the continuous space Rn, and
assumes a particular input distribution (typically a known, multivariate Gaussian). Thus, our definition
of a fuzzy extractor can be viewed as a generalization of the notion of a “shielding function” from [LT03].
However, our constructions focus on discrete metric spaces.

Other approaches have also been taken for guaranteeing the privacy of noisy data. Csirmaz and Katona
[CK03] consider quantization for correcting errors in “physical random functions.” (This corresponds
roughly to secure sketches with no public storage). Barral, Coron and Naccache [BCN04] proposed a
system for offline, private comparison of fingerprints. Although seemingly similar, the problem they study
is complimentary to ours, and the two solutions can be combined to yield systems which enjoy the benefits
of both.

Work on privacy amplification, e.g., [BBR88, BBCM95], as well as work on de-randomization and hard-
ness amplification, e.g., [HILL99, NZ96], also addressed the need to extract uniform randomness from a
random variable about which some information has been leaked. A major focus of follow-up research has
been the development of (ordinary, not fuzzy) extractors with short seeds (see [Sha02] for a survey). We use
extractors in this work (though for our purposes, pairwise independent hashing is sufficient). Conversely,
our work has been applied recently to privacy amplification: Ding [Din05] uses fuzzy extractors for noise
tolerance in Maurer’s bounded storage model [Mau93].

Independently of our work, similar techniques appeared in the literature on noncryptographic informa-
tion reconciliation [MTZ03, CT04] (where the goal is communicaiton efficiency rather than secrecy). The
surprising relationship between secure sketches and efficient information reconciliation is explored further
in Section 9, which discusses, in particular, how our secure sketches for set differences provide more efficient
solutions to the set and string reconciliation problems.

2 Preliminaries

Unless explicitly stated otherwise, all logarithms below are base 2. The Hamming weight (or just weight)
of a string is the number of nonzero characters in it. We use U` to denote the uniform distribution on
`-bit binary strings. If an algorithm (or a function) f is randomized, we use the semicolon when we wish
to make the randomness explicit: i.e., we denote by f(x; r) the result of computing f on input x with
randomness r. If X is a probability distribution, then f(X) is the distribution induced on the image of
f by applying the (possibly probabilistic) function f . If X is a random variable, we will (slightly) abuse
notation and also denote by X the probability distribution on the range of the variable.

Min-Entropy, Statistical Distance, and Strong Extractors. When discussing security, one
is often interested in the probability that the adversary predicts a random value (e.g., guesses a secret
key). The adversary’s best strategy, of course, is to guess the most likely value. Thus, predictability of a
random variable A is maxa Pr[A = a], and, correspondingly, min-entropy H∞(A) is − log(maxa Pr[A = a])
(min-entropy can thus be viewed as the “worst-case” entropy [CG88]).

Min-entropy of a distribution tells us how many nearly uniform random bits can be extracted from it.
The notion of “nearly” is defined as follows. The statistical distance between two probability distributions
A and B is SD (A,B) = 1

2

∑
v |Pr(A = v)− Pr(B = v)|.

Recall the definition of strong randomness extractors [NZ96].

6

Definition 1. Let X be a polynomial time probabilistic function Ext : {0, 1}n → {0, 1}` with random
input of length r. It is an efficient (n, m, `, ε)-strong extractor if for all min-entropy m distributions W ,
SD ((Ext(W ;X), X), (U`, X)) ≤ ε, where X is uniform on {0, 1}r.

Strong extractors can extract at most ` = m − 2 log
(

1
ε

)
+ O(1) nearly random bits [RTS00]. Many

constructions match this bound (see Shaltiels’ survey [Sha02] for references). Extractor constructions are
often complex since they seek to minimize the length of the seed X. For our purposes, the length of X will be
less important, so pairwise independent hash functions will already give us the optimal ` = m−2 log

(
1
ε

)
+2

(see Lemma 4.1).

Metric Spaces. A metric space is a set M with a distance function dis :M×M→ R+ = [0,∞). For
purposes of this of work,M will always be a finite set, the distance function will only take on integer values
(with dis(x, y) = 0 if and only if x = y), and will obey symmetry dis(x, y) = dis(y, x) and the triangle
inequality dis(x, z) ≤ dis(x, y) + dis(y, z) (we adopt these requirements for simplicity of exposition, even
though the definitions and most of the results below can be generalized to remove these restrictions).

We will concentrate on the following metrics.

1. Hamming metric. Here M = Fn for some alphabet F , and dis(w,w′) is the number of positions in
which the strings w and w′ differ.

2. Set Difference metric. Here M consists of all subsets of a universe U . For two sets w,w′, their
symmetric difference w4w′

def= {x ∈ w ∪ w′ | x /∈ w ∩ w′}. The distance between two sets w,w′ is
|w4w′|. 2 We will sometimes restrict M to contain only s-element subsets for some s.

3. Edit metric. HereM = F∗, and the distance between w and w′ is defined to be the smallest number
of character insertions and deletions needed to transform w into w′. 3 (This is different from the
Hamming metric because insertions and deletions shift the characters that are to the right of the
insertion/deletion point.)

As already mentioned, all three metrics seem natural for biometric data.

Codes and Syndromes. Since we want to achieve error tolerance in various metric spaces, we will
use error-correcting codes for a particular metric. A code C is a subset {w0, . . . , wK−1} of K elements of
M. The map from i to wi, which we will also sometimes denote by C, is called encoding. The minimum
distance of C is the smallest d > 0 such that for all i 6= j we have dis(wi, wj) ≥ d. In our case of integer
metrics, this means that one can detect up to (d − 1) “errors” in an element of M. The error-correcting
distance of C is the largest number t > 0 such that for every w ∈ M there exists at most one codeword
c in the ball of radius t around w: dis(w, c) ≤ t for at most one c ∈ C. This means that one can correct
up to t errors in an w element of M; we will use the term decoding for the map that finds, given w, the
c ∈ C such that dis(w, c) ≤ t (note that for some w, such c may not exist, but if it exists, it will be unique;
note also that decoding is not the inverse of encoding in our terminlogy). For integer metrics by triangle
inequality we are guaranteed that t ≥ b(d − 1)/2c. Since error correction will be more important than
error detection in our applications, we denote the corresponding codes as (M,K, t)-codes. For efficiency
purposes, we will often want encoding and decoding to be polynomial-time.

2In the preliminary version of this work [DRS04], we worked with this metric scaled by 1
2
, that is the distance was 1

2
|w4w′|.

Not scaling makes more sense, particularly when w and w′ are of potentially different sizes, |w4w′| may be odd. It also agrees
with the hamming distance of characteristic vectors; see Section 6.

3Again, in [DRS04], we worked with this metric scaled by 1
2
. Likewise, this makes little sense when strings can be of

different lengths, and we avoid it here.

7

For the Hamming metric over Fn, we will sometimes call k = log|F|K the dimension of the code, and
denote the code itself as an [n, k, d = 2t + 1]F -code, following the standard notation in the literature. We
will denote by A|F|(n, d) the maximum K possible in such a code (omitting the subscript when |F| = 2),
and by A(n, d, s) the maximum K for such a code over {0, 1}n with the additional restriction that all
codewords have exactly s ones.

If the code is linear (i.e., F is a field, Fn is a vector space over F and C is a linear subspace), then one
can fix a parity-check matrix H as any matrix whose rows generate the orthogonal space C⊥. Then for
any v ∈ Fn, the syndrome syn(v) def= Hv. The syndrome of a vector is its projection onto subspace that
is orthogonal to the code, and can thus be intuitively viewed as the vector modulo the code. Note that
v ∈ C ⇔ syn(v) = 0. Note also that M is an (n− k)× n matrix, and that syn(v) is n− k bits long.

The syndrome captures all the information necessary for decoding. That is, suppose a codeword c is
sent through a channel and the word w = c + e is received. First, the syndrome of w is the syndrome of
e: syn(w) = syn(c) + syn(e) = 0 + syn(e) = syn(e). Moreover, for any value u, there is at most one word e
of weight less than d/2 such that syn(e) = u (because the existence of a pair of distinct words e1, e2 would
mean that e1 − e2 is a codeword of weight less than d, but since 0n is also a codeword and the minimum
distance of the code is d, this is impossible). Thus, knowing syndrome syn(w) is enough to determine the
error pattern e if not too many errors occurred.

3 New Definitions

3.1 Average Min-Entropy

Recall that predictability of a random variable A is maxa Pr[A = a], and min-entropy H∞(A) is− log(maxa Pr[A =
a]). Consider now a pair of (possibly correlated) random variables A,B. If the adversary finds out the
value b of B, then predictability of A becomes maxa Pr[A = a | B = b]. On average, the advesary’s chance
of success in predicting A is then Eb←B [maxa Pr[A = a | B = b]]. Note that we are taking the average
over B (which is not under adversarial control), but the worst case over A (because prediction of A is
adversarial once b is known). Again, it is convenient to talk about security in log-scale, which is why define
the average min-entropy of A given B as simply the logarithm of the above:

H̃∞(A | B) def= − log
(
Eb←B

[
max

a
Pr[A = a | B = b]

])
= − log

(
Eb←B

[
2−H∞(A|B=b)

])
.

Because other notions of entropy have been studied in cryptographic literature, a few words are in order
to explain why this definition is the “right one.” Note the importance of taking the logarithm after taking
the average (in contrast, for instance, to conditional Shannon entropy). One may think it more natural
to define average min-entropy as Eb←B [H∞(A | B = b)], thus reversing the order of log and E. However,
this notion is unlikely to be useful in a security application. For a simple example, consider the case when
A and B are distributed as follows: B = U1000 and A is equal the value b of B if the first bit of b is
0, and U1000 otherwise. Then for half of the values of b, H∞(A | B = b) = 0, while for the other half,
H∞(A | B = b) = 1000, so Eb←B [H∞(A | B = b)] = 500. However, it would be obviously incorrect to say
that A has 500 bits of security. In fact, an adverary who knows the value b of B has a slightly greater than
50% chance of predicting the value of A by outputting b. Our definition correctly captures this 50% chance
of prediction, because H̃∞(A | B) slightly less than 1. In fact, our definition of average min-entropy is
simply the logarithm of predictability.

Lemma 4.2 justifies our definition further by demonstrating that almost m nearly-uniform bits can be
extracted from a random variable whose average min-entropy is m. Such nearly-uniform random bits can

8

be used in any cryptographic context that requires uniform random bits (e.g., for secret keys), reducing
security by at most their distance from uniform.

The following simple lemma will be helpful later.

Lemma 3.1. If B has 2λ possible values, then H̃∞(A | B) ≥ H∞((A,B))−λ ≥ H∞(A)−λ. Furthermore,
for all random variables C, H̃∞(A | (B,C)) ≥ H̃∞((A,B) | C)− λ ≥ H̃∞(A | C)− λ.

Proof. It suffices to prove the second sentence (the first follows from taking C to be constant).

H̃∞(A | (B,C)) = − log E(b,c)←(B,C)

[
max

a
Pr[A = a | B = b ∧ C = c]

]
= − log

∑
(b,c)

max
a

Pr[A = a | B = b ∧ C = c] Pr[B = b ∧ C = c]

= − log
∑
(b,c)

max
a

Pr[A = a ∧B = b ∧ C = c]

= − log
∑

b

Ec←C

[
max

a
Pr[A = a ∧B = b | C = c]

]
= − log

∑
b

2−H̃∞((A,B)|C) = − log 2λ2−H̃∞((A,B)|C) = H̃∞((A,B) | C)− λ .

The second inequality follows from Pr[A = a ∧B = b | C = c] ≤ Pr[A = a | C = c].

See Appendix C for a generalization of average min-entropy and a discussion on the relationship between
this notion and other notions of entropy.

3.2 Secure Sketches

Let M be a metric space with distance functions dis.

Definition 2. An (M,m, m̃, t)-secure sketch is a pair of randomized procedures, “sketch” (SS) and “re-
cover” (Rec), with the following properties:

1. The sketching procedure SS on input w ∈M returns a bit string s ∈ {0, 1}∗.

2. The recovery procedure Rec takes an element w′ ∈ M and a bit string s ∈ {0, 1}∗. The correctness
property of secure sketches guarantees that if dis(w,w′) ≤ t, then Rec(w′,SS(w)) = w. If dis(w,w′) >
t, then no guarantee is provided about the output of Rec.

3. The security property guarantess that for any distribution W overM with min-entropy m, the value
of W can be recovered by the adversary who observes s with probability no greater than 2−m̃. That
is, H̃∞(W | SS(W)) ≥ m̃.

A secure sketch is efficient if SS and Rec run in expected polynomial time.

The quantity m − m̃ is called the entropy loss of a secure sketch. In analyzing the security of our
secure sketch constructions below, we will typically bound the entropy loss regardless of m, thus obtaining
families of secure sketches that work for all m. It should be also pointed out (Lemma B.1) that a secure
sketch with entropy loss λ for a particular m will have at most the same entropy loss for any m′ < m.
Unfortunately, this statement does not always hold for m′ > m. This necessitates the slightly stronger
definition we discuss next.

9

It may well be that adversary’s information i about the password w is probabilistic, so that sometimes i
reveals a lot about w, but most of the time w stays hard to predict even given i. In this case, the previous
definition of secure sketch is hard to apply: it provides no guarantee if H∞(W |i) is not fixed to at least
m for some bad values of i. A more robust definition would provide the same guarantee for all pairs of
variables (W, I) such that predicting the value of W given the value of I is hard. We therefore define
an average-case secure sketch as a secure sketch with the augmented security property: for any random
variables W over M and I over {0, 1}∗ such that H̃∞(W | I) ≥ m, we have H̃∞(W | (SS(W), I)) ≥ m̃.
Note that an average-case secure sketch is also a secure sketch (take I to be empty).

This definition has the advantage that it composes naturally, as shown in Lemma 4.5. All of our
constructions will in fact be average-case secure sketches. However, we will generally omit the term
“average-case” and the variable I for simplicity of exposition, unless the average-case property is important
in the particular context.

3.3 Fuzzy Extractors

Definition 3. An (M,m, `, t, ε) fuzzy extractor is a pair of randomized procedures, “generate” (Gen) and
“reproduce” (Rep), with the following properties

1. The generation procedure Gen on input w ∈M outputs an extracted string R ∈ {0, 1}` and a helper
string P ∈ {0, 1}∗.

2. The reproduction procedure Rep takes an element w′ ∈M and a bit string P ∈ {0, 1}∗ as inputs. The
correctness property of fuzzy extractors guarantees that if dis(w,w′) ≤ t and R,P were generated by
(R,P) ← Gen(w), then Rep(w′, P) = R. If dis(w,w′) > t, then no guarantee is provided about the
output of Rep.

