Lecture 2
Analysis of Algorithms
- Stable matching problem
- Asymptotic growth

Adam Smith

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Stable Matching Problem

- **Unstable pair**: man \(m \) and woman \(w \) are unstable if
 - \(m \) prefers \(w \) to his assigned match, and
 - \(w \) prefers \(m \) to her assigned match
- Unstable pairs have an incentive to elope
- **Stable matching**: no unstable pairs.

Men's Preference Profile

<table>
<thead>
<tr>
<th>favorite</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Xavier</td>
<td>Amy</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th>favorite</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Amy</td>
<td>Yancey</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
</tr>
</tbody>
</table>

8/30/10

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Stable Matching Problem

• **Input:** preference lists of \(n \) men and \(n \) women

• **Goal:** find a stable matching if one exists

Men’s Preference Profile

<table>
<thead>
<tr>
<th>favorite</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Xavier</td>
<td>Amy</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
</tr>
</tbody>
</table>

Women’s Preference Profile

<table>
<thead>
<tr>
<th>favorite</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Amy</td>
<td>Yancey</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
</tr>
</tbody>
</table>

8/30/10
A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Review Questions

• In terms of n, what is the length of the input to the Stable Matching problem, i.e., the number of entries in the tables?

• How many bits do they take to store?

 (Answer: $2n^2$ list entries, or $2n^2\log n$ bits)
Review Questions

- **Brute force algorithm:** an algorithm that checks every possible solution.

- In terms of n, what is the running time for the brute force algorithm for checking whether a given matching is stable?

- In terms of n, what is the running time for the brute force algorithm for Stable Matching Problem? (Assume your algorithm goes over all possible perfect matchings.)

 \[(Answer: \ n! \times (\text{time to check if a matching is stable}) = \Theta(n! \ n^2))\]
Propose-and-Reject Algorithm

- Propose-and-reject algorithm. [Gale-Shapley 1962]

Initialize each person to be free.

while (some man is free and hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged, and m' to be free
 else
 w rejects m
}
Proof of correctness

Three claims: The algorithm always
1. terminates,
2. matches everyone (matching is “perfect”), and
3. outputs a stable matching
Men's Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>0th</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victor</td>
<td>Bertha</td>
<td>Amy</td>
<td>Diane</td>
<td>Erika</td>
<td>Clare</td>
</tr>
<tr>
<td>Wyatt</td>
<td>Diane</td>
<td>Bertha</td>
<td>Amy</td>
<td>Clare</td>
<td>Erika</td>
</tr>
<tr>
<td>Xavier</td>
<td>Bertha</td>
<td>Erika</td>
<td>Clare</td>
<td>Diane</td>
<td>Amy</td>
</tr>
<tr>
<td>Yancey</td>
<td>Amy</td>
<td>Diane</td>
<td>Clare</td>
<td>Bertha</td>
<td>Erika</td>
</tr>
<tr>
<td>Zeus</td>
<td>Bertha</td>
<td>Diane</td>
<td>Amy</td>
<td>Erika</td>
<td>Clare</td>
</tr>
</tbody>
</table>

STOP

- Everyone matched.
- Stable matching!

Women's Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>0th</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Zeus</td>
<td>Victor</td>
<td>Wyatt</td>
<td>Yancey</td>
<td>Xavier</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
<td>Wyatt</td>
<td>Yancey</td>
<td>Victor</td>
<td>Zeus</td>
</tr>
<tr>
<td>Clare</td>
<td>Wyatt</td>
<td>Xavier</td>
<td>Yancey</td>
<td>Zeus</td>
<td>Victor</td>
</tr>
<tr>
<td>Diane</td>
<td>Victor</td>
<td>Zeus</td>
<td>Yancey</td>
<td>Xavier</td>
<td>Wyatt</td>
</tr>
<tr>
<td>Erika</td>
<td>Yancey</td>
<td>Wyatt</td>
<td>Zeus</td>
<td>Xavier</td>
<td>Victor</td>
</tr>
</tbody>
</table>
Proof of Correctness: Termination

- **Claim.** Algorithm terminates after at most n^2 iterations of while loop.

- **Pf.** Each time through the loop a man proposes to a new woman. There are only n^2 possible proposals.

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victor</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Wyatt</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>Xavier</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Yancey</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Zeus</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>Bertha</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>V</td>
</tr>
<tr>
<td>Clare</td>
<td>Y</td>
<td>Z</td>
<td>V</td>
<td>W</td>
</tr>
<tr>
<td>Diane</td>
<td>Z</td>
<td>V</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>Erika</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
</tr>
</tbody>
</table>

An instance where $n(n-1) + 1$ proposals required
Propose-and-Reject Algorithm

- **Observation 1.** Men propose to women in decreasing order of preference.
- **Observation 2.** Once a woman is matched, she never becomes unmatched; she only "trades up."

