Attacking Anonymized Social Network

From: Wherefore Art Thou RX3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography

Presented By:

Machigar Ongtang (Ongtang@cse.psu.edu)
Social Networks

- A social structure made of nodes representing individuals or organization, linked by some interdependency (*friendship, trade, communication, web links, etc.*)

- Some Statistics:
 - MySpace -- 206,304,468 user accounts
 - Windows Live (MSN) Spaces -- 120,000,000 user accounts
 - Orkut (by Google) -- 67,962,551 user accounts
 - Hi5 -- 50,000,000 user accounts
 - Friendster -- 50,000,000 user accounts
 - Facebook -- 48,000,000 user accounts
 - LiveJournal -- 12,900,000 user accounts
Research on Social Networks

- **Use of Public Data:** publicly crawlable blogging, social networking sites, etc. \(\rightarrow\) _no privacy concern_

- **Use of Sensitive Data:** Email, Instant Messaging, closed online communities, private network \(\rightarrow\) _need privacy protection!!_

Pure Social Network Data

![Diagram of social network data](attachment:image.png)

- Alice has sent messages to Bob
- Alice includes Bob in her address book
Anonymized Social Networks

- **Privacy**: Protect privacy of individual users.
- **Utilities**: Preserving global network properties to study network structure, dynamics, clustering patterns, etc.
- Replace the true user’s name with a random user ID.

Is this enough? Can anonymization protect users’ privacy?
Attacks on Anonymized Networks

- **Auxiliary Information**: Analysis of content, time series, and logs
- **WITHOUT Auxiliary Information**: Consider Link/ No Link ***

Basic security ...

- **Privacy Breach**: Identify nodes and learn the edge relations among them.
- **Passive Attack**: Observe the released anonymized social network without interfering.
 - Undetectable
- **Active Attack**: Create some new nodes (e.g. new email accounts). Create (patterned) edges among new nodes and to victim nodes.
 - Hard to detect.
Before releasing the anonymized network G of $n-k$ nodes, attacker:

- Choose a set of b targeted users.
- Create a subgraph H containing k nodes.
- Attach H to the targeted nodes.

Creating the subgraph H --> **structural steganography**
Active Attack

After the anonymized network is release:

- Find the subgraph H in the graph G
- Follow edges from H to locate b target nodes and their true location in G
- Determine all edges among these b nodes --> breach privacy
Active Attack -- Finding subgraph H

- Subgraph H must be uniquely & efficiently identifiable regardless of G.
- No other subgraph $S \neq H$ in G s.t. $G[S]$ and H are isomorphic.
- Subgraph H has no automorphism.

Graph Isomorphism

- A one-to-one mapping between vertices of two graph P and Q.
- Isomorphism $f: P \rightarrow Q$ Two vertices u and v in P are connected if their corresponding node $f(u)$ and $f(v)$ are connected in Q.
- Automorphism = isomorphism to itself

P and Q are isomorphic
Walk-Based Attack

- Randomly generate subgraph \(H = (x_1, x_2, \ldots, x_k) \) with \(k = \Theta(\log n) \)
- Link each targeted node \(w_i \) to distinct subset of nodes in \(H \)
- Create each edge within \(H \) with probability of 0.5
- Number of compromised nodes \(b = \Theta(\log^2 n) \)

Recall: We need \(H \) that
- **Efficiently identifiable:** Efficiently findable in unlabeled graph
- **Unique in term of isomorphism:** If a subgraph with the same structure as \(H \) is found, it is actually \(H \).
- **No automorphism:** When \(H \) is found, we know which node is which and can correctly label \((x_1, x_2, \ldots, x_k)\)
Walk-Based Attack -- Construct H

- H = set of nodes X size $k = (2+\delta) \log n$ ($\delta > 0$)
- W = set of targeted users size $b = O(\log^2 n)$
 - e.g. $n = 1000M$, $b = 900$, $k \approx 30$
- External degree for node x_i: $\Delta_i \in [d_0, d_1]$ for $d_0 \leq d_1 = O(\log n)$
- Each w_j connects to a set of nodes $N_j \subseteq X$. Set
- N_j must be of size at most $c=3$ and are distinct across all nodes w_j.

![Diagram showing target nodes and H set]
Walk-Based Attack -- Construct H

- Add arbitrary edges from H to G-H to make it Δ_i for all x_i.
- Add internal edges in H: edge (x_i, x_{i+1})
- Add additional internal edges connecting (x_i, x_j) with probability 0.5
- Therefore, each node x_i has total degrees of $\Delta'_i = \Delta_i + (#internal \ edges)$
Walk-Based Attack -- Finding H