3. The security property guarantees that for any distribution W onM of min-entropy m, the string R is
close to uniform even to those who observe P : namely, if (R,P)← Gen(W), then SD ((R,P), (U`, P)) ≤
ε.

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial time.

In other words, fuzzy extractors allow one to extract some randomness R from w and then successfully
reproduce R from any string w′ that is close to w. The reproduction is done with the help of the helper
string P produced during the initial extraction; yet P need not remain secret, because R looks truly random
even given P . To justify our terminology, notice that strong extractors (as defined in Section 2) can indeed
be seen as “nonfuzzy” analogs of fuzzy extractors, corresponding to t = 0, P = X, andM = {0, 1}n.

We reiterate that the neearly-uniform random bits output by a fuzzy extractor can be used in any
cryptographic context that requires uniform random bits (e.g., for secret keys). The slight nonuniformity
of the bits may decrease security, but by no more than their distance ε from uniform. By choosing ε
sufficiently small (e.g., 2−100) one can make the decrease in security irrelevant.

Similarly to secure sketches, the quantity m − ` is called the entropy loss of a fuzzy extractor. Also
similarly, a more robust definition is that of an average-case fuzzy extractor, which requires that if H∞(W |
I) ≥ m, then SD ((R,P, I), (U`, P, I)) ≤ ε.

4 Metric-Independent Results

In this section we demonstrate some general results that do not depend on specific metric spaces. They
will be helpful in obtaining specific results for particular metric spaces below.

10

4.1 Construction of Fuzzy Extractors from Secure Sketches

Not surprisingly, secure sketches are quite useful in constructing fuzzy extractors. Specifically, we construct
fuzzy extractors from secure sketches and strong extractors as follows: apply SS to w to obtain s, and a
strong extractor Ext with randomness x to w obtain R. Store (s, x) as the helper string P . To reproduce
R from w′ and P = (s, x), first use Rec(w′, s) to recover w and then Ext(w, x) to get R.

In order to apply Ext to w, we will assume that one can represent elements of M using n bits. The
strong extractor Ext we use is the standard pairwise-independent hashing [CW79, WC81], i.e., a family
functions {Hx : {0, 1}n → {0, 1}`}x∈X , such that for all a, b ∈ {0, 1}n, Prx∈X [Hx(a) = Hx(b)] = 2−`. Such
an extractor has (optimal) entropy loss 2 log

(
1
ε

)
−O(1). The entropy loss of the resulting fuzzy extractor

is equal to the entropy loss of the secure sketch plus the entropy loss of the extractor. This further justifies
the definition of “average min-entropy,” demonstrating that it connects to actual extractable uniform
randomness: a pairwise-independent hash function extracts all of the entropy left after the secure sketch
is applied (except for the necessary 2 log

(
1
ε

)
loss due to the fundamental constrains on extractors).

Lemma 4.1 (Fuzzy Extractors from Sketches). Assume (SS,Rec) is an (M,m, m̃, t)-secure sketch,
and let Ext be the (n, m̃, `, ε)-strong extractor given by pairwise-independent hashing (in particular, ` =
m̃− 2 log

(
1
ε

)
+ 2). Then the following (Gen,Rep) is a (M,m, `, t, ε)-fuzzy extractor:

• Gen(w; r, x): set P = (SS(w; r), x), R = Ext(w;x), and output (R, P).

• Rep(w′, (s, x)): recover w = Rec(w′, s) and output R = Ext(w;x)

Proof. Lemma 4.1 follows directly from the intermediate result below (Lemma 4.2), which explains our
choice of the measure H̃∞(A | B) for the average min-entropy. Lemma 4.2 says that pairwise independent
hashing extracts randomness from the random variable A as if the min-entropy of A given B = b were
always at least (rather than on average) H̃∞(A | B).

Lemma 4.2. If A,B are random variables such that A ∈ {0, 1}n and H̃∞(A | B) ≥ m̃, and {Hx}x∈X is a
family of pairwise independent hash function from n bits to ` bits, then SD ((B,X,HX(A)) , (B,X,U`)) ≤
ε as long as ` ≤ m̃− 2 log

(
1
ε

)
+ 2.

Proof. The particular extractor we chose (namely, pairwise independent hashing) has a smooth tradeoff
between the entropy of the input and the quality of the output. For any random variable C, the leftover
hash lemma (see [HILL99, Lemma 1], as well as references therein for earlier versions) states:

SD ((X, HX(C)) , (X, U`)) ≤
1
2

√
2−H∞(C)2`

(in [HILL99], the lemma is formulated in terms of Renyi entropy of order two of C; the change to H∞(C)
is allowed because the latter is no greater than the former).

In our setting we have a bound on the expected value of 2−H∞(A|B=b), namely Eb

[
2−H̃∞(A|B=b)

]
≤ 2−m̃.

Using the fact that E
[√

Z
]
≤
√

E [Z] (by Jensen’s inequality), we get:

Eb [SD ((X, HX(A | B = b)) , (X, U`))] ≤
1
2

√
2`−m̃.

11

Now the distance of (B,X,HX(A)) from (B,X, U`) is the average over values b of B of the distance of
(X, HX(A | B = b)) from (X, U`):

SD ((B,X,HX(A)), (B,X,U`)) = 1
2

∑
b

∑
x,s | Pr[X = x ∧Hx(A) = s ∧B = b]

−Pr[X = x ∧ U` = s ∧B = b] |
= 1

2

∑
b

∑
x,s | Pr[X = x ∧Hx(A) = s | B = b]

−Pr[X = x ∧ Uell = s | B = b] |Pr[B = b]
= Eb [SD ((X, HX(A | B = b)), (X, U`))]
≤ 1

2

√
2`−m̃ .

The extractor we use always has ` ≤ m̃− 2 log
(

1
ε

)
+ 2, and so the statistical distance is at most ε.

Remark 1. The advantage of pairwise independent hashing over a general extractor is the convex tradeoff
between the entropy of the input and the distance from uniform of the output, which we exploited in the
proof above (in other words, we used properties of pairwise independent hashing for inputs whose entropy
was different from m̃). However, one can prove an analog to Lemma 4.2 using any (n, m̃− log

(
1
ε2

)
, `, ε)-

strong extractor for some ε2. In this general case, without further assumptions on the extractor, the
resulting reduction leads to (M,m, `, t, ε + ε2) fuzzy extractors. Note that because of fundamental bounds
on extractors, m̃ − log

(
1
ε2

)
− ` ≥ 2 log

(
1
ε

)
− O(1), so the resulting fuzzy extractor’s entropy loss will be

at least 2 log
(

1
ε

)
+ log

(
1
ε2

)
−O(1) rather than 2 log

(
1
ε

)
−O(1), and the quality of extracted randomness

will be lower, because it will be ε + ε2 rather than ε away from uniform. The proof simply uses Markov’s
inequality, as follows: H̃∞(A | B) ≥ m̃ implies that the event H∞(A | B = b) ≥ m̃− log

(
1
ε

)
happens with

probability at least 1−ε2, so in all but ε2 fraction of the cases, the application of the extractor will produce
the desired results. Similarly, one can prove this by going through the definition of smooth conditional
min-entropy; see Appendix C.

Remark 2. A similar result holds for building average-case fuzzy extractors from average-case secure
sketches. See Lemma B.2 for details.

4.2 Secure Sketches for Transitive Metric Spaces

We give a general technique for building secure sketches in transitive metric spaces, which we now define. A
permutation π on a metric spaceM is an isometry if it preserves distances, i.e. dis(a, b) = dis(π(a), π(b)).
A family of permutations Π = {πi}i∈I acts transitively onM if for any two elements a, b ∈M, there exists
πi ∈ Π such that πi(a) = b. Suppose we have a family Π of transitive isometries for M (we will call such
M transitive). For example, in the Hamming space, the set of all shifts πx(w) = w ⊕ x is such a family
(see Section 5 for more details on this example).

Construction 1 (Secure Sketch For Transitive Metric Spaces). Let C be an (M,K, t)-code. Then
the general sketching scheme SS is the following: given an input w ∈ M, pick uniformly at random
a codeword b ∈ C, pick uniformly at random a permutation π ∈ Π such that π(w) = b, and output
SS(w) = π (it is crucial that each π ∈ Π should have a canonical description that is independent of how π
was chosen, and in particular independent of b and w; the number of possible outputs of SS should thus
be |Π|). The recovery procedure Rec to find w given w′ and the sketch π, is as follows: find the closest
codeword b′ to π(w′), and output π−1(b′).

Let Γ be the number of elements π ∈ Π such that minw,b |{π|π(w) = b}| ≥ Γ. I.e., for each w and b,
there are at least Γ choices for π. Then we obtain the following lemma.

12

Lemma 4.3. (SS,Rec) is an (M,m, m− log |Π|+log Γ+log K, t)-secure sketch. It is efficient if operations
on the code, as well as π and π−1, can be implemented efficiently.

Proof. Correctness is clear: when dis(w,w′) ≤ t, then dis(b, π(w′)) ≤ t, so decoding π(w′) will result
in b′ = b, which in turn means that π−1(b′) = w. The intuitive argument for security is as follows:
we add log K + log Γ bits of entropy by choosing b and π, and subtract log |Π| by publishing π. Since
given π, w and b determine each other, the total entropy loss is log |Π| − log K − log Γ. More formally,
H̃∞(W | SS(W)) = H∞((W,SS(W)))− log |Π| by Lemma 3.1. Given a particular value of w, there are K
equiprobable choices for b, and further at least Γ equiprobable choices for π once b is picked, and hence
any given permutation π is chosen with probability at most 1/(KΓ) (because different choices for b result
in different choices for π). Therefore, for all w and π, Pr[W = w ∧ SS(w) = π] ≤ Pr[W = w]/(KΓ), hence
H∞((W,SS(W))) ≥ H∞(W) + log K + log Γ.

Naturally, security loss will be smaller if the code C is denser.
We will discuss concrete instantiations of this approach in Section 5 and Section 6.1.

4.3 Changing Metric Spaces via Biometric Embeddings

We now introduce a general technique that allows one to build fuzzy extractors and secure sketches in some
metric spaceM1 from fuzzy extractors and secure sketches in some other metric spaceM2. Below, we let
dis(·, ·)i denote the distance function in Mi. The technique is to embed M1 into M2 so as to “preserve”
relevant parameters for fuzzy extraction.

Definition 4. A function f :M1 →M2 is called a (t1, t2,m1,m2)-biometric embedding if the following
two conditions hold:

• for any w1, w
′
1 ∈M1 such that dis(w1, w

′
1)1 ≤ t1, we have dis(f(w1), f(w2))2 ≤ t2.

• for any distribution W1 onM1 of min-entropy at least m1, f(W1) has min-entropy at least m2.

The following lemma is immediate (correctness of the resulting fuzzy extractor follows from the first
condition, and security follows from the second):

Lemma 4.4. If f is a (t1, t2,m1,m2)-biometric embedding of M1 into M2 and (Gen(·),Rep(·, ·)) is an
(M2,m2, `, t2, ε)-fuzzy extractor, then (Gen(f(·)),Rep(f(·), ·)) is an (M1,m1, `, t1, ε)-fuzzy extractor.

It is easy to define average-case biometric embeddings (in which H̃∞(W1 | I) ≥ m1 ⇒ H̃∞(f(W1) | I) ≥
m2), which would result in an analogous lemma for average-case fuzzy extractors.

For a similar result to hold for secure sketches, we need biometric embeddings with an additional
property.

Definition 5. A function f :M1 →M2 is called a (t1, t2, λ)-biometric embedding with recovery informa-
tion g if:

• for any w1, w
′
1 ∈M1 such that dis(w1, w

′
1)1 ≤ t1, we have dis(f(w1), f(w2))2 ≤ t2.

• g : M1 → {0, 1}∗ is a function with range size 2λ, and w1 ∈ M1 is uniquely determined by
(f(w1), g(w1)).

The following lemma is also immediate (correctness follows from the first condition on biometric em-
beddings, and security follows from Lemma 3.1).

13

Lemma 4.5. Let f be (t1, t2, λ) biometric embedding with recovery information g. Let (SS,Rec) be (M2,
m1 − λ, m̃2, t2) average-case secure sketch. Let SS′(w) = (SS(f(w)), g(w)). Let Rec′(w′, (s, r)) be the
function obtained by computing Rec(w′, s) to get f(w) and then inverting (f(w), r) to get w. Then (SS′,Rec′)
is a (M1,m1, m̃2, t1) average-case secure sketch.

It should be noted that a similar lemma does not hold without the average-case qualifier on (SS,Rec),
because the adversary receives extra information g(w). In some cases, this may reduce the entropy of f(W)
below m1 − λ, thus rendering non-average-case secure sketches inapplicable. Average-case secure sketches
suffice, because average min-entropy H̃∞(f(W) | g(W)) ≥ m1 − λ by Lemma 3.1.

We will see the utility of this novel type of embedding in Section 7.

5 Constructions for Hamming Distance

In this section we consider constructions for the space M = Fn under the Hamming distance metric. Let
F = |F| and f = log2 F .

Secure Sketches: The Code-Offset Construction. For the case of F = {0, 1}, Juels and Wat-
tenberg [JW99] considered a notion of “fuzzy commitment.” 4 Given a [n, k, 2t + 1]2 error-correcting code
C (not necessarily linear), they fuzzy-commit to x by publishing w ⊕ C(x). Their construction can be
rephrased in our language to give a very simple construction of secure sketches for general F .

We start with a [n, k, 2t + 1]F error-correcting code C. The idea is to use C to correct errors in w even
though w may not be in C. This is accomplished by shifting the code so that a codeword matches up with
w, and storing the shift as the sketch. To do so, we need to view F as an additive cyclic group of order F
(in case of most common error-correcting codes, F will anyway be a field).

Construction 2 (Code-Offset Construction). On input w, select a random codeword c (this is equiv-
alent to choosing a random x ∈ Fk and computing C(x)), and set SS(w) to be the shift needed to get from
c to w: SS(w) = w − c. Then Rec(w′, s) is computed by subtracting the shift s from w′ to get c′ = w′ − s;
decoding c′ to get c (note that because dis(w′, w) ≤ t, so is dis(c′, c)); and computing w by shifting back to
get w = c + s.

