Data Structures and Algorithms
CSE 465

LECTURE 9
• Finishing QuickSort
• Randomized Selection

Sofya Raskhodnikova and Adam Smith
Reminder: QuickSort

Quicksort an \(n \)-element array:

1. **Divide:** Partition the array around a pivot \(x \) such that elements on left are \(\leq x \) and elements on right are \(\geq x \)

2. **Conquer:** Recursively sort the two subarrays.

3. **Combine:** Nothing!

Key: Linear-time partitioning subroutine.

Last lecture: use random element \(A[p] \) as pivot
Review

Recall: A split is “OK” when both pieces have \(\geq \lfloor n/4 \rfloor \) elements

– What is the probability of an OK split with a random pivot?
 \(\text{(Answer} \approx \frac{1}{2}) \)

– Suppose we keep trying pivots and partitioning until we find an OK split.

 • What is the expected number of pivots we try before finding a good one?
 \(\text{(Answer} \approx 2) \)

 • What is the expected running time it takes to find a good pivot this way?
 \(\text{(Answer: } \Theta(n)) \)
Randomized quicksort analysis

Let $T(n)$ = the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For $k = 0, 1, \ldots, n-1$, define the indicator random variable

$$X_k = \begin{cases}
1 & \text{if PARTITION generates a } k:n-k-1 \text{ split,} \\
0 & \text{otherwise.}
\end{cases}$$

$E[X_k] = \Pr\{X_k = 1\} = 1/n$, since all splits are equally likely, assuming elements are distinct.
Analysis (continued)

\[T(n) = \begin{cases}
T(0) + T(n-1) + \Theta(n) & \text{if } 0 : n-1 \text{ split,} \\
T(1) + T(n-2) + \Theta(n) & \text{if } 1 : n-2 \text{ split,} \\
\vdots \\
T(n-1) + T(0) + \Theta(n) & \text{if } n-1 : 0 \text{ split,}
\end{cases} \]

\[= \sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \]
Calculating expectation

\[E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right] \]

Take expectations of both sides.
Calculating expectation

\[E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n - k - 1) + \Theta(n))] \]

Linearity of expectation.
Calculating expectation

\[E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n - k - 1) + \Theta(n))] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n - k - 1) + \Theta(n)] \]

Independence of \(X_k \) from other random choices.
Calculating expectation

\[E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)] \]

\[= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \]

Linearity of expectation; \(E[X_k] = 1/n \).
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

\[
= \frac{2}{n} \sum_{k=1}^{n-1} E[T(k)] + \Theta(n)
\]

Summations have identical terms.
A recurrence on expected value

• We want to know the asymptotic behaviour of

\[F(n) = E[T(n)] \]

• We know it satisfies

\[F(n) = \frac{2}{n} \sum_{k=2}^{n-1} F(k) + \Theta(n) \]
Hairy recurrence

\[F(n) = \frac{2}{n} \sum_{k=2}^{n-1} F(k) + \Theta(n) \]

(The \(k = 0, 1 \) terms can be absorbed in the \(\Theta(n) \).)

Prove: \(F(n) \leq a n \lg n \) for constant \(a > 0 \).

- Choose \(a \) large enough so that \(a n \lg n \) dominates \(E[T(n)] \) for sufficiently small \(n \geq 2 \).

Use fact: \(\sum_{k=2}^{n-1} k \lg k \leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \) (exercise).
Substitution method

\[F(n) \leq \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n) \]

Substitute inductive hypothesis.
Substitution method

\[F(n) \leq \frac{2}{n} \sum_{k=2}^{n-1} a_k \lg k + \Theta(n) \]

\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n)

Use fact.
Substitution method

\[F(n) \leq \frac{2}{n} \sum_{k=2}^{n-1} ak \log k + \Theta(n) \]

\[\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) + \Theta(n) \]

\[= an \log n - \left(\frac{an}{4} - \Theta(n) \right) \]

Express as \textit{desired} – \textit{residual}.
Substitution method

\[F(n) \leq \frac{2}{n} \sum_{k=2}^{n-1} ak \log k + \Theta(n) \]

\[= \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) + \Theta(n) \]

\[= an \log n - \left(\frac{an}{4} - \Theta(n) \right) \]

\[\leq an \log n \]

if \(a \) is chosen large enough so that \(an/4 \) dominates the \(\Theta(n) \).
Quicksort in practice

• Quicksort is a great general-purpose sorting algorithm.

• Quicksort is typically over twice as fast as merge sort.

• Quicksort can benefit substantially from code tuning.

• Quicksort behaves well even with caching and virtual memory.
Order statistics

Select the ith smallest of n elements (the element with rank i).

- $i = 1$: minimum;
- $i = n$: maximum;
- $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$: median.

Naive algorithm: Sort and index ith element.

Worst-case running time $= \Theta(n \lg n) + \Theta(1)$

$= \Theta(n \lg n)$,

using merge sort (not quicksort...).
Background: Properties of the Expectation

Here are some useful properties of the expectation:

• For any random variables A, B, and constants c,d:
 \[E[cA+dB] = c \ E[A] + d \ E[B] \]

• For any two independent random variables
 \[E[AB] = E[A] \ E[B] \]

• If A only takes the values 0 and 1 then
 \[E[A] = \text{Prob}[A=1] \]
Background: Geometric Random Variables

• Suppose we flip a coin many times independently, and each time the probability that it comes up “heads” is p
 – If X is the number of times we flip the coin before getting heads, then X is a geometric random variable with parameter p

• E.g.
 – “How many times do we roll a die until we see a 1”? (Geometric with $p = 1/6$.)
 – “How many times do we flip a fair (50:50) coin before getting heads?” (Geometric with $p = 1/2$.)
 – “How many pivots do we choose before seeing an OK split?” (Geometric with $p = 1/2$.)

• For geometric r.v. with parameter p, $E(X) = 1/p$