- **Degree Test**: Node x_i has total degrees of $\Delta_i' = \Delta_i + (\# \text{ internal edges})$
- **Internal Structure Test**: Node x_i links to correct subset of $\{x_1, x_2, \ldots, x_{i-1}\}$
- **Search tree T**: All nodes α_i in T has corresponding node $f(\alpha_i)$ in G.
- Every path of nodes $\alpha_1, \alpha_2, \ldots, \alpha_j$ from the root must have corresponding path in G formed by nodes $f(\alpha_1), f(\alpha_2), \ldots, f(\alpha_j)$ with the same degree sequence x_1, x_2, \ldots, x_j.
- The probability of a false path surviving to depth $l \approx 2^{-l^2/2}$
Walk-Based Attack -- Uniqueness of H

F0: With high probability, there is no subset of nodes $S \neq X$ in G such that $G[S]$ is isomorphic to $G[X] = H$

Non-overlapping Case: S disjoint from X

Graph H: k nodes

$$\binom{k}{2} \approx \frac{k^2}{2} \quad \text{Possible edges} \quad \rightarrow \quad 2^{\frac{k^2}{2}} \quad \text{Possible graphs}$$

Subgraph G-H: select k nodes from n

$$\binom{n}{k} < n^k \approx 2^{k \log n} \quad \text{Possible subgraphs}$$

Probability of isomorphic:

$$P = \frac{2^{k \log n}}{2^{\frac{k^2}{2}}} \quad \rightarrow \quad \text{Drop quickly when } k > 2\log(n)$$

Example: $n=12M$

Choose $k = 2\log(12M) = 14 \rightarrow \quad P \approx \frac{2^{99}}{2^{99}} = 1$

Choose $k = (2+\delta) \log n = 15 \rightarrow \quad P \approx \frac{2^{106}}{2^{113}} = 0.011$
Walk-Based Attack -- Uniqueness of H

- Overlapping Case -- \(G[S] \text{ and } G[X] \) is isomorphic with \(S \) overlaps \(X \)

\[
P \approx \sum_{j \geq 1} k^{c_2 \log k} \left(\frac{2^{3.5} k^2}{n^\delta} \right)^j
\]

Drop quickly as \(n \) increases and \(k > 2 \log(n) \)
Walk-Based Attack -- Uniqueness of H

F1: For $c_1 > 4$, there is no disjoint sets of nodes Y and Z in H, each of size $c_1 \log(k)$, such that $H[Y]$ and $H[Z]$ are isomorphic.

- Scope down what we had from F0:
 - Graph G size n \Rightarrow Subgraph H size k.
 - Sets of nodes size $(2 + \delta) \log n$ \Rightarrow Sets of nodes size $(c_1 > 4) \log(k)$.

Fixed Point of a Isomorphism

For Isomorphism mapping S to S' ($f: S \rightarrow S'$):

- A fixed point is in both S and S'.
- A fixed point maps to itself.
Claim 3.1: Let A, B and Y are disjoint sets of nodes in G with $B, Y \subseteq X$. With isomorphism $f: A \cup Y \rightarrow B \cup Y$, $|\{ f(A) \not\in B \}| \leq c_1 \log(k)$ nodes.

- Consider path from $A \rightarrow Y \rightarrow B$: $|Y'|$ and $|B'|$ are disjoint and $H[B']$ and $H[Y']$ are isomorphic. $\Rightarrow |Y'| \leq c_1 \log(k)$ \Rightarrow # paths $A \rightarrow Y \rightarrow B \leq c_1 \log(k)$

- $Y' = f(A) \not\in B$ $\Rightarrow |f(A) \not\in B| \leq c_1 \log(k)$
Claim 3.2: Let A, B and Y be disjoint sets of nodes in G with $B,Y \subseteq X$. With isomorphism $f: A \cup Y \rightarrow B \cup Y$, set Y has at most $c_2 \log(k)$ nodes that are not fixed point of f, where $c_2 \geq 3c_1$.

Choose every other edge in the path or cycle. In cycle, choose 1 edges from 3 z-nodes. \Rightarrow Worst case $|Z|/3$ edges

- Z_1 and Z_2 are disjoint subset of X; and $G[Z_1]$ and $G[Z_2]$ are isomorphic
- \Rightarrow From F1, $|Z_1| = |Z_2| \leq c_1 \log(k)$
- $|Z_1| = |Z_2| = \#selected\ edges = |Z|/3 \Rightarrow |Z|/3 \leq c_1 \log(k)$
- $|Z| \leq 3c_1 \log(k) \leq c_2 \log(k)$
Walk-Based Attack -- Experiment

- Use network of relationship links on blogging of LiveJournal (4.4M nodes and 77M edges); Anonymized it
- Investigate the ranges parameter for successful attack.
Cut-Based Attack

- Theoretical asymptotic lower bound for #new nodes: $\Omega(\sqrt{\log n})$
- Randomly generate subgraph $H = (x_1, x_2, \ldots, x_k)$ with $k = O(\sqrt{\log n})$
- Number of compromised nodes $b = \Theta(\sqrt{\log n})$

Construction of H

- For $W=(w_1, w_2, \ldots, w_b)$ b targeted users, create $X= (x_1, x_2, \ldots, x_k)$ where $k = 3b+3$ nodes
- Create links between each pair (x_i, x_j) with probability = 0.5
- Choose arbitrary b nodes (x_1, x_2, \ldots, x_b); connect x_i to w_i
Cut-Based Attack -- Construct H

- $d(H) = \text{min degree in } H$
- $c(H) = \text{min internal cut in } H$

Properties:

With high probability

- $b = \text{size of cut between } H \text{ and } G-H$
- $c(H) = d(H) \geq k/3 > b$
- H has non-trivial automorphism

Observe

- All internal cuts in $H > b$
- Cuts of size $\leq b$ are external cuts between H and $G-H$. They will never break H.
Recall: Cuts of size $\leq b$ are external cuts between H and $G-H$. They will never break H.