In the case of F = {0, 1}, addition and subtraction are the same, and we get that computation of the
sketch is the same as the Juels-Wattenberg commitment: SS(w) = w ⊕ C(x). In this case, to recover w
given w′ and s = SS(w), compute c′ = w′ ⊕ s, decode c′ to get c, and compute w = c⊕ s.

When the code C is linear, this scheme can be simplified as follows.

Construction 3 (Syndrome Construction). Set SS(w) = syn(w). To compute Rec(w′, s), find the
unique vector e ∈ Fn of Hamming weight ≤ t such that syn(e) = syn(w′)− s, and ouptut w = w′ − e.

As explained in Section 2, finding the short error-vector e from its syndrome this is the same as decoding
the code. It is easy to see that two constructions above are equivalent: given syn(w) one can sample from
w − c by choosing a random string v with syn(v) = syn(w); conversely, syn(w − c) = syn(w). To show
that Rec finds the correct w, observe that dis(w′ − e, w′) ≤ t by the constraint on the weight of e, and

4In their interpretation, one commits to x by picking a random w and publishing SS(w; x).

14

syn(w′ − e) = syn(w′)− syn(e) = syn(w′)− (syn(w′)− s) = s. There can be only one value within distance
t of w′ whose syndrome is s (else by subtracting two such values we get a codeword that is closer than
2t + 1 to 0, but 0 is also a codeword), so w′ − e must be equal to w.

As mentioned in the introduction, the syndrome construction has appeared before as a component of
some cryptographic protocols over quantum and other noisy channels [BBCS91, Cré97], though it has not
been analyzed the same way.

Both schemes are (Fn,m, m− (n− k)f, t) secure sketches. For the randomized scheme, the intuition for
understanding the entropy loss is as follows: we add k random elements of F and publish n elements of
F . The formal proof is simply Lemma 4.3, because addition in Fn is a family of transitive isometries. For
the syndrome scheme, this follows from Lemma 3.1, because the syndrome is (n− k) elements of F .

We thus obtain the following theorem.

Theorem 5.1. Given an [n, k, 2t+1]F error-correcting code, one can construct an (Fn,m, m− (n−k)f, t)
secure sketch, which is efficient if encoding and decoding are efficient. Furthermore, if the code is linear,
then the sketch is deterministic and its output is (n− k) symbols long.

In Appendix A we present some generic lower bounds on secure sketches and fuzzy extractors. Recall
that AF (n, d) denotes the maximum number K of codewords possible in a code of distance d over n-
character words from an alphabet of size F . Then by Lemma A.1, we obtain that the entropy loss of a
secure sketch for the Hamming metric is at least nf − log2 AF (n, 2t+1) when the input is uniform (that is,
when m = nf), because K(M, t) from Lemma A.1 is in this case equal to AF (n, 2t + 1) (since a code that
corrects t Hamming errors must have minimum distance at least 2t+1). This means that if the underlying
code is optimal (i.e., K = AF (n, 2t + 1)), then code-offset construction above is optimal for the case of
uniform inputs, because its entropy loss is nf − logF K log2 F = nf − log2 K. Of course, we do not know
the exact value of AF (n, d), let alone efficiently decodable codes which meet the bound, for many settings
of F , n and d. Nonetheless, the code-offset scheme gets as close to optimality as is possible from coding
constraints. If better efficient codes are invented, then better (i.e., lower loss or higher error-tolerance)
secure sketches will result.

Fuzzy Extractors. As a warm-up, consider the case when, W is uniform (m = n) and look at the
code-offset sketch construction: v = w − C(x). For Gen(w), output R = x, P = v. For Rep(w′, P), decode
w′ − P to obtain C(x) and apply C−1 to obtain x. The result, quite clearly, is an (Fn, nf, kf, t, 0) fuzzy
extractor, since v is truly random and independent of x when w is random. In fact, this is exactly the
usage proposed by Juels and Wattenberg [JW99] except they viewed the above fuzzy extractor as a way
to use w to “fuzzy commit” to x, without revealing information about x.

Unfortunately, the above construction setting R = x only works for uniform W , since otherwise v would
leak information about x.

In general, we use the construction in Lemma 4.1 combined with Theorem 5.1 to obtain the following
theorem.

Theorem 5.2. Given any [n, k, 2t+1]F code C and any m, ε, there exists an (M,m, `, t, ε) fuzzy extractor,
where ` = m+kf −nf −2 log

(
1
ε

)
+2. The generation Gen and recovery Rep are efficient if C has efficient

encoding and decoding.

6 Constructions for Set Difference

We now turn to inputs that are subsets of a universe U ; let n = |U|. This corresponds to representing an
object by a list of its features. Examples include “minutiae” (ridge meetings and endings) in a fingerprint,

15

or short strings which occur in a long document.
Recall that the distance between two sets w,w′ is the size of their symmetric difference: dis(w,w′) =

|w4w′|. We will denote this metric space by SDif(U). A set w can be viewed as its characteristic vector in
{0, 1}n, with 1 at position x ∈ U if x ∈ w, and 0 otherwise. Such representation of sets makes set difference
the same as the Hamming metric. However, we will mostly focus on settings where n is much larger than
the size of the w, so that representing a set w by n bits is much less efficient than, say, writing down a list
of elements in the w, which requires only |w| log n bits.

Large Versus Small Universes. More specifically, we will distinguish two broad categories of settings.
Let s denote the size of the sets the are given as inputs to the secure sketch (or fuzzy extractor) algorithms.
Most of this section studies situations where the universe size n is super-polynomial in the set size s. We
call this the “large universe” setting. In contrast, the “small universe” setting refers to situations in which
n = poly(s). We want our various constructions to run in polynomial time and use polynomial storage
space. In the large universe setting, the n-bit string representation of a set becomes too large to be
usable—we will strive for solutions that are polynomial in s and log n.

Fixed versus Flexible Set Size. In some situations, all objects are represented by feature sets of
exactly the same size s, while in others the sets may be of arbitrary size. In particular, the original set w
and the corrupted set w′ from which we would like to recover the original need not be of the same size.
We refer to these two settings as ”fixed” and ”flexible” set size, respectively. When the set size is fixed,
the distance dis(w,w′) is always even: dis(w,w′) = t if and only if w and w′ agree on exactly s− t

2 points.
We will denote the restriction of SDif(U) to s-element subsets by SDifs(U).

Summary. As a point of reference, we will see below that log
(
n
s

)
− log A(n, 2t + 1, s) is a lower bound on

the entropy loss of any secure sketch for set difference (whether or not the set size is fixed). Recall that
A(n, 2t + 1, s) represents the size of the largest code for Hamming space with minimum distance 2t + 1,
in which every word has weight exactly s. In the large universe setting, where t � n, the lower bound is
approximately t log n. The relevant lower bounds are discussed at the end of Sections 6.1 and 6.2.

In the following sections we will present several schemes which meet this lower bound. The setting of
small universes is discussed in Section 6.1. We discuss the code-offset construction (from Section 5), as
well as a permutation-based scheme which is tailored to fixed set size. The latter scheme is optimal for
this metric, but impractical.

In the remainder of the section, we discuss schemes for the large universe setting. In Section 6.2 we give
an improved version of the scheme of Juels and Sudan [JS02]. Our version achieves optimal entropy loss
and storage t log n for fixed set size (notice the entropy loss doesn’t depend on the set size s, although the
running time does). The new scheme provides an exponential improvement over the original parameters
(which are analysed in Appendix D). Finally, in Section 6.3 we describe how to adapt syndrome decoding
algorithms for BCH codes to our application. This scheme has optimal storage and entropy loss t log(n+1),
handles flexible set sizes, and is probably the most practical of the schemes presented here. Another
scheme achieving similar parameters (but less efficiently) can be adapted from information reconciliation
literature [MTZ03]; see Section 9 for more details.

We do not discuss fuzzy extractors beyond mentioning here that each secure sketch presented in this
section can be converted to a fuzzy extractor using Lemma 4.1. We have already seen an example of such
conversion in Section 5.

Table 1 summarizes the constructions discussed in this section.

16

Entropy Loss Storage Time Set size Notes

Juels-Sudan t log n + log
((

n
r

)
/
(
n−s
r−s

))
+ 2 r log n poly(r log(n)) Fixed r is a parameter

[JS02] s ≤ r ≤ n
Generic n− log A(n, 2t + 1) n− log A(n, 2t + 1) poly(n) Flexible ent. loss ≈ t log(n)

syndrome (for linear codes) when t� n
Permutation- log

(
n
s

)
− log A(n, 2t + 1, s) O(n log n) poly(n) Fixed ent. loss ≈ t log n

based when t� n
Improved t log n t log n poly(s log n) Fixed

JS
BCH t log(n + 1) t log(n + 1) poly(s log n) Flexible See Section 6.3

for running time

Table 1: Summary of Secure Sketches for Set Difference.

6.1 Small Universes

When the universe size is polynomial in s, there are a number of natural constructions. The most direct one,
given previous work, is the construction of Juels and Sudan [JS02]. Unfortunately, that scheme requires a
fixed set size and achieves relatively poor parameters (see Appendix D).

We suggest two possible constructions: first, to represent sets as n-bit strings and use the constructions
of Section 5. The second construction, presented below, requires a fixed set size but achieves slightly
improved parameters by going through “constant-weight” codes.

Permutation-based Sketch. Recall the general construction of Section 4.2 for transitive metric spaces.
Let Π be a set of all permutations on U . Given π ∈ Π, make it a permutation on SDifs(U) naturally:
π(w) = {π(x)|x ∈ w}. This makes Π is a family of transitive isometries on SDifs(U), and thus the results
of Section 4.2 apply.

Let C ⊆ {0, 1}n be any [n, k, 2t+1] binary code in which all words have weight exactly s. Such codes have
been studied extensively (see, e.g., [AVZ00, BSSS90] for a summary of known upper and lower bounds).
View elements of the code as sets of size s. We obtain the following scheme, which produces a sketch of
length O(n log n).

Construction 4 (Permutation-Based Sketch). On input w ⊆ U of size s, choose b ⊆ U at random from
the code C, and choose a random permutation π : U → U such that π(w) = b (that is, choose a random
matching between w and b and a random matching between U − w and U − b). Output SS(w) = π (say,
by listing π(1), ..., π(n)). To recover w from w′ such that dis((, w), w′) ≤ t and π, compute b′ = π−1(w′),
decode the characteristic vector of b′ to obtain b, and output w = π(b).

This construction is efficient as long as decoding is efficient (everything else takes time O(n log n)).
By Lemma 4.3, its entropy loss is log

(
n
s

)
− k: here |Π| = n! and Γ = s!(n − s)!, so log |Π| − log Γ =

log n!/(s!(n− s)!).

Comparing the Hamming Scheme with the Permutation Scheme. The code-offset construction
was shown to have entropy loss n − log A(n, 2t + 1) if an optimal code is used; the random permutation
scheme has entropy loss log

(
n
s

)
− log A(n, 2t + 1, s) for an optimal code. The Bassalygo-Elias inequality

(see [vL92]) shows that the bound on the random permutation scheme is always at least as good as the
bound on the code offset scheme: A(n, d) · 2−n ≤ A(n, d, s) ·

(
n
s

)−1. This implies that n − log A(n, d) ≥
log
(
n
s

)
− log A(n, d, s). Moreover, standard packing arguments give better constructions of constant-weight

17

codes than they do of ordinary codes. 5 In fact, the random permutations scheme is optimal for this metric,
just as the code-offset scheme is optimal for the Hamming metric. We show this as follows. Restrict t
to be even, because dis(w,w′) is always even if |w| = |w′|. Then the minimum distance of a code over
SDifs(U) that corrects up to t errors must be at least 2t + 1.6 Therefore by Lemma A.1, we get that
that the min-entropy loss of a secure sketch must be at least log

(
n
s

)
− log A(n, 2t + 1, s), in the case of a

uniform input w. Thus in principle, it is better to use the random permutation scheme. Nonetheless, there
are caveats. First, we do not know of explicitly constructed constant-weight codes that beat the Elias-
Bassalygo inequality and would thus lead to better entropy loss for the random permutation scheme than
for the Hamming scheme (see [BSSS90] for more on constructions of constant-weight codes and [AVZ00]
for upper bounds). Second, much more is known about efficient implementation of decoding for ordinary
codes than for constant-weight codes; for example, one can find off-the-shelf hardware and software for
decoding many binary codes. In practice, the Hamming-based scheme is likely to be more useful.

6.2 Improving the Construction of Juels and Sudan

We now turn to the large universe setting, where n is super-polynomial in the set size s, and we would like
operations to be polynomial in s and log n.

Juels and Sudan [JS02] proposed a secure sketch for the set difference metric with fixed set size (called a
“fuzzy vault” in that paper). We present their original scheme here with an analysis of the entropy loss in
Appendix D. In particular, our analysis shows that the original scheme has good entropy loss only when
the storage space is very large.

We suggest a modified version of the Juels-Sudan scheme which is simpler and achieves much better
parameters. The entropy loss and storage space of the new scheme are both t log n, which is optimal.
(The same parameters are also achieved by the BCH-based construction in Section 6.3.) Our scheme has
the advantage of being even simpler to analyze, and the computations are simpler. As with the original
Juels-Sudan scheme, we assume n = |U| is a prime power and work over F = GF (n).

An intuition for the scheme is that the numbers ys+1, ..., yr from the JS scheme need not be chosen at
random. One can instead evaluate them as yi = p′(xi) for some polynomial p′. One can then represent
the entire list of pairs (xi, yi) implicitly, using only a few of the coefficients of p′. The new sketch is
deterministic (this was not the case for our preliminary version in [DRS04]).

Construction 5 (Modified JS Secure Sketch for Sets of Size s).
To compute SS(w):

1. Let p′() be the unique monic polynomial of degree exactly s such that p′(x) = 0 for all x ∈ w.
(That is, let p′(z) def=

∑
x∈w(z − x).)

2. Output the coefficients of p′() of degree s− 1 down to s− t.
This is equivalent to computing and outputting the first t symmetric polynomials of the values in A,
i.e. if w = {x1, ..., xs}, then output∑

i

xi,
∑
i6=j

xixj , . . . ,
∑

S⊆[s],|S|=t

(∏
i∈S

xi

)
.

5This comes from the fact that the intersection of a ball of radius d with the set of all words of weight s is much smaller
than the ball of radius d itself.

