Lecture 9
Abstract Data Types
Queues
Data Structures

• So far in this class: designing algorithms
 ➢ Inputs and outputs were specified, we wanted to design the fastest algorithm
 ➢ The representation was fixed (e.g. a sorted array)

• Another important question:
 ➢ How can we represent information so that there are fast algorithms for performing important operations?
 ➢ This is the study of data structures
Some important data structures

- arrays
- linked lists
- graphs
- binary search trees
- heaps

What about…

- stacks?
- queues?

Not exactly data structures. These are abstract data types
(note: the text book doesn’t distinguish data structures from abstract data types, but we will in this class)
Abstract Data Types

• “Interface” between the real data and the outside world
• Collection of operations to be performed on data
• No algorithms!
 ➢ Just a description of desired outcomes
• Important tool in the design of computer programs
 ➢ First, figure out what you need to do with your data
 ➢ Worry about implementing it later.
• Sort of like a “class”, an “interface” or a “template” in object-oriented programming (but not exactly like any of these)
Example: Queues

• Suppose you manage the list of cases waiting for trial at a courthouse
 ➢ You maintain a “bunch” of court cases
 ➢ As cases come in you add them to your list
 ➢ When the court finishes a trial, you find the next case in line and it goes to trial
 ➢ What’s the ADT you’re using?

• A Queue holds a set of elements and supports
 ➢ Enqueue(Q, x): add x to the rear of the queue
 ➢ Dequeue(Q): get element from the front of the queue and remove it from the queue
 ➢ MakeNew(): create a new, empty queue
How should we implement a queue?

• One option: an array along with two indices $head$ and $tail$

\[
\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccc}
Q & _ & _ & _ & _ & _ & 3 & 7 & 2 & 5 & 6 & _ & _ \\
\end{array}
\]

• As elements are added, increment $tail[Q]$
• As elements are removed, increment $head[Q]$
• Wrap around as necessary
• After Enqueue($Q, 17$), Enqueue($Q, 11$), Enqueue($Q, 40$), Dequeue(Q), we get:

\[
\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccc}
Q & 11 & 40 & _ & _ & _ & 7 & 2 & 5 & 6 & 17 & _ & _ \\
\end{array}
\]

$head[Q]=7$
$tail[Q]=11$
$head[Q]=7$
$tail[Q]=2$
Satellite data

- May have other “satellite data” along with each record (case details, name of plaintiff, etc)
- Typically: include a pointer for each element

```
1 2 3 4 5 6 7 8 9 10 11 12
Q
```

```
3 7 2 5 6
```

Case number 3
Name: Adam Smith
Charge: Assigning hard problems

Case number 7
...

Case number 2
...

Case number 5
...

Case number 6
...

head[Q]=7

tail[Q]=11
Pseudocode

ENQUEUE(Q, x)
1. $Q[tail[Q]] \leftarrow x$
2. if $tail[Q] = length[Q]$
3. then $tail[Q] \leftarrow 1$
4. else $tail[Q] \leftarrow tail[Q] + 1$

DEQUEUE(Q, x)
1. $x \leftarrow Q[tail[Q]]$
2. if $head[Q] = length[Q]$
3. then $head[Q] \leftarrow 1$
4. else $head[Q] \leftarrow head[Q] + 1$
5. return x

Notice that this code doesn’t handle what happens when the queue fills up or when it is empty!
How long do the operations take?

- Enqueue: $O(1)$
- Dequeue: $O(1)$
- MakeNew: $O(1)$ if memory implemented well
- Storage space = length of array n
 - Maximum queue size limited to n
 - Wastes space is size of L is much smaller than n

- What do you do when queue is full?
 - Crash the program? (sometimes)
 - Better solution: allocate bigger array
What about using a linked list?

- Dynamic structure uses memory flexibly
- Doubly linked list is a data structure
 - collection of nodes
 - Each node has at least three fields
 - next (pointer)
 - previous (pointer)
 - key (depends on application: case number?)
 - may have satellite data here too
 - Keep two pointers for each list: head[Q], tail[Q]
Pseudocode for list-based queue

Enqueue(Q, x)
1. $newnode \leftarrow \text{New node}$
2. $key[newnode] \leftarrow x$
3. $prev[newnode] \leftarrow \text{tail}[Q]$
4. $next[newnode] \leftarrow \text{NIL}$
5. $next[tail[Q]] \leftarrow newnode$
6. $\text{tail}[Q] \leftarrow newnode$
 ▷ Note no check for an empty list.

Dequeue(Q, x)
1. $oldnode \leftarrow head[Q]$
2. $head[Q] \leftarrow next[oldnode]$
3. $prev[head[Q]] \leftarrow \text{NIL}$
4. return $key[oldnode]$
 ▷ Note: no deallocation, no check for an empty list.
What about using a linked list?

• How long do operations take?
 ➢ Enqueue: $O(1)$
 ➢ Dequeue: $O(1)$
 ➢ MakeNew: $O(1)$
 ➢ Storage: $O(\text{size}(Q))$, i.e. the number of elements currently in the queue

• Better storage use than array, right?
 ➢ But constants are better for arrays
 ➢ Clever allocation of memory can make array also use $O(\text{size}(Q))$ memory (we may see this in later lectures)