Local, Private, Efficient Protocols for Succinct Histograms

Raef Bassily
Adam Smith

Pennsylvania State University

STOC 2015
Portland, OR
June 15, 2015
A conundrum

How many users like Google.com?

How can the server compute aggregate statistics about users without storing user-specific information?
Set of users = [n].
A set of items (e.g. websites) = [d] = {1, ..., d}.
Frequency of an item a is:

\[f(a) = \frac{(\# \text{ users holding } a)}{n} \]

Succinct histograms:

- subset \(S \subseteq [d] \) of items (think “heavy hitters”)
- estimates of their frequencies

\[\{ (v, \hat{f}(v)) : v \in S \} \]

- Implicitly, \(\hat{f}(v) = 0 \) for \(v \notin S \)
Local model of Differential Privacy

\(v_i \in [d] \) is item of user \(i \in [n] \)

\(z_i \) is the **differentially-private report** of user \(i \)

Definition: Randomized algorithm \(Q \) is \(\epsilon \)-local differentially private (LDP) if for any pair \(v, v' \in [d] \), for all events \(S \),

\[
\Pr[Q(v) \in S] \leq e^\epsilon \Pr[Q(v') \in S]
\]

LDP for succinct histograms

- Studied under various names [Mishra-Sandler’06, Hsu et al.’12, Erlingsson et al.’14, Fanti et al.’15, Duchi et al.’13].
- Deployed in Google’s Chrome (RAPPOR) [Erlingsson et al.’14].
System requirements

Privacy
A protocol that satisfies \(\varepsilon \)-DP

Accuracy
Small worst-case estimation error:
\[
\max_{v_1, \ldots, v_n} \left\| \hat{f} - f \right\|_\infty = \max_{v_1, \ldots, v_n} \max_{j \in [d]} \left| \hat{f}(j) - f(j) \right|
\]
with high probability over coins of \(Q_i \)

Computational efficiency
A protocol is **efficient** if it runs in time \(\text{poly}(\log(d), n) \)

\(\log(d) = \# \) of bits to describe single item
Contributions [B, Smith ‘15]

1. Efficient ϵLDP protocol with optimal error:
 - run in time $\text{poly}(\log(d), n)$.
 - Estimate all frequencies up to error $O\left(\sqrt{\frac{\log(d)}{\epsilon^2 n}}\right)$

2. Matching lower bound on the error.

3. Efficient transformation reducing report length to 1 bit/user in public-coin model.
 - Previous protocols either
 - ran in time $\Omega(d)$ [Mishra-Sandler’06, Hsu et al.’12, Erlingsson et al.’14]
 - or, had worse error $\sim \left(\frac{\log(d)}{\epsilon^2 n}\right)^{1/6}$ [Hsu et al.’12]
 - Best previous lower bound was $\sim \frac{1}{\sqrt{n}}$
Construction approach

Single Heavy Hitter (SHH) problem: at least fraction of users have the same item, say \(I^* \in [d] \) while the rest have (i.e., “no item”)

We give

- Efficient LDP algorithm for SHH with optimal accuracy
- Reduction from general case to SHH that preserves privacy and accuracy

Inspired by low-space algorithms, e.g. [Gilbert et al.’02].
Construction for the SHH problem

A succinct version of [Duchi et al.’13]

- Each user has either v^* or \perp
- $f(v^*) \geq \eta$
- v^* is unknown to the server
- **Goal:** Find v^* and estimate $f(v^*)$

A diagram is shown with nodes labeled as:
- Encoder
- Decoder
- Noising operator

Want to show that \bar{Z} is “close to” $f(v^*)c(v^*)$ with high probability.

Write $\bar{Z} = f(v^*)c(v^*) + e$

Bound $\langle e, c(v^*) \rangle$ and $\|e\|_2$

Key step: Show decoding succeeds (i.e., $\hat{v} = v^*$) w.h.p. when

$$\eta \geq \text{const} \times \sqrt{\frac{\log(d)}{\epsilon^2 n}}$$
Construction for the general setting

Key insight:

- Run multiple copies of the SHH protocol.
- Isolate every heavy hitter into a separate copy via hashing.

\[v_1 \rightarrow \text{Hash} \rightarrow \begin{array}{c} 1 \\ \vdots \\ T \end{array} \rightarrow \text{SHH} \rightarrow v_1 \]

\[v_n \rightarrow \text{Hash} \rightarrow \begin{array}{c} 1 \\ \vdots \\ T \end{array} \rightarrow \text{SHH} \rightarrow v_n \]

- W.h.p., every heavy hitter is alone in at least one SHH protocol.
- Same privacy cost as in the SHH protocol:
 \[\text{item whose frequency } \geq \eta = \text{const. } \sqrt{\frac{\log(d)}{\epsilon^2 n}} \]
Recap: Construction of succinct histograms

Efficient Private Protocol for estimating all heavy hitters

Efficient Private Protocol for a single heavy hitter

Efficient Private Protocol for a single heavy hitter

Time $\text{poly}(\log(d), n)$

All frequencies up to the optimal error
Transforming to a protocol with 1-bit reports

Theorem: In a public coin model, any \(\ell\)-LDP protocol can be transformed into another \(\ell\)-LDP protocol with 1-bit reports.

- We modify a generic compression technique of [McGregor et al.’10].
- For our protocols, this transformation is
 - computationally efficient and
 - yields essentially same (optimal) error.

Local randomizer: \(Q_i\)

\[
\text{Gen}(Q_i, v_i, S_i) \quad \rightarrow \quad B_i \quad \downarrow \quad \text{a biased bit}
\]

\(v_i \rightarrow \text{public random string} \quad \rightarrow \quad S_i\)

Conditioned on \(B_i = 1\), \(S_i\) is distributed identically to \(Q_i(v_i)\)
Conclusions

- Local, private protocols for succinct histograms that:
 - attain **optimal worst-case error**
 - are **computationally efficient**.
 - have **low communication complexity**

- More evidence of connections between *differential privacy* and *low-space algorithms* [Gilbert et al.'02, Dwork et al.'10, Blocki et al.'12,...]

Not in this talk:

Lower bound on error
- Give a proof approach that adapts/simplifies a framework by [Duchi et al.'13].
- Show it applies also to the relaxed version of (ϵ, δ)-LDP for all $\delta \ll 1/n$.
Transforming to a protocol with 1-bit reports

Key idea: In public coin model, each user sends a single bit that enables the server to simulate the view of the user’s differentially private report.

- This transformation is generic and adapts/modifies the technique of [McGregor et al.’10].
- Public string does not depend on private data: can be generated by untrusted server.
- For our HH protocol, this transformation gives essentially same error and computational efficiency (Gen can be computed in $O(\log(\log(d)) + \log(n))$).
Transforming to a protocol with 1-bit reports

- In a public coin model, any ϵ-LDP protocol can be transformed into another ϵ-LDP protocol with 1-bit reports.

- Our transformation is a modification to a generic compression technique of [McGregor et al.’10].

- When applied to our protocol for histograms, this transformation gives a protocol that:
 - is computationally efficient protocol (essentially same run time).
 - has optimal error (essentially same error).

Key idea: Each user generates a single biased bit that enables the server to simulate the view of the user’s differentially private report using the public coins.