6 Indeed, suppose not. Then take two codewords, c1 and c2 such that dis(c1, c2) ≤ 2t. There are k elements in c1 that are
not in c2 (call their set c1 − c2), and k elements in c2 that are not in c1 (call their set c2 − c1), with k ≤ t. Starting with c1,
remove t/2 elements of c1 − c2 and add t/2 elements of c2 − c1 to obtain a set w (note that here we are using that t is even; if
k < t/2, then use k elements). Then dis(c1, w) ≤ t and dis(c2, w) ≤ t, and so if the received word is w, the receiver cannot be
certain whether the sent word was c1 or c2, and hence cannot correct t errors.

18

To compute Rec(w′, p′), where w′ = {a1, a2, . . . , as},
1. Create a new polynomial phigh, of degree s which shares the top t + 1 coefficients of p′, that is let

phigh(z) def= zs +
∑s−1

i=s−t aiz
i.

2. Evaluate phigh on all points in w′ to obtain s pairs (ai, bi).
3. Use [s, s− t, t+1]U Reed-Solomon decoding (see, e.g., [Bla83, vL92]) to search for a polynomial plow

of degree s− t− 1 such that plow(ai) = bi for at least s− t/2 of the ai values. If no such polynomial
exists, then stop and output “fail.”

4. Output the list of zeroes (roots) of the polynomial phigh − plow (see, e.g., [Sho05] for root-finding
algorithms; they can sped up by first factoring out the known roots—namely, (z − ai) for the s− t/2
values of ai that were not deemed erroneous in the previous step).

To see that this secure sketch can tolerate t set difference errors, suppose dis(w,w′) ≤ t. Let p′ be as in
the sketch algorithm, that is p′(z) =

∏
x∈w(z − x). The polynomial p′ is monic, that is its leading term is

zs. We can divide the remaining coefficients into two groups: the high coefficients, denoted as−t, ..., as−1,
and the low coefficients, denoted by b1, ..., bs−t−1:

p′(z) = zs +
s−1∑

i=s−t

aiz
i

︸ ︷︷ ︸
phigh(z)

+
s−t−1∑

i=0

biz
i

︸ ︷︷ ︸
q(z)

.

We can write p′ as phigh + q where q has degree s − t − 1. The recovery algorithm gets the coefficients
of phigh as input. For any point x in w, we have 0 = p′(x) = phigh(x) + q(x). Thus, phigh and −q agree
at all points in w. Since the set w intersects w′ in at least s − t/2 points, the polynomial −q satisfies
the conditions of Step 3 in Rec. That polynomial is unique, since no two distinct polynomials of degree
s− t− 1 can get the correct bi on more than s− t/2 ais (else, they agree on at least s− t points, which is
impossible). Therefore, the recovered polynomial plow must be −q; hence phigh(x)− plow(x) = p′(x). Thus,
Rec computes the correct p′ and therefore finds correctly the set w, which consists of the roots of p′.

Since the output of SS is t field elements, the entropy loss of the sceheme is at most t log n by Lemma 3.1.
(We will see below that this bound is tight, since any sketch must lose at least t log n in some situations.)
We have proved:

Theorem 6.1 (Analysis of Improved JS). Construction 5 is a (SDifs(U),m, m−t log n, t) secure sketch.
The entropy loss and storage of the scheme are at most t log n, and both the sketch generation SS() and
the recovery procedure Rec() run in time polynomial in s, t and log n.

Lower Bounds for Fixed Set Size in a Large Universe. The short length of the sketch makes this
scheme feasible for essentially any ratio of set size to universe size (we only need log n to be polynomial in
s). Moreover, for large universes the entropy loss t log n is essentially optimal for uniform inputs (i.e., when
m = log

(
n
s

)
). We show this as follows. As already mentioned in the Section 6.1, Lemma A.1 shows that

for a uniformly distributed input, the best possible entropy loss is m −m′ ≥ log
(
n
s

)
− log A(n, 2t + 1, s).

Using a bound of Agrell et al. [AVZ00], Theorem 12 (and noting that A(n, 2t + 1, s) = A(n, 2t + 2, s),
because distances in SDifs(U) are even), the entropy loss is at least:

m−m′ ≥ log
(

n

s

)
− log A(n, 2t + 1, s) ≥ log

(
n

s

)
− log

((
n

s− t

)/(s

s− t

))
= log

(
n− s + t

t

)
When n� s, this last quantity is roughly t log n, as desired.

19

6.3 Large Universes via the Hamming Metric: Sublinear-Time Decoding

In this section, we show that the syndrome construction of Section 5 can in fact be adapted for small sets
in large universe, using specific properties of algebraic codes. We will show that BCH codes, which contain
Hamming and Reed-Solomon codes as special cases, have these properties. As opposed to the constructions
of the previous section, the construction of this section is flexible and can accept input sets of any size.

Thus we obtain a sketch for sets of flexible size, with entropy loss and storage t log(n + 1). We will
assume that n is one less than a power of 2: n = 2m − 1 for some integer m, and will identify U with the
nonzero elements of the binary finite field of degree m: U = GF (2m)∗.

Syndrome Manipulation for Small-Weight Words. Suppose now that we have a small set w ⊆ U
of size s, where n� s. Let xw denote the characteristic vector of w (see the beginning of Section 6). Then
the sydnrome construction says that SS(w) = syn(xw). This is an (n − k)-bit quantity. Note that the
syndrome construction gives us no special advantage over the code-offset construction when the universe
is small: storing the n-bit xw + C(r) for a random k-bit r is not a problem. However, it’s a substantial
improvement when n� n− k.

If we want to use syn(xw) as the sketch of w, then we must choose a code with n − k very small. In
particular, the entropy of w is at most log

(
n
s

)
≈ s log n, and so the entropy loss n − k had better be at

most s log n. Binary BCH codes are suitable for our purposes: they are a family of [n, k, δ]2 linear codes
with δ = 2t + 1 and k = n − tm (assuming n = 2m − 1) (see, e.g. [vL92]). These codes are optimal for
t � n by the Hamming bound, which implies that k ≤ n − log

(
n
t

)
[vL92].7 Using the syndrome sketch

with a BCH code C, we get entropy loss n − k = t log(n + 1), essentially the same as the t log n of the
improved Juels-Sudan scheme (recall that δ ≥ 2t + 1 allows us to correct t set difference errors).

The only problem is that the scheme appears to require computation time Ω(n), since we must compute
syn(xw) = Hxw and, later, run a decoding algorithm to recover xw. For BCH codes, this difficulty can be
overcome. A word of small weight w can be described by listing the positions on which it is nonzero. We
call this description the support of xw and write supp(xw) (note that supp(xw) = w).

The following lemma holds for general BCH codes (which include binary BCH codes and Reed-Solomon
codes as special cases). We state it for binary codes since that is most relevant to the application:

Lemma 6.2. For a [n, k, δ] binary BCH code C one can compute:

• syn(x), given supp(x), in time polynomial in δ, log n, and |supp(x)|
• supp(x), given syn(x) (when x has weight at most (δ − 1)/2), in time polynomial in δ and log n.

The proof of Lemma 6.2 requires a careful reworking of the standard BCH decoding algorithm. The
details are presented in Appendix E. For now, we present the resulting secure for set difference.

Construction 6 (BCH Syndrome Construction for Set Difference).
To compute SS(w) = syn(xw):

1. Let si =
∑

x∈w xi (computations in GF (2m)).
2. Output SS(w) = (s1, s3, s5, ..., s2t−1).

To recover Rec(w′, (s1, s3, . . . , s2t−1):

1. Compute (s′1, s
′
3, . . . , s

′
2t−1) = SS(w′) = syn(xw′);

7The Hamming bound is based on the observation that for any code of distance δ, the balls of radius b(δ − 1)/2c centered
at various codewords must be disjoint. Each such ball contains

`
n

b(δ−1)/2c

´
points, and so 2k

`
n

b(δ−1)/2c

´
≤ 2n. In our case

δ = 2t + 1 and so the bound yields k ≤ n− log
`

n
t

´
.

20

2. Let σi = s′i − si (in GF (2m), so “−” is the same as “+”).
3. Compute supp(v) such that syn(v) = (σ1, σ3, . . . , σ2t−1) and |supp(v)| ≤ t by Lemma 6.2.
4. If dis(w,w′) ≤ t, then supp(v) = w4w′. Thus, output w = w′4supp(v).

The bound on entropy loss is easy to see: the output is t log(n+1) bits long, and hence the entropy loss
is at most t log(n + 1) by Lemma 3.1. We obtain:

Theorem 6.3. The BCH scheme above is a (SDif(U),m, m− t log(n+1), t) secure sketch for set difference
with storage t log(n + 1). The algorithms SS and Rec both run in time polynomial in t and log n.

7 Constructions for Edit Distance

The space of interest in this section is the space F∗ for some alphabet F , with distance between two strings
defined as the number of character insertions and deletions needed to get from one string to the other. Let
F = |F|.

Fuzzy Extractors. First we note that simply applying the same approach as we took for the transitive
metric spaces before (the Hamming space and the set difference space for small universe sizes) does not
work here, because the edit metric is not known to be transitive. Thus, we turn to the embeddings
we defined specifically for fuzzy extractors: biometric embeddings. Unlike low-distortion embeddings,
biometric embeddings do not care about relative distances, as long as points that were “close” (closer
than t1) do not become “distant” (farther apart than t2). The only additional requirement of biometric
embeddings is that they preserve some min-entropy: we do not want too many points to collide together,
although collisions are allowed, even collisions of distant points. We will build a biometric embedding from
the edit distance to the set difference.

A c-shingle [Bro97] is a length-c consecutive substring of a given string w. A c-shingling [Bro97] of a
string w of length n is the set (ignoring order or repetition) of all (n− c+1) c-shingles of w. (For instance,
a 3-shingling of “abcdecdegh” is {abc, bcd, cde, dec, ecd, dea, eah}).Thus, the range of the c-shingling
operation consists of all nonempty subsets of size at most n − c + 1 of Fc. Let Edit(n) stand for the edit
metric over Fn, and SDif(Fc) stand for the set difference metric over subsets of Fc, and SHc stand for the
c-shingling map from the former to the latter. We now show that SHc is a good biometric embedding.

Lemma 7.1. For any c, SHc is a (t1, t2 = (2c−1)t1,m1,m2 = m1−dn
c e log2(n−c+1))-biometric embedding

of Edit(n) into SDif(Fc).

Proof. Let w,w′ ∈ Edit(n) be such that dis(w,w′) ≤ t1 and I be the sequence of at most t1 insertions and
deletions that transforms w into w′. It is easy to see that each character deletion or insertion adds at most
(2c−1) to the symmetric difference between SHc(w) and SHc(w′), which implies that dis(SHc(w),SHc(w′)) ≤
(2c− 1)t1, as needed.

For w ∈ Fn, define gc(w) as follows. Compute SHc(w) and store the resulting shingles in lexicographic
order h1 . . . hk (k ≤ n − c + 1). Next, naturally partition w into dn/ce c-shingles s1 . . . sdn/ce, all disjoint
except for (possibly) the last two, which overlap by cdn/ce − n characters. Next, for 1 ≤ j ≤ dn/ce, set
pj to be the index i ∈ {0 . . . k} such that sj = hi. In other words, pj tells the index of the j-th disjoint
shingle of w in the alphabetically-ordered k-set SHc(w). Set gc(w) = (p1, . . . , pdn/ce). (For instance,
g3(“abcdecdeah”) = (1, 5, 4, 6), representing the alphabetical order of “abc”, “dec”, “dea” and “eah” in
SH3(“abcdecdeah”).) The number of possible values for gc(w) is at most (n − c + 1)d

n
c
e, and w can be

completely recovered from SHc(w) and gc(w).

21

Now, assume W is any distribution of min-entropy at least m1 on Edit(n). Applying Lemma 3.1, we get
H̃∞(W | gc(W)) ≥ m1 − dn

c e log2(n − c + 1). Since Pr(W = w | gc(W) = g) = Pr(SHc(W) = SHc(w) |
gc(W) = g) (because given gc(w), SHc(w) uniquely determines w and vice versa), by applying the definition
of H̃∞, we obtain H∞(SHc(W)) ≥ H̃∞(SHc(W) | gc(W)) = H̃∞(W | gc(W)).

By Theorem 6.3, for universe Fc of size F c and distance threshold t2 = (2c − 1)t1, we can construct
a secure sketch for the set difference metric with entropy loss t2dlog(F c + 1)e (d·e because Theorem 6.3
requires the universe size to be one less than a power of 2). By Lemma 4.1, we can obtain a fuzzy extractor
from such a sketch, with additional entropy loss 2 log

(
1
ε

)
−2. Applying Lemma 4.4 to the above embedding

and this fuzzy extractor, we obtain a fuzzy extractor for Edit(n), any input entropy m, any distance t, and
any security parameter ε, with the following entropy loss:⌈n

c

⌉
· log2(n− c + 1) + (2c− 1)tdlog(F c + 1)e+ 2 log

(
1
ε

)
− 2

(the first component of the entropy loss comes from the embedding, the second from the secure sketch for
set difference, and the third from the extractor). The above sequence of lemmas results in the following
construction, parameterized by shingle length c and a family of pairwise independent hash function H =
{SDif(Fc)→ {0, 1}l}x∈X , where l is equal to the input entropy m minus the entropy loss above.

Construction 7 (Fuzzy Extractor for Edit Distance).
To compute Gen(w) for |w| = n:

1. Compute SHc(w) by computing n − c + 1 shingles (v1, v2, . . . , vn−c+1) and removing duplicates to
form the shingle set v from w.

2. Compute s = syn(xv) as in Construction 6.
3. Select a hash function Hx ∈ H and output (R = Hx(v)), P = (s, x)).

To compute Rep(w′, (s, x)):
1. Compute SHc(w′) as above to get v′.
2. Use Rec(v′, s) from in Construction 6 to recover v.
3. Output R = Hx(v).

We thus obtain the following theorem.

Theorem 7.2. For any n, m, c and 0 < ε ≤ 1, there is an efficient (Edit(n),m,m− dnc e log2(n− c + 1)−
(2c− 1)tdlog(F c + 1)e − 2 log

(
1
ε

)
+ 2, t, ε)-fuzzy extractor.

