Lecture 23
Augmenting Data Structures
• Dynamic order statistics
• Methodology
• Interval trees

S. Raskhodnikova and A. Smith
Greedy Algorithms

• Build-up a solution to an optimization problem, short-sightedly choosing the best option at each step
 ✦ Sometimes good (often not!)

• Strategies for proving the correctness of a greedy algorithm
 ✦ “Greedy Stays Ahead”: prove that at each step, greedy strategy does as well as optimal (last lecture, “interval scheduling”)
 ✦ “Exchange argument”: show that any solution can be improved by swapping two choices to make it look more like the greedy solution (today)
Maximum Lateness

• Given: a list of n jobs with
 ✦ duration t
 ✦ deadline d (assume distinct)

• We want to find a good schedule for executing the jobs on a single machine, starting at time 0
 ✦ Output: $s[1..n], f[1..n]$
 ✦ Want: each job completed before its deadline (may not be possible)
 ✦ Lateness of a job: (completion time) - deadline
 ✦ Goal: make maximum lateness as small as possible
Greedy Strategies?

• Candidates:
 ✦ in order of duration, shortest first?
 ✦ in order of slack (deadline - duration), least slack first?
 ✦ in order of deadline, soonest first?

• Quantity being optimized matters a lot
 ✦ Different criteria ⇒ different algorithms
Scheduling by soonest deadline

- **Optimal algorithm:**
 - sort jobs by deadline $O(n \log n)$
 - run in that order with no idle time
 - Suppose the deadlines are $d[1] \leq d[2] \leq ... \leq d[n]$
 - Output $s[1]=0, f[1] = t[1], s[i] = f[i-1], f[i] = s[i] + t[i]$

- Why is this the best possible?
 - Start from any valid solution, make it look more like greedy solution and show that it only makes the max. lateness smaller.

- Step 1: there is an optimal solution with no idle time
 - eliminating idle time only reduces completion times
• Now, given some schedule, we say there is an **inversion** if there are two jobs i, j where i is scheduled before j, but $d[i] > d[j]$

• Step 2: Any two solutions with no idle time and no inversions have the same max. lateness
 ✦ Proof: if two different schedules have no idle time and no inversions, they differ only in the order in which jobs with identical deadlines are scheduled
 ✦ Switching those jobs around doesn’t change the time at which the last of them finishes
Cont’d

• Step 3: Exchange argument
 ✦ Suppose there is a schedule which does have an inversion
 ✦ (a) There is a *consecutive* inverted pair i, j
 ✦ (b) Swap that pair
 • Only the finishing times of i and j are affected by the swap
 – If they are not the cause of maximum lateness, then nothing changes
 • Before swap, j has worse lateness
 • After swap, both are better than j was before

• Conclusion: there is an optimal schedule with no inversions and no idle time