- **Step1:**
 - Use Gomory-Hu tree to break the graph along the cuts of size $\leq b$
 - Finally, one of these chunks is H

- **Step2:**
 - Find which one is H
 - H needs to be unique
Cut-Based Attack -- Uniqueness of H

Graph H: k nodes

\[
\binom{k}{2} \approx \frac{k^2}{2} \quad \text{Possible edges} \quad \rightarrow \quad 2^{k^2/2} \quad \text{Possible graphs}
\]

Subgraph $G-H$:
- There are n/k sets.
- Each set has $k!$ possible graphs

\[
(n/k)k! \quad \text{Possible subgraphs}
\]

Probability of isomorphic:

\[
P = \frac{(n/k)k!}{2^{k^2/2}} \quad \rightarrow \quad \text{Drop quickly when } k > \sqrt{\log(n)}
\]

Example: \(n=1000 \text{M} \)

Log(n) = 9

Choose $k = 12 \rightarrow P = 8.45271119 \times 10^{-6}$
Gomory-Hu Tree

- Tree with the same set of nodes in G. Edge are labeled with weight.

- The value of min-cut for (u,v)

 = #edges on the smallest cut that will disconnect u and v

 = min-weight on the path between u and v in T

- Breaking graph G along the cuts of size \(\leq b \)

 = delete all edges of size \(\leq b \) from T

- Repeat until all forests have size \(k \)

- Brute force to check whether each forest is isomorphic to H
Walk-Based VS Cut-Based Attacks

<table>
<thead>
<tr>
<th>Walk-Based Attack</th>
<th>Cut-Based Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Fast recovery algorithm</td>
<td>▪ More expensive recovery algorithm</td>
</tr>
<tr>
<td>▪ Hard to detect</td>
<td>▪ Easier to detect because H is dense and tends to stand out</td>
</tr>
<tr>
<td>▪ Need more new nodes $\Theta(\log n)$</td>
<td>▪ Need less new node $O(\sqrt{\log n})$ (close to theoretical asymptotic lower bound: $\Omega(\sqrt{\log n})$)</td>
</tr>
<tr>
<td>▪ Can detect $b = \Theta(\log^2 n) = \Theta(k^2)$</td>
<td>▪ Can detect only $\Theta(\sqrt{\log n}) = \Theta(k)$</td>
</tr>
</tbody>
</table>
Passive Attack

- **Community of Interest**: most nodes in social network usually belong to a small uniquely identifiable subgraph.
- An attacker can collude with other k-1 friends to identify additional nodes connected to the distinct subset of the coalition.

Assumptions
- All colluders know edges among themselves, i.e. internal structure of H.
- All colluders know the name of their neighbors outside the coalition.
- There may be no Hamiltonian Path linking $x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_k$
Passive Attack -- Finding H

Search Tree T

- Degree Test
- For ALL subset $S \subseteq \{1, \ldots, k\}$, node α matching H must have $g_\alpha(S) = g(S)$
 - If we consider $S = \{1, 3, 5\}$
 - $g(S) = q$: There is q users that connects to x_1, x_3, and x_5.
Passive Attack

![Graphs showing probability and number of users compromised with different algorithms and coalition sizes.](image-url)
Active VS Passive Attacks

<table>
<thead>
<tr>
<th>Active Attack</th>
<th>Passive Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ More effective. Work with high probability in any network.</td>
<td>▪ Attackers may not be able to identify themselves after seeing the released anonymized network.</td>
</tr>
<tr>
<td>▪ Can choose the victims</td>
<td>▪ The victims are only those linked to the attackers.</td>
</tr>
<tr>
<td>▪ Risk of being detected</td>
<td>▪ Harder to detect</td>
</tr>
</tbody>
</table>

Semi-Passive Attack:

▪ Create only additional links to the targeted nodes. No additional node.
▪ Can breach privacy on the scale approaching that of the active attack.
Possible Countermeasures

- Random Perturbation
 - m-perturbation
 - Randomly delete m edges and insert m edges

- Model-based Perturbation
 - Derive statistical model from original data
 - Develop model to bias the perturbation to give desired properties of the graph
 - Give better utility
Conclusion

- Anonymized network is not safe.
- Already published anonymized networks are susceptible to passive attack, which does not require advanced planning.