Note that the choice of c is a parameter; by ignoring d·e and replacing n− c + 1 with n, 2c− 1 with 2c
and F c + 1 with F c, we get that the minimum entropy loss occurs near

c =
(

n log n

4t log F

)1/3

and is about 2.38 (t log F)1/3 (n log n)2/3 (2.38 is really 3
√

4+1/ 3
√

2). In particular, if the original string has
a linear amount of entropy θ(n log F), then we can tolerate t = Ω(n log2 F/ log2 n) insertions and deletions
while extracting θ(n log F)− 2 log

(
1
ε

)
bits. The number of bits extracted is linear; if the string length n is

polynomial in the alphabet size F , then the number of errors tolerated is linear also.

Secure Sketches. Observe that the proof of Lemma 7.1 actually demonstrates that our biometric
embdedding based on shingling is an embedding with recovery information gc. Observe also that it is
easy to reconstruct w from SHc(w) and gc(w). Finally, note that the BCH-based secure sketch for set
difference of Theorem 6.3 is an average-case secure sketch (as are all secure sketches in this work). Thus,
combining Theorem 6.3 with Lemma 4.5 we obtain the following theorem.

22

Construction 8 (Secure Sketch for Edit Distance). For SS(w), compute v = SHc(w) and s1 = syn(xv)
as in Construction 7. Compute s2 = gc(w), writing each pj as a string of dlog ne bits. Output s = (s1, s2).
For Rec(w′, (s1, s2)), recover v as in Construction 7, sort it in alphabetical order, and recover w by stringing
along elements of v according to indices in s2.

Theorem 7.3. For any n, m, c and 0 < ε ≤ 1, there is an efficient (Edit(n),m,m− dnc e log2(n− c + 1)−
(2c− 1)tdlog(F c + 1)e, t) average-case secure sketch.

The discussion about optimal values of c from above applies equally here.

Remark 3. In our definitions of secure sketches and fuzzy extractors, we required the original w and
the (potentially) modified w′ to come from the same space M. This requirement was for simplicity of
exposition. We can allow w′ to come from a larger set, as long as distance from w is well-defined. In the
case of edit distance, for instance, w′ can be shorter or longer than w; all the above results will apply as
long as it is still within t insertions and deletions.

8 Probabilistic Notions of Correctness

The error model considered so far in this work is very strong: we required that secure sketches and fuzzy
extractors accept every secret w′ within distance t of the original input w, with no probability of error.

Such a stringent model is useful as it makes no assumptions on either the exact stochastic properties of
the error process or the adversary’s computational limits. However, Lemma A.1 shows that secure sketches
(and fuzzy extractors) correcting t errors can only be as ”good” as error-correcting codes with minimum
distance 2t+1. By slightly relaxing the correctness condition, we will see that one can tolerate many more
errors. For example, there is no good code which can correct n/4 errors in the binary Hamming metric:
by the Plotkin bound (see, e.g., [Sud01, Lecture 8]) a code with minimum distance greater than n/2 has
at most 2n codewords. Thus, there is no secure sketch with residual entropy m′ ≥ log n which can correct
n/4 errors with probability 1. However, with the relaxed notions of correctness below, one can tolerate
arbitrarily close to n/2 errors, i.e., correct n(1

2 − γ) errors for any constant γ > 0, and still have residual
entropy Ω(n).

In this section, we discuss three relaxed error models and show how the constructions of the previous
sections can be modified to gain greater error-correction in these models. We will focus on secure sketches
for the binary Hamming metric. The same constructions yield fuzzy extractors (by Lemma 4.1). Many of
the observations here also apply to metrics other than Hamming.

A common point is that we will only require that the a corrupted input w′ be recovered with probability
at least 1 − α < 1 (the probability space varies). We describe each model in terms of the additional
assumptions made on the error process. We describe constructions for each model in the subsequent
sections.

Random Errors Assume there is a known distribution on the errors which occur in the data. For the
Hamming metric, the most common distribution is the binary symmetric channel BSCp: each bit of
the input is flipped with probability p and left untouched with probability 1− p. We require that for
any input w, Rec(W ′,SS(w)) = w with probability at least 1 − α over the coins of SS and over W ′

drawn applying the noise distribution to w.

In that case, one can correct an error rate up to Shannon’s bound on noisy channel coding. This bound
is tight. Unfortunately, the assumption of a known noise process is too strong for most applications:
there is no reason to believe we understand the exact distribution on errors which occur in complex

23

data such as biometrics.8 However, it provides a useful baseline by which to measure results for other
models.

Input-dependent Errors The errors are adversarial, subject only to the conditions that (a) the error
dis(w,w′) is bounded to a maximum magnitude of t, and (b) the corrupted word depends only on the
input w, and not on the secure sketch SS(w). Here we require that for any pair w,w′ at distance at
most t, we have Rec(w′,SS(w)) = w with probability at least 1− α over the coins of SS.

This model encompasses any complex noise process which has been observed to never introduce
more than t errors. Unlike the assumption of a particular distribution on the noise, the bound on
magnitude can be checked experimentally. Perhaps surprisingly, in this model we can tolerate just
as large an error rate as in the model of random errors. That is, we can tolerate an error rate up to
Shannon’s coding bound and no more.

Computationally-bounded Errors The errors are adversarial and may depend on both w and the
publicly stored information SS(w). However, we assume that the errors are introduced by a process
of bounded computational power. That is, there is a probabilistic circuit of polynomial size (in the
length n) which computes w′ from w. The adversary cannot, for example, forge a digital signature
and base the error pattern on the signature.

It is not clear whether this model allows correcting as errors up to the Shannon bound, as in the
two models above. The question is related to open questions on the construction of efficiently list-
decodable codes. However, when the error rate is either very high or very low, then the appropriate
list-decodable codes exist and we can indeed match the Shannon bound.

Analogues for Noisy Channels and the Hamming Metric. Models analogous to the ones
above have been studied in the literature on codes for noisy binary channels (with the Hamming met-
ric). Random errors and computationally-bounded errors both make obvious sense in the coding con-
text [Sha48, MPSW05]. The second model — input-dependent errors — does not immediately make sense
in a coding situation, since there is no data other than the transmitted codeword on which errors could
depend. Nonetheless, there is a natural, analogous model for noisy channels: one can allow the sender and
receiver to share either (1) common, secret random coins (see [Lip94, Lan04] and references therein) or (2)
a side channel with which they can communicate a small number of noise-free, secret bits [Gur03].

Existing results on these three models for the Hamming metric can be transported to our context using
the code-offset construction:

SS(w;x) = w ⊕ C(x) .

Roughly, any code which corrects errors in the models above will lead to a secure sketch (resp. fuzzy
extractor) which corrects errors in the model. We explore the consequences for each of the three models
in the next sections.

8.1 Random Errors

The random error model was famously considered by Shannon [Sha48]. He showed that for any discrete,
memoryless channel, the rate at which information can be reliably transmitted is characterized by the
maximum mutual information between the inputs and outputs of the channel. For the binary symmetric

8Since the assumption here only plays a role in correctness, it is still more reasonable than assuming we know exact
distributions on the data in proofs of secrecy. However, in both cases, we would like to enlarge the class of distributions for
which we can provably satisfy the definition of security.

24

channel with crossover probability p, this means that there exist codes encoding k bits into n bits, tolerating
error probability p in each bit if and only if

k

n
< 1− h(p)− δ(n)

where h(p) = −p log p − (1 − p) log(1 − p) and δ(n) = o(1). Computationally efficient codes achieving
this bound were found later, most notably by Forney [For66]. We can use the code-offset construction
SS(w;x) = w ⊕ C(x) with an appropriate concatenated code [For66] or, equivalently, SS(w) = synC(w)
since the codes can be linear. We obtain:

Proposition 8.1. For any error rate 0 < p < 1/2 and constant δ > 0, for large enough n there exist
secure sketches with entropy loss (h(p)+ δ)n, which correct error rate of p in the data with high probability
(roughly 2−cδn for a constant cδ > 0).

The probability here is taken over the errors only (the distribution on input strings w can be arbitrary).

The quantity h(p) is less than 1 for any p in the range (0, 1/2). In particular, one can get non-trivial
secure sketches even for a very high error rate p as long as it is less that 1/2; in contrast, no secure sketch
which corrects errors with probability 1 can tolerate t ≥ n/4. Note that several other works on biometric
cryptosystems consider the model of randomized errors and obtain similar results, though the analyses
assume that the distribution on inputs is uniform [TG04, CZ04].

A Matching Impossibility Result. The bound above is tight. The matching impossibility result also
applies to input-dependent and computationally-bounded errors, since random errors are a special case of
both more complex models.

We start with an intuitive argument: If a secure sketch allows recovering from random errors with high
probability, than it must contain enough information about w to describe the error pattern (since given
w′ and SS(w), one can recover the error pattern with high probability). Describing the outcome of n
independent coin flips with probability p of heads requires nh(p) bits, and so the sketch must reveal nh(p)
bits about w.

In fact, that argument simply shows that nh(p) bits of Shannon information are leaked about w, whereas
we are concerned with min-entropy loss as defined in Section 3. To make the argument more formal, let W
be uniform over {0, 1}n and observe that with high probability over the output of the sketching algorithm,
v = SS(w), the conditional distribution Wv = W |SS(W)=v forms a good code for the binary symmetric
channel. That is, for most values v, if we sample a random string w from W |SS(W)=v and send it through a
binary symmetric channel, we will be able to recover the correct value w. That means there exists some v
such that both (a) Wv is a good code and (b) H∞(Wv) is close to H̃∞(W |SS(W)). Shannon’s noisy coding
theorem says that such a code can have entropy at most n(1− h(p) + o(1)). Thus the construction above
is optimal:

Proposition 8.2. For any error rate 0 < p < 1/2, any secure sketch SS which corrects random errors
(with rate p) with probability at least 2/3 has entropy loss at least n(h(p)− o(1)); that is H̃∞(W |SS(W)) ≤
n(1− h(p)− o(1)) when W is drawn uniformly from {0, 1}n.

8.2 Randomizing Input-dependent Errors

Assuming errors distributed randomly according to a known distribution seems very limiting. In the
Hamming metric, one can construct a secure sketch which achieves the same result as with random errors
for every error process where the magnitude of the error is bounded, as long as the errors are independent

25

of the output of SS(W). The same technique was used previously by Bennett et al. [BBR88, p. 216] and,
in a slightly different context, Lipton [Lip94].

The idea is to choose a random permutation π : [n] → [n], permute the bits of w before applying the
sketch, and store the permutation π along with SS(π(w)). Specifically, let C be a linear code tolerating a
p fraction of random errors with redundancy n− k ≈ nh(p). Let

SS(w;π) = π, synC(π(w))

where π : [n]→ [n] and, for w = w1 · · ·wn ∈ {0, 1}n, π(w) denotes the permuted string wπ(1)wπ(2) · · ·wπ(n).
The recovery algorithm operates in the obvious way: it first permutes the input w′ according to π−1, then
runs the usual syndrome recovery algorithm to recover π(w).

For any particular pair w,w′, the difference w ⊕ w′ will be mapped to a random vector of the same
weight by π, and any code for the binary symmetric channel (with rate p ≈ t/n) will correct such an error
with high probability.

Thus we can construct a sketch with entropy loss n(h(t/n)− o(1)) which corrects any t flipped bits with
high probability. This is optimal by the lower bound for random errors (Proposition 8.2), since a sketch
for data-dependent errors will also correct random errors.

An alternative approach to input-dependent errors is discussed in the last paragraph of Section 8.3.

8.3 Handling Computationally-Bounded Errors Via List Decoding

As mentioned above, many results on noisy coding for other error models in Hamming space extend to
secure sketches. The previous sections discussed random, and randomized, errors. In this section, we
discuss constructions [Gur03, Lan04, MPSW05] which transform a list decodable code, defined below, into
uniquely decodable codes for a particular error model. These transformations can also be used in the
setting of secure sketches, leading to better tolerance of computationally bounded errors. For some ranges
of parameters, this yields optimal sketches, that is, sketches which meet the Shannon bound on the fraction
of tolerated errors.

List-Decodable Codes. A code C in a metric space M is called list-decodable with list size L and
distance t if for every point x ∈M, there are at most L codewords within distance t ofM. A list-decoding
algorithm takes as input a word x and returns the corresponding list c1, c2, ... of codewords. The most
interesting setting is when L is a small polynomial (in the description size log |M|), and there exists an
efficient list-decoding algorithm. It is then feasible for an algorithm to go over each word in the list and
accept if it has some desirable property. There are many examples of such codes for the Hamming space;
for a survey see Guruswami’s thesis [Gur01].

Similarly, we can define a list-decodable secure sketch with size L and distance t as follows: for any pair
of words w,w′ ∈M at distance at most t, the algorithm Rec(w′,SS(w)) returns a list of at most L points
in M; if dis(w,w′) ≤ t, then one of the words in the list must be w itself. The simplest way to obtain a
list-decodable secure sketch is to use the code-offset construction of Section 5 with a list-decodable code
for the Hamming space. One obtains a different example by running the improved Juels-Sudan scheme
for set difference (Construction 5), replacing ordinary decoding of Reed-Solomon codes with list decoding.
This yields a significant improvement in the number of errors tolerated at the price of returning a list of
possible candidates for the original secret.

Sieving the List. Given a list-decodable secure sketch SS, all that’s needed is to store some addi-
tional information which allows the receiver to disambiguate w from the list. Let’s suggestively name
the additional information Tag(w;R), where R is some additional randomness (perhaps a key). Given a

26

list-decodable code C, the sketch will typically look like:

SS(w;x = (w ⊕ C(x), Tag(w)).

On inputs w′ and (∆, tag), the recovery algorithm consists of running the list decoding algorithm on w′⊕∆
to obtain a list of possible codewords C(x1), . . . , C(xL). There is a corresponding list of candidate inputs
w1, ..., wL, where wi = C(xi)⊕∆, and the algorithm outputs the first wi in the list such that Tag(wi) = tag.
We will choose the function Tag() so that the adversary can not arrange to have two values in the list with
valid tags.

We consider two Tag() functions, inspired by [Gur03, Lan04, MPSW05].

1. Recall that for computationally bounded errors, the corrupted string w′ depends on both w and
SS(w), but w′ is computed by a probabilistic circuit of size polynomial in n.

Consider Tag(w) = hash(w), where hash is drawn from a collision-resistant function family. More
specifically, we will use some extra randomness R to choose a key key for a collision-resistant hash
family. The output of the sketch is then

SS(w;x, r) = (w ⊕ C(x), key(R), hashkey(R)(w)).

If the list-decoding algorithm for the code C runs in polynomial time, then the adversary succeeds
only if he can find a value wi 6= w such that hashkey(wi) = hashkey(w), that is only by finding a
collision for the hash function. By assumption, a polynomially-bounded adversary succeeds only
with negligible probability.

The additional entropy loss, beyond that of the code-offset part of the sketch, is bounded above by the
output length of the hash function. If α is the desired bound on the adversary’s success probability,
then for standard assumptions on hash functions this loss will be polynomial in log(1/α).

In principle this transformation can yield sketches which achieve the optimal entropy loss n(h(t/n)−
o(1)), since codes with polynomial list size L are known to exist for error rates approaching the
Shannon bound. However, in order to use the construction the code must also be equipped with a
reasonably efficient algorithm for finding such a list. This is necessary both so that recovery will be
efficient and, more subtly, for the proof of security to go through (that way we can assume that the
polynomial-time adversary knows the list of words generated during the recovery procedure). We do
not know of efficient (i.e. polynomial-time constructible and decodable) binary list-decodable codes
which meet the Shannon bound for all choices of parameters. However, when the error rate is near 1

2
such codes are known [GS00]. Thus, this type of construction yields essentially optimal sketches when
the error rate is near 1/2. This is quite similar to analogous results on channel coding [MPSW05].
Relatively little is known about the performance of efficiently list-decodable codes in other parameter
ranges; for a recent survey, see Guruswami’s thesis [Gur01].

2. A similar, even simpler, transformation can be used in the setting of input-dependent errors (i.e.,
when the depend errors only on the input and not on the sketch, but the adversary is not assumed
to be computationally bounded). One can store Tag(w) = I, hI(w) where {hi}i∈I comes from an
pairwise-independent hash family fromM to {0, 1}`, where ` = log

(
1
α

)
+log L and α is the probability

of an incorrect decoding.

The proof is simple: the values w1, ..., wL do not depend on I, and so for any value wi 6= w, the prob-
ability that hI(wi) = hI(w) is 2−`. There are at most L possible candidates, and so the probability
that any one of the elements in the list is accepted is at most L · 2−` = α The additional entropy loss
incurred is at most ` = log

(
1
α

)
+ log(L).

27

In principle, this transformation can do as well as the randomization approach of the previous section.
However, we do not know of efficient binary list-decodable codes meeting the Shannon bound for most
parameter ranges. Thus, in general, randomizing the errors (as in the previous section) works better
in the input-dependent setting.

9 Secure Sketches and Efficient Information Reconciliation

Suppose Alice holds a set w and Bob holds a set w′ that are close to each other. They wish to reconcile the
sets: to discover the symmetric difference w4w′ so that they can take whatever appropriate (application-
dependent) action to make their two sets agree. Moreover, they wish to do this communication-efficiently,
without having to transmit entire sets to each other. This problem is known as set reconciliation and
naturally arises in various settings.

Let (SS,Rec) be a secure sketch for set difference that can handle distance up to t; furthermore, suppose
that |w4w′| ≤ t. Then if Bob receives s = SS(w) from Alice, he will be able to recover w, and therefore
w4w′, from s and w′. Similarly, Alice will be able find w4w′ upon receiving s′ = SS(w′) from Bob.
This will be communication-efficient if |s| is small. Note that our secure sketches for set difference of
Sections 6.2, 6.3 are indeed short—in fact, they are secure precisely because they are short. Thus, they
also make good set reconciliation schemes.

Conversely, a good (single-message) set reconciliation scheme makes a good secure sketch: simply make
the message the sketch. The entropy loss will be at most the length of the message, which is short in a
communication-efficient scheme. Thus, the set reconciliation scheme CPISync of [MTZ03] makes a good
secure sketch. In fact, it is quite similar to the secure sketch of Section 6.2, except instead of the top t
coefficients of the characteristic polynomial it uses the values of the polynomial at t points.

Our BCH-based secure sketch of Section 6.3, when used for set reconciliation, achieves the same param-
eters as CPISync of [MTZ03], except decoding is faster, because instead of spending t3 time to solve a
system of linear equations, it spends t2 time for Euclid’s algorithm. Thus, it can be substituted wherever
CPISync is used, such as PDA synchronization [STA03] and PGP key server updates [Min]. Furthermore,
optimizations that improve computational complexity of CPISync through the use of interaction [MT02]
can also be applied to the BCH-based scheme.

Of course, secure sketches for other metrics are similarly related to information reconciliation for those
metrics. In particular, ideas for edit distance very similar to ours were independently considered in the
context of information reconciliation by [CT04].

Acknowledgements

This work evolved over several years and discussions with many people enriched our understanding of the
material at hand. In roughly chronological order, we thank Piotr Indyk for discussions about embeddings
and for his help in the proof of Lemma 7.1; Madhu Sudan, for helpful discussions about the construction
of [JS02] and the uses of error-correcting codes; Venkat Guruswami, for enlightenment about list decoding;
Pim Tuyls, for pointing out relevant previous work; Chris Peikert, for pointing out the model of compu-
tationally bounded adversaries from [MPSW05]; Ari Trachtenberg, for finding an error in the preliminary
version of Appendix E; and Ronny Roth, for discussions about efficient BCH decoding.
�Add Silvio here after my conversations with him –Leo�
The work of the Y.D. was partly funded by the National Science Foundation under CAREER Award

No. CCR-0133806 and Trusted Computing Grant No. CCR-0311095, and by the New York University

28

Research Challenge Fund 25-74100-N5237. The work of the L.R. was partly funded by the National Science
Foundation under Grant No. CCR-0311485. The work of the A.S. was partly funded by US A.R.O. grant
DAAD19-00-1-0177 and by a Microsoft Fellowship.

References

[ACM99] Sixth ACM Conference on Computer and Communication Security. ACM, November 1999.

[ADG+03] A. Andoni, M. Deza, A. Gupta, P. Indyk, and S. Raskhodnikova. Lower bounds for embed-
ding edit distance into normed spaces. In SODA ’03: Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 523–526, Philadelphia, PA, USA, 2003.
Society for Industrial and Applied Mathematics.

[AVZ00] Erik Agrell, Alexander Vardy, and Kenneth Zeger. Upper bounds for constant-weight codes.
IEEE Transactions on Information Theory, 46(7):2373–2395, 2000.

[BBCM95] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Ueli M. Maurer. Generalized
privacy amplification. IEEE Transactions on Information Theory, 41(6):1915–1923, 1995.

[BBCS91] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Marie-Hélène Skubiszewska.
Practical quantum oblivious transfer. In J. Feigenbaum, editor, Advances in Cryptology—
CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 351–366. Springer-
Verlag, 1992, 11–15 August 1991.

[BBR88] C. Bennett, G. Brassard, and J. Robert. Privacy amplification by public discussion. SIAM
Journal on Computing, 17(2):210–229, 1988.

[BCN04] C. Barral, J.-S. Coron, and D. Naccache. Externalized fingerprint matching. Technical Report
2004/021, Cryptology e-print archive, http://eprint.iacr.org, 2004.

[Bie05] Juergen Bierbrauer. Introduction to Coding Theory. Chapman & Hall/CRC, 2005.

[Bla83] Richard E. Blahut. Theory and practice of error control codes. Addison Wesley Longman,
Reading, MA, 1983. 512 p.

[Bro97] Andrei Broder. On the resemblence and containment of documents. In Compression and
Complexity of Sequences, 1997.

[BSSS90] Andries E. Brouwer, James B. Shearer, Neil J. A. Sloane, and Warren D. Smith. A new table
of constant weight codes. IEEE Transactions on Information Theory, 36(6):1334–1380, 1990.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

[CK03] L. Csirmaz and G.O.H. Katona. Geometrical cryptography. In Proc. International Workshop
on Coding and Cryptography, 2003.

[Cré97] Claude Crépeau. Efficient cryptographic protocols based on noisy channels. In Walter Fumy,
editor, Advances in Cryptology—EUROCRYPT 97, volume 1233 of Lecture Notes in Com-
puter Science, pages 306–317. Springer-Verlag, 11–15 May 1997.

29

http://eprint.iacr.org

[CT04] V. Chauhan and A. Trachtenberg. Reconciliation puzzles. In IEEE Globecom, Dallas, TX,
2004.

[CW79] J.L. Carter and M.N. Wegman. Universal classes of hash functions. Journal of Computer and
System Sciences, 18:143–154, 1979.

[CZ04] Gérard Cohen and Gilles Zémor. Generalized coset schemes for the wire-tap channel: Appli-
cation to biometrics. In IEEE International Symp. on Information Theory, 2004.

[DFMP99] G.I. Davida, Y. Frankel, B.J. Matt, and R. Peralta. On the relation of error correction and
cryptography to an off line biometric based identification scheme. In Proceedings of WCC99,
Workshop on Coding and Cryptography, Paris, France, 11-14 January 1999.

[Din05] Yan Zong Ding. Error correction in the bounded storage model. In Kilian [Kil05].

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology—EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science. Springer-Verlag, 2004.

[EHMS00] Carl Ellison, Chris Hall, Randy Milbert, and Bruce Schneier. Protecting keys with personal
entropy. Future Generation Computer Systems, 16:311–318, February 2000.

[FJ01] Niklas Frykholm and Ari Juels. Error-tolerant password recovery. In Eighth ACM Conference
on Computer and Communication Security, pages 1–8. ACM, November 5–8 2001.

[For66] G. David Forney. Concatenated Codes. PhD thesis, MIT, 1966.

[Fry00] N. Frykholm. Passwords: Beyond the terminal interaction model. Master’s thesis, Ume̊a
University, 2000.

[GS00] Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain concatenated
codes. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing,
pages 181–190, Portland, Oregon, 21–23 May 2000.

[Gur01] V. Guruswami. List Decoding of Error-Correcting Codes. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, USA, 2001.

[Gur03] Venkatesan Guruswami. List decoding with side information. In IEEE Conference on Com-
putational Complexity, pages 300–. IEEE Computer Society, 2003.

[HILL99] J. H̊astad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[JS02] Ari Juels and Madhu Sudan. A fuzzy vault scheme. In IEEE International Symposium on
Information Theory, 2002.

[JW99] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In ACM [ACM99], pages
28–36.

[Kil05] Joe Kilian, editor. First Theory of Cryptography Conference — TCC 2005, volume 3378 of
Lecture Notes in Computer Science. Springer-Verlag, February 10–12 2005.

30

[KO63] A.A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. Soviet
Physics Doklady, 7:595–596, 1963.

[KSHW97] John Kelsey, Bruce Schneier, Chris Hall, and David Wagner. Secure applications of low-
entropy keys. In Eiji Okamoto, George I. Davida, and Masahiro Mambo, editors, ISW,
volume 1396 of Lecture Notes in Computer Science, pages 121–134. Springer, 1997.

[Lan04] Michael Langberg. Private codes or succinct random codes that are (almost) perfect. In
FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’04), pages 325–334, Washington, DC, USA, 2004. IEEE Computer Society.

[Lip94] Richard J. Lipton. A new approach to information theory. In Patrice Enjalbert, Ernst W.
Mayr, and Klaus W. Wagner, editors, STACS, volume 775 of Lecture Notes in Computer
Science, pages 699–708. Springer, 1994.

[LT03] J.-P. M. G. Linnartz and P. Tuyls. New shielding functions to enhance privacy and prevent
misuse of biometric templates. In AVBPA, pages 393–402, 2003.

[Mau93] Ueli Maurer. Secret key agreement by public discussion from common information. IEEE
Transactions on Information Theory, 39(3):733–742, 1993.

[Min] Yaron Minsky. The SKS OpenPGP key server. http://www.nongnu.org/sks.

[MPSW05] Silvio Micali, Chris Peikert, Madhu Sudan, and David Wilson. Optimal error correction
against computationally bounded noise. In Kilian [Kil05].

[MRLW01a] Fabian Monrose, Michael K. Reiter, Qi Li, and Susanne Wetzel. Cryptographic key generation
from voice. In Proceedings of the IEEE Symposium on Security and Privacy, 2001.

[MRLW01b] Fabian Monrose, Michael K. Reiter, Qi Li, and Susanne Wetzel. Using voice to generate
cryptographic keys. In 2001: A Speaker Odyssey. The Speaker Recognition Workshop, 2001.

[MRW99] Fabian Monrose, Michael K. Reiter, and Susanne Wetzel. Password hardening based on
keystroke dynamics. In ACM [ACM99], pages 73–82.

[MT79] Robert Morris and Ken Thomson. Password security: A case history. Communications of the
ACM, 22(11):594–597, 1979.

[MT02] Yaron Minsky and Ari Trachtenberg. Scalable set reconciliation. In 40th Annual Allerton
Conference on Communication, Control and Computing, Monticello, IL, October 2002. See
also tehcnial report BU-ECE-2002-01.

[MTZ03] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with nearly optimal
communication complexity. IEEE Transactions on Information Theory, 49(9):2213–2218,
2003.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–53, 1996.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors, and depth-
two superconcentrators. SIAM Journal on Computing, 13(1):2–24, 2000.

[RW04] Renato Renner and Stefan Wolf. Smooth rényi entropy and applications. In Proceedings of
IEEE International Symposium on Information Theory, page 233, June 2004.

31

http://www.nongnu.org/sks

[RW05] Renato Renner and Stefan Wolf. Simple and tight bounds for information reconciliation and
privacy amplification. In Bimal Roy, editor, Advances in Cryptology—ASIACRYPT 2005,
Lecture Notes in Computer Science, Chennai, India, 4–8 December 2005. Springer-Verlag.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379–423 and 623–656, July and October 1948. Reprinted in D. Slepian, editor, Key Papers
in the Development of Information Theory, IEEE Press, NY, 1974.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the
EATCS, 77:67–95, 2002.

[Sho01] Victor Shoup. A proposal for an ISO standard for public key encryption. Available at
http://eprint.iacr.org/2001/112, 2001.

[Sho05] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, 2005. Available from http://shoup.net.

[SKHN75] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko Namekawa. A method
for solving key equation for decoding Goppa codes. Information and Control, 27(1):87–99,
1975.

[STA03] David Starobinski, Ari Trachtenberg, and Sachin Agarwal. Efficient PDA synchronization.
IEEE Transactions on Mobile Computing, 2(1):40–51, 2003.

[Sud01] Madhu Sudan. Lecture notes for an algorithmic introduction to coding theory. Course taught
at MIT, December 2001.

[TG04] Pim Tuyls and Jasper Goseling. Capacity and examples of template-protecting biometric
authentication systems. In Davide Maltoni and Anil K. Jain, editors, ECCV Workshop
BioAW, volume 3087 of Lecture Notes in Computer Science, pages 158–170. Springer, 2004.

[vL92] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1992.

[VTDL03] E. Verbitskiy, P. Tuyls, D. Denteneer, and J.-P. Linnartz. Reliable biometric authentication
with privacy protection. In Proc. 24th Benelux Symposium on Information theory, 2003.

[vzGG03] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, 2003.

[WC81] M.N. Wegman and J.L. Carter. New hash functions and their use in authentication and set
equality. Journal of Computer and System Sciences, 22:265–279, 1981.

A Lower Bounds from Coding

Recall that an (M,K, t) code is a subset of the metric spaceM which can correct t errors (this is slightly
different from the usual notation of coding theory literature).

Let K(M, t) be the largest K for which there exists and (M,K, t)-code. Given any set S of 2m points
in M, we let K(M, t, S) be the largest K such that there exists an (M,K, t)-code all of whose K points
belong to S. Finally, we let L(M, t,m) = log(min|S|=2m K(n, t, S)). Of course, when m = log |M|, we
get L(M, t, n) = log K(M, t). The exact determination of quantities K(M, t) and K(M, t, S) form the
main problem of coding theory, and is typically very hard. To the best of our knowledge, the quantity

32

http://shoup.net

L(M, t,m) was not explicitly studied in any of three metrics that we study, and its exact determination
seems very hard as well.

We give two simple lower bounds on the entropy loss (one for secure sketches, the other for fuzzy
extractors) which, somewhat surprisingly, show that our constructions for the Hamming and Set Difference
metrics are essentially optimal, at least when the original input distribution is uniform.

Lemma A.1. The existence of (M,m, m′, t) secure sketch implies that m′ ≤ L(M, t,m). In particular,
when m = log |M| (i.e., when the password is truly uniform), m′ ≤ log K(M, t).

Proof. Assume SS is such secure sketch. Let S be any set of size 2m in M, and let W be uniform over S.
Then we must have H̃∞(W | SS(W)) ≥ m′. In particular, there must be some particular value v such that
H∞(W | SS(W) = v) ≥ m′. But this means that conditioned on SS(W) = v, there are at least 2m′

points
w in S (call this set T) which could produce SS(W) = v. We claim that these 2m′

values of w form a code
of error-correcting distance t. Indeed, otherwise there would be a point w′ ∈ M such that dis(w0, w

′) ≤ t
and dis(w1, w

′) ≤ t for some w0, w1 ∈ T . But then we must have that Rec(w′, v) is equal to both w0 and
w1, which is impossible. Thus, the set T above must form an (M, 2m′

, t)-code inside S, which means that
m′ ≤ log K(M, t, S). Since S was arbitrary, the bound follows.

Lemma A.2. The existence of (M,m, `, t, ε)-fuzzy extractors implies that ` ≤ L(M, t,m)− log(1− ε). In
particular, when m = log |M| (i.e., when the password is truly uniform), ` ≤ log K(M, t)− log(1− ε).

Proof. Assume (Gen,Rep) is such a fuzzy extractor. Let S be any set of size 2m inM, and let W be uniform
over S. Then we must have SD ((R, P), (U`, P)) ≤ ε. In particular, there must be some particular value p
of P such that R is ε-close to U` conditioned on P = p. In particular, this means that conditioned on P = p,
there are at least (1−ε)2` points r ∈ {0, 1}` (call this set T) which could be extracted with P = p. Now, map
every r ∈ T to some arbitrary w ∈ S which could have produced r with nonzero probability given P = p,
and call this map C. We claim that C must define a code with error-correcting distance t. Indeed, otherwise
there would be a point w′ ∈ M such that dis(C(r1), w′) ≤ t and dis(C(r2), w′) ≤ t for some r1 6= r2. But
then we must have that Rep(w′, p) is equal to both r1 and r2, which is impossible. Thus, the map C above
must form an (M, 2`+log(1−ε), t)-code inside S, which means that ` ≤ log K(M, t, S)− log(1− ε). Since S
was arbitrary, the bound follows.

Observe that, as long as ε < 1/2, we have 0 < − log(1 − ε) < 1, so the lowerbounds on secure sketches
and fuzzy extractors differ by less than a bit.

B Details of Average-Case Sketches and Extractors

The following lemma shows that a secure sketch that is good for high min-entropy distributions is also
good for for lower min-entropy distributions.

Lemma B.1. Suppose f is a probabilistic function of x: each x ∈ X defines a probability distribution
which we denote by f(x). Suppose further that for some m ≤ log |X| and λ, for any distribution A on
X such that H∞(A) = m, we have H̃∞(A|f(A)) ≥ m − λ. Then for any distribution B on X such that
H∞(B) ≤ m, we have H̃∞(B|f(B)) ≥ H∞(B)− λ.

33

Proof.

H̃∞(B | f(B)) = − log Ey

[
max

x
Pr[B = x | f(B) = y]

]
= − log

∑
y

max
x

Pr[B = x ∧ f(B) = y]

= − log
∑

y

max
x

Pr[f(x) = y ∧B = x]

= − log
∑

y

max
x

Pr[f(x) = y] Pr[B = x] .

Now design a distribution A as follows. Start with the distrbution B. For each x such that Pr[B =
x] > 2−m, set Pr[A = x] = 2−m. This will decrease the total sum of the probabilities below 1; to
compensate, increase the probability of every other x, in turn, up to at most 2−m, until the total sum of
the probabilities is 1 (this is possible because m ≤ log |X|). It is important to note that as a result, for
each x, either Pr[A = x] ≥ Pr[B = x] or Pr[A = x] = 2−m. Let h = H∞(B) ≤ m. Then Pr[B = x] ≤ 2−h.
Therefore for each x, Pr[B = x] ≤ 2m−h Pr[A = x]. Therefore, for each y, maxx Pr[f(x) = y] Pr[B = x] ≤
2m−h maxx Pr[f(x) = y] Pr[A = x]. Plugging this in above, we get

H̃∞(B | f(B)) ≥ − log 2m−h
∑

y

max
x

Pr[f(x) = y] Pr[A = x]

= h−m + H̃∞(A | f(A)) = h− λ.

Lemma B.2 (Fuzzy Extractors from Sketches, Average-Case Version). Assume (SS,Rec) is an
(M,m, m̃, t)-average-case secure sketch, and let Ext be the (n, m̃, `, ε)-strong extractor given by pairwise-
independent hashing (in particular, ` = m̃−2 log

(
1
ε

)
+2). Then the following (Gen,Rep) is a (M,m, `, t, ε)-

average-case fuzzy extractor:

• Gen(w; r, x): set P = (SS(w; r), x), R = Ext(w;x), and output (R, P).

• Rep(w′, (s, x)): recover w = Rec(w′, s) and output R = Ext(w;x)

Proof. As with Lemma 4.1, the proof follows directly from Lemma 4.2, which shows that pairwise-
independent hashing extracts average conditional min-entropy.

�For Leo: Why do we need to make Lemma B.2 explicit? It is a verbatim copy of Lemma 4.1 and so is the
proof. –Adam�

C On Smooth Variants of Average Min-Entropy and the Relationship
to Smooth Rényi Entropy

Min-entropy is a rather fragile measure: a single high-probability element can ruin the min-entropy of an
otherwise good distribution. This is often circumvented within proofs by considering a distribution which
is close to the distribution of interest, but which has higher entropy. Renner and Wolf [RW04] systematized
this approach with the notion of ε-smooth min-entropy (they use the term “Rényi entropy of order ∞”
instead of “min-entropy”), which considers all distributions that are ε-close:

Hε
∞(A) = max

B: SD(A,B)≤ε
H∞(B) .

34

Smooth min-entropy very closely relates to the amount of extractable nearly-uniform randomness: if one
can map A to a distribution that is ε-close to Um, then Hε

∞(A) ≥ m; conversely, from any A such that
Hε
∞(A) ≥ m, and for any ε2, one can extract m−2 log

(
1
ε2

)
bits that are ε+ε2-close to uniform (see [RW04]

for a more precise statement; the proof of the first statement follows by considering the inverse map, and
the proof of the second from the leftover hash lemma, which is discussed in more detail at Lemma 4.2). For
some distributions, considering the smooth min-entropy will improve the number and quality of extractable
random bits.

A smooth version of average min-entropy can also be considered, defined as

H̃ε
∞(A | B) = max

(C,D): SD((A,B),(C,D))≤ε
H̃∞(C | D) .

It similarly relates very closely to the number of extractable bits that look nearly-uniform to the adversary
who knows the value of B, and is therefore perhaps a better measure for the quality of a secure sketch that
is used to obtain a fuzzy extractor. All our results can be cast in terms of smooth entropies troughout,
with appropriate modifications (if input entropy is ε-smooth, then output entropy will also be ε-smooth,
and extracted random strings will be ε further away from uniform). We avoid doing so for simplicity of
exposition. However, for some input distributions, particularly ones with few elements of relatively high
probabiility, this will improve the result by giving more secure sketches or longer-output fuzzy extractors.

Finally, a word is in order on the relation of average min-entropy to conditional min-entropy, intro-
duced by Renner and Wolf in [RW05], and defined as H∞(A | B) = − log maxa,b Pr(A = a | B = b) =
minb H∞(A | B = b) (an ε-smooth version is defined analogously by considering all distributions (C,D)
that are within ε of (A,B) and taking the maximum among them). This definition is too strict: it takes the
worst-case b, while for randomness extraction (and many other settings, such as predictability by an adver-
sary), average-case b suffices. Average min-entropy leads to more extractable bits. The following relations
hold between the two notions: H̃ε

∞(A | B) ≥ Hε
∞(A | B) and H∞ε+ε2(A | B) ≥ H̃ε

∞(A | B) − log
(

1
ε2

)
(for the case of ε = 0, this follows by constructing a new distributioon that eliminates all b for which
H∞(A | B = b) < H̃∞(A | B) − log

(
1
ε2

)
, which will be within ε2 of the (A,B) by Markov’s inequality;

for ε > 0, an analogous proof works). Note that by Lemma 3.1, this implies a simple chain rule for Hε
∞

(a more general one is given in [RW05, Section 2.4]): H∞ε+ε2(A | B) ≥ H̃ε
∞((A,B)) −H0(B) − log

(
1
ε2

)
,

where H0(B) is the logarithm of the number of possible values of B.

D Analysis of the Original Juels-Sudan Construction

In this section we present a new analysis for the Juels-Sudan secure sketch for set difference. We will
assume that n = |U| is a prime power and work over the field F = GF (n). On input set w, the original
Juels-Sudan sketch is a list of r pairs of points (xi, yi) in F , for some parameter r, s < r ≤ n. It is
computed as follows:

1. Choose p() at random from the set of polynomials of degree at most k = s− t− 1 over F .
Write w = {x1, ..., xs}, and let yi = p(xi) for i = 1, ..., s.

2. Choose r − s distinct points xs+1, ..., xr at random from F − w.
3. For i = s + 1, ..., r, choose yi ∈ F at random such that yi 6= p(xi).
4. Output SS(w) = {(x1, y1), ..., (xr, yr)} (in lexicographic order of xi).

The parameter r dictates the amount of storage necessary, one on hand, and also the security of the
scheme (that is, for r = s the scheme leaks all information and for larger and larger r there is less

35

information about w). Juels and Sudan actually propose two analyses for the scheme. First, they analyze
the case where the secret w is distributed uniformly over all subsets of size s. Second, they provide an
analysis of a nonuniform password distribution, but only for the case r = n (that is, their analysis only
applies in the small universe setting, where Ω(n) storage is acceptable). Here we give a simpler analysis
which handles nonuniformity and any r ≤ n. We get the same results for a broader set of parameters.

Lemma D.1. The entropy loss of the Juels-Sudan scheme is at most t log n + log
(
n
r

)
− log

(
n−s
r−s

)
+ 2.

Proof. This is a simple application of Lemma 3.1. H∞((W,SS(W))) can be computed as follows. Choosing
the polynomial p (which can be uniquely recovered from w and SS(w)) requires s− t random choices from
F . The choice of the remaining xi’s requires log

(
n−s
r−s

)
bits, and choosing the y′is requires r − s random

choices from F −{p(xi)}. Thus, H∞((W,SS(W))) = H∞(W)+ (s− t) log n+log
(
n−s
r−s

)
+(r− s) log(n− 1).

The output can be described in log
((

n
r

)
nr
)

bits. The result follows by Lemma 3.1 after observing that
(r − s) log n

n−1 < n log n
n−1 ≤ 2.

In the large universe setting, we will have r � n (since we wish to have storage polynomial in s). In
that setting, the bound on the entropy loss of the Juels-Sudan scheme is in fact very large. We can rewrite
the entropy loss as t log n− log

(
r
s

)
+ log

(
n
s

)
+ 2, using the identity

(
n
r

)(
r
s

)
=
(
n
s

)(
n−s
r−s

)
. Now the entropy of

W is at most
(
n
s

)
, and so our lower bound on the remaining entropy is (log

(
r
s

)
− t log n− 2). To make this

quantity large requires making r very large.

E BCH Syndrome Decoding in Sublinear Time

We show that the standard decoding algorithm for BCH codes can be modified to run in time polynomial
in the length of the syndrome. This works for BCH codes over any field GF (q), which include Hamming
codes in the binary case and Reed-Solomon for the case n = q − 1. BCH codes are handled in detail in
many textbooks (e.g., [vL92]); our presentation here is quite terse. For simplicity, we only discuss primitive,
narrow-sense BCH codes here; the discussion extends easily to the general case.

The algorithm discussed here has been revised due to an error pointed out by Ari Trachtenberg.
We’ll use a slightly non-standard formulation of BCH codes. Let n = qm − 1 (in the binary case of

interest in Section 6.3, q = 2). We will work in two finite fields: GF (q) and a larger extension field
F = GF (qm). BCH codewords, formally defined below, are then vectors in GF (q)n. In most common
presentations, one indexes the n positions of these vectors by discrete logarithms of the elements of F∗:
position i, for 1 ≤ i ≤ n, corresponds to αi, where α generates the multiplicative group F∗. However,
there is no inherent reason to do so: they can be indexed by elements of F directly rather than by their
discrete logarithms. Thus, we say that a word has value px at position x, where x ∈ F∗. If one ever needs
to write down the entire n-character word in an ordered fashion, one can choose arbitrarily a convenient
ordering of the elements of F (e.g., by using some standard binary representation of field elements); for our
purposes this is not necessary, as we do not store entire n-bit words explicitly, but rather represent them
by their supports: supp(v) = {(x, px) | px 6= 0}. Note that for the binary case of interest in Section 6.3, we
can define supp(v) = {x | px 6= 0}, because px can take only two values: 0 or 1.

Our choice of representation will be crucial for efficient decoding: in the more common representation,
the last step of the decoding algorithm requires one to find the position i of the error from the field element
αi. However, no efficient algorithms for computing discrete logarithm are known if qm is large (indeed,
a lot of cryptography is based on the assumption that such efficient algorithm does not exist). In our
representation, the field element αi will in fact be the position of the error.

36

Definition 6. The (narrow-sense, primitive) BCH code of designed distance δ over GF (q) (of length n)
is given by the set of vectors of the form

(
cx

)
x∈F∗ such that each cx is in the smaller field GF (q), and the

vector satisfies the constraints
∑

x∈F∗ cxxi = 0, for i = 1, . . . , δ−1, with arithmetic done in the larger field
F .

To explain this definition, let us fix a generator α of the multiplicative group of the large field F∗. For
any vector of coefficients

(
cx

)
x∈F∗ , we can define a polynomial

c(z) =
∑

x∈GF (qm)∗

cxzdlog(x)

where dlog(x) is the discrete logarithm of x with respect to α. The conditions of the definition are then
equivalent to the requirement (more commonly seen in presentations of BCH codes) that c(αi) = 0 for
i = 1, . . . , δ − 1, because (αi)dlog(x) = (αdlog(x))i = xi.

We can simplify this somewhat. Because the coefficients cx are in GF (q), they satisfy cq
x = cx. Using the

identity (x + y)q = xq + yq, which holds even in the large field F , we have c(αi)q =
∑

x 6=0 cq
xxiq = c(αiq).

Thus, roughly a 1/q fraction of the conditions in the definition are redundant: we only need to check that
they hold for i ∈ {1, ..., δ − 1} such that q 6 |i.

The syndrome of a word (not necessarily a codeword) (px)x∈F∗ ∈ GF (q)n with respect to the BCH code
above is the vector

syn(p) = p(α1), . . . , p(αδ−1), where p(αi) =
∑

x∈F∗
pxxi.

As mentioned above, we do not in fact have to include the values p(αi) such that q|i.

Computing with Low-Weight Words. A low-weight word p ∈ GF (q)n can be represented either as
a long string or, more compactly, as a list of positions where it is nonzero and its values at those points.
We call this representation the support list of p and denote it supp(p) = {(x, px)}x:px 6=0.

Lemma E.1. For a q-ary BCH code C of designed distance δ, one can compute:

• syn(p) from supp(p) in time polynomial in δ, log n, and |supp(p)|, and
• supp(p) from syn(p) (when p has weight at most (δ − 1)/2), in time polynomial in δ and log n.

Proof. Recall that syn(p) = (p(α), ..., p(αδ−1)) where p(αi) =
∑

x 6=0 pxxi. Part (1) is easy, since to compute
the syndrome we only need to compute the powers of x. This requires about δ · weight(p) multiplications
in F . For Part (2), we adapt Berlekamp’s BCH decoding algorithm, based on its presentation in [vL92].
Let M = {x ∈ F∗|px 6= 0}, and define

σ(z) def=
∏

x∈M

(1− xz) and ω(z) def= σ(z)
∑
y∈M

pyyz

(1− yz)

Since (1 − yz) divides σ(z) for y ∈ M , we see that ω(z) is in fact a polynomial of degree at most |M | =
weight(p) ≤ (δ − 1)/2. The polynomials σ(z) and ω(z) are known as the error locator polynomial and
evaluator polynomial, respectively.

We will in fact work with our polynomials modulo zδ. In this arithmetic the inverse of (1 + xz) is∑δ
`=1(xz)`−1, that is

(1 + xz)
δ∑

`=1

(xz)`−1 ≡ 1 mod zδ.

37

We are given p(α`) for ` = 1, ..., δ. Let S(z) =
∑δ−1

`=1 p(α`)z`. Note that S(z) ≡
∑

x∈M px
xz

(1+xz) mod zδ.
This implies that

S(z)σ(z) ≡ ω(z) mod zδ.

The algorithm will consist of finding any non-zero solution w′(z), σ′(z) to this congruence. This will be
good enough since the solution ω(), σ() is “unique” in the following sense: any other solution ω′(z), σ′(z)
satisfies w′(z)/σ′(z) = ω(z)/σ(z). To see why this is, multiply the initial congruence by σ′() to get
ω(z)σ′(z) ≡ σ(z)ω′(z) mod zδ. Since the both sides of the congruence have degree at most δ− 1, they are
in fact equal as polynomials.

Thus it is sufficient to find any solution σ′(), ω′() to the congruence S(z)σ′(z) = ω′(z) mod zδ and
reduce the resulting fraction ω′(z)/σ′(z) to obtain a solution ω(), σ() of minimal degree. Finally, the roots
of σ(z) are the points x−1 for x ∈ M , and the exact value of px can be recovered using the equation
ω(x−1) = px

∏
y∈M,y 6=x(1− yx−1) (this is only needed for q > 2, because for q = 2, px = 1).

Solving the congruence requires only solving a system of δ−1 linear equations involving δ variables over
F , which can be done in O(δ3) operations in F using, e.g., Gaussian elimination. The reduction of the
fraction ω′(z)/σ′(z) requires simply running Euclid’s algorithm for finding the g.c.d. of two polynomials of
degree less than δ, which takes O(δ2) operations in F . Suppose the resulting σ has degree e. Then one can
find the roots of σ as follows. First test that σ indeed has e distinct roots by testing that σ(z)|zqm−z (this
is a necessary and sufficient condition, because every element of F is a root of zqm − z exactly once). This
can be done by computing (zqm

mod σ(z)) and testing if it equals z mod σ; it takes m exponentiations of a
polynomial to the power q, i.e., O((m log q)e2) operations in F . Then apply an equal-degree-factorization
algorithm (e.g., as described in [Sho05]), which also takes O((m log q)e2) operations in F . Finally, after
taking inverses of the roots of F and finding px (which takes O(e2) operations in F), recompute syn(p) to
verify that it is equal to the input value. The last verification step is necessary because it is possible that
the input syndrome was not a syndrome of a vector of weight at most (δ−1)/2, in which case the decoding
algorithm is not guaranteed to find the correct p (in such a case, the decoding algorithm may also fail to
find a solution to the linear equation or produce a σ that does not have d distinct roots).

Because m log q = log(n + 1) and e ≤ (δ − 1)/2, the total running time is O(δ3 + δ2 log n) operations in
F ; each operation in F can done in time O(log2 n), or faster using advanced techniques.

One can improve this running time substantially. The error locator polynomial σ() can be found in
O(log δ) convolutions (multiplications) of polynomials over F of degree (δ−1)/2 each [Bla83, Section 11.7]
by exploiting the special structure of the system of linear equations being solved. Each convolution can be
performed asymptotically in time O(δ log δ log log δ) (see, e.g., [vzGG03]), the total time required to find
σ gets reduced to O(δ log2 δ log log δ) operation in F . This replaces the δ3 term in the above running time.

While this is asymptotically very good, Euclidean-algorithm-based decoding [SKHN75], which runs in
O(δ2) operations in F , will find σ() faster for reasonable values of δ (certainly for δ < 1000). The algorithm
finds σ as follows (this description follows [Bie05, Section 13.3]):

set Rold(z)← zδ−1, Rcur(z)← S(z), Vold(z)← 0, Vcur(z)← 1.
while deg(Rcur(z)) ≥ (δ − 1)/2:

divide Rold(z) by Rcur(z) to get quotient q(z) and remainder Rnew(z);
set Vnew(z)← Vold(z)− q(z)Vcur(z);
set Rold(z)← Rcur(z), Rcur(z)← Rnew(z), Vold(z)← Vcur(z), Vcur(z)← Vnew(z).

set σ(z)← Vcur(z).

The root finding of σ can also be sped up. Asymptotically, detecting if a polynomial over F = GF (qm)
of degree e has e distinct roots and finding these roots can be performed in O(e2 + (log n)e log e log log e)
operations in F (see [Sho05, Section 21.3], and substitute the most efficient known polynomial arithmetic,

38

e.g., as described in [vzGG03], which takes O(e log e log log e) intsead of O(e2) time to perform modular
arithmetic operations with degree-e polynomials). For reasonable values of e, Karatsuba’s multiplication
algorithm [KO63] will be faster, giving root-finding running time of O(e2 + elog2 3 log n) operations in F .
Note that if the actual weight e of p is close to maximum tolerated (δ − 1)/2, then finding the roots of σ
will actually take longer than finding σ.

A Dual View of the Algorithm. Readers may be used to seeing a different formulation, evaluation-
based formulation of BCH codes, in which codewords are generated as follows. Let F again be an extension
of GF (q), and let n be the length of the code (note that |F∗| is not necessarily equal to n in this formulation).
Fix x1, x2, . . . , xn ∈ F . For every polynomial c over the large field F of degree at most n − δ, the vector
(c(x1), c(x2), . . . c(xn)) is a codeword if and only if every coordinate of the vector happens to be in the
smaller field: c(xi) ∈ GF (q) for all i. In particular, when F = GF (q), then every polynomial leads to a
codeword, thus giving Reed-Solomon codes.

The syndrome in this formulation can be computed as follows: given a vector y = (y1, y2, . . . , yn) find
the interploating polynomial P = pn−1x

n−1 + pn−2x
n−2 + · · · + p0 over F of degree at most n − 1 such

that P (xi) = yi for all i. The syndrome is then the negative top δ − 1 coefficients of P : syn(y) =
(−pn−1,−pn−2, . . . ,−pn−(δ−1)). (It is easy to see that this is a syndrome: it is a linear function that is
zero exactly on the codewords.)

When n = |F| − 1, we can index the n-component vectors by elements of F∗, writing codewords as
(c(x))x∈F∗ . In this case, the syndrome of (yx)x∈F∗ defined as the negative top δ − 1 coefficients of P
such that ∀x ∈ F ∗, P (x) = yx is equal to the syndrome defined following Definition 6 as

∑
x∈F yxxi for

i = 1, 2, . . . , δ − 1. 9 Thus, when n = |F| − 1, the codewords obtained via the evaluation-based definition
are identical to the codewords obtain via Definition 6, because codewords are simply elements with the
zero syndrome, and the syndrome maps agree.

This is an example of a remarkable duality between evaluations of polynomials and their coefficients:
the syndrome can be viewed either as the evaluation of a polynomial whose coefficients are given by the
vector, or as the coefficients of the polynomial whose evaluations are given by a vector.

The algorithm of the previous section has a natural interpretation in the evaluation-based view.�For
Leo: right? –Adam� Our presentation is an adaptation of Welch-Berlekamp decoding as presented in,
e.g., [Sud01, Chapter 10].

Suppose n = |F | − 1 and x1, ..., xn are the non-zero elements of the field. Let y = (y1, y2, . . . , yn) be
a vector. We are given its syndrome syn(y) = (−pn−1,−pn−2, . . . ,−pn−(δ−1)), where pn−1, . . . , pn−(δ−1)

are the top coefficients of the interpolating polynomial P . Knowing only syn(y), we need to find at most
(δ − 1)/2 locations xi such that correcting all the corresponding yi will result in a codeword. Suppose
that codeword is given by a degree-(n − δ) polynomial c. Note that c agrees with P on all but the error
locations. Let ρ(z) be the polynomial of degree at most (δ − 1)/2 whose roots are exactly the error
locations. Then ρ(z) · P (z) = ρ(z) · c(z) for z = x1, x2, . . . , xn. Since x1, .., xn are all the nonzero field
elements,

∏n
i=1(z − xi) = zn − 1. Thus,

ρ(z) · c(z) = ρ(z) · P (z) mod
n∏

i=1

(z − xi) = ρ(z) · P (z) mod (zn − 1) .

If we write the left-hand side as αn−1x
n−1 + αn−2x

n−2 + · · ·+ α0, then the above equation implies that

9 This statement can be shown as follows: because both maps are linear, it is sufficient to prove that they agree on a
vector (yx)x∈F∗ such that ya = 1 for some a ∈ F∗ and yx = 0 for x 6= a. For such a vector,

P
x∈F yxxi = ai. On the other

hand, the interpolating polynomial P (x) such that P (x) = yx is −axn−1 − a2xn−2 − · · · − an−1x− 1 (indeed, P (a) = −n = 1;
furthermore, multiplying P (x) by x− a gives a(xn − 1), which is zero on all of F∗; hence P (x) is zero for every x 6= a).

39

αn−1 = · · · = αn−(δ−1)/2 = 0 (because the degree if ρ(z) · c(z) is at most n − (δ + 1)/2). Noting that
αn−1, . . . , αn−(δ−1)/2 depend on the coefficients of ρ as well as on pn−1, . . . , pn−(δ−1) (but not on lower
coefficients of P), we obtain a system of (δ − 1)/2 equations for (δ − 1)/2 unknown coefficients of ρ.
The lowest-degree solution to this system is indeed the correct ρ (the proof is very similar to the proof
of correctness of σ in Lemma E.1). Thus, the roots of ρ are the error-locations. For q > 2, the actual
corrections that are needed at the error locations (in other words, the short vector of the given syndrome)
can then be recovered by solving the linear system of equations implied by the value of the syndrome.

40

Contents

41

	Introduction
	Preliminaries
	New Definitions
	Average Min-Entropy
	Secure Sketches
	Fuzzy Extractors

	Metric-Independent Results
	Construction of Fuzzy Extractors from Secure Sketches
	Secure Sketches for Transitive Metric Spaces
	Changing Metric Spaces via Biometric Embeddings

	Constructions for Hamming Distance
	Constructions for Set Difference
	Small Universes
	Improving the Construction of Juels and Sudan
	Large Universes via the Hamming Metric: Sublinear-Time Decoding

	Constructions for Edit Distance
	Probabilistic Notions of Correctness
	Random Errors
	Randomizing Input-dependent Errors
	Handling Computationally-Bounded Errors Via List Decoding

	Secure Sketches and Efficient Information Reconciliation
	References
	Lower Bounds from Coding
	Details of Average-Case Sketches and Extractors
	On Smooth Variants of Average Min-Entropy and the Relationship to Smooth Rényi Entropy
	Analysis of the Original Juels-Sudan Construction
	BCH Syndrome Decoding in Sublinear Time