Men's Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>0th</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victor</td>
<td>Bertha</td>
<td>Amy</td>
<td>Diane</td>
<td>Erika</td>
<td>Clare</td>
</tr>
<tr>
<td>Wyatt</td>
<td>Diane</td>
<td>Bertha</td>
<td>Amy</td>
<td>Clare</td>
<td>Erika</td>
</tr>
<tr>
<td>Xavier</td>
<td>Bertha</td>
<td>Erika</td>
<td>Clare</td>
<td>Diane</td>
<td>Amy</td>
</tr>
<tr>
<td>Yancey</td>
<td>Amy</td>
<td>Diane</td>
<td>Clare</td>
<td>Bertha</td>
<td>Erika</td>
</tr>
<tr>
<td>Zeus</td>
<td>Bertha</td>
<td>Diane</td>
<td>Amy</td>
<td>Erika</td>
<td>Clare</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>0th</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Zeus</td>
<td>Victor</td>
<td>Wyatt</td>
<td>Yancey</td>
<td>Xavier</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
<td>Wyatt</td>
<td>Yancey</td>
<td>Victor</td>
<td>Zeus</td>
</tr>
<tr>
<td>Clare</td>
<td>Wyatt</td>
<td>Xavier</td>
<td>Yancey</td>
<td>Zeus</td>
<td>Victor</td>
</tr>
<tr>
<td>Diane</td>
<td>Victor</td>
<td>Zeus</td>
<td>Yancey</td>
<td>Xavier</td>
<td>Wyatt</td>
</tr>
<tr>
<td>Erika</td>
<td>Yancey</td>
<td>Wyatt</td>
<td>Zeus</td>
<td>Xavier</td>
<td>Victor</td>
</tr>
</tbody>
</table>

8/30/10
A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Proof of Correctness: Perfection

- **Claim.** All men and women get matched.
- **Proof:** (by contradiction)
 - Suppose, for sake of contradiction, some guy, say Zeus, is not matched upon termination of algorithm.
 - Then some woman, say Amy, is not matched upon termination.
 - By Observation 2, Amy was never proposed to.
 - But Zeus proposes to everyone, since he ends up unmatched. •
Proof of Correctness: Stability

• **Claim.** No unstable pairs.

• **Proof:** (by contradiction)
 – Suppose A-Z is an unstable pair: they prefer each other to their partners in Gale-Shapley matching S*.
 – **Case 1:** Z never proposed to A.
 ⇒ Z prefers his GS partner to A.
 ⇒ A-Z is stable.
 – **Case 2:** Z proposed to A.
 ⇒ A rejected Z (right away or later)
 ⇒ A prefers her GS partner to Z.
 ⇒ A-Z is stable.
 – In either case A-Z is stable, a contradiction. •
Stable Roommate Problem

- **Stable roommate problem**
 - $2n$ people; each person ranks others from 1 to $2n-1$.
 - Assign roommate pairs so that no unstable pairs.

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Bob</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Chris</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Doofus</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

- **Exercise.** Where does the correctness proof break down for the roommates version?
Efficient Implementation

• We describe $O(n^2)$ time implementation.
• Assume men have IDs 1, ..., n, and so do women.
• Engagements data structures:
 – a list of free men, e.g., a queue.
 – two arrays $wife[m]$, and $husband[w]$.
 • set entry to 0 if unmatched
 • if m matched to w then $wife[m]=w$ and $husband[w]=m$
• Men proposing data structures:
 – an array $men\text{-}pref[m,i]=i^{th}$ women on m^{th} list
 – an array $count[m]=how\ many\ proposals\ m\ made$.
• In Python: http://euler.slu.edu/~goldwasser/courses/slucsci314/2006_Spring/lectures/marriageAlgorithm/

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Efficient Implementation

- Women rejecting/accepting data structures
 - Does woman w prefer man m to man m'?
 - For each woman, create **inverse** of preference list of men.
 - Constant time queries after $O(n)$ preprocessing per woman.

<table>
<thead>
<tr>
<th>Amy</th>
<th>Pref</th>
<th>Inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Amy</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Inverse</td>
<td>4th</td>
<td>8th</td>
</tr>
</tbody>
</table>

Examples:

- Amy prefers man 3 to 6 since $\text{inverse}[3] < \text{inverse}[6]$

```plaintext
for i = 1 to n
    inverse[pref[i]] = i
```

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Summary

• **Stable matching problem.** Given n men and n women, and their preferences, find a stable matching if one exists.

• **Gale-Shapley algorithm.** Guarantees to find a stable matching for every problem instance.
 – (Also proves that stable matching always exists)

• **Time and space complexity:**

 $O(n^2)$, linear in the input size.
Brief Syllabus

• Reminders
 – Worst-case analysis
 – Asymptotic notation
 – Basic Data Structures

• Design Paradigms
 – Greedy algorithms, Divide and conquer, Dynamic programming, Network flow and linear programming, randomization

• Analyzing algorithms in other models
 – Parallel algorithms, Memory hierarchies (?)

• P, NP and NP-completeness
Measuring Running Time

• Focus on **scalability**: parameterize the running time by some measure of “size”
 – (e.g. $n =$ number of men and women)

• Kinds of analysis
 – Worst-case
 – Average-case (requires knowing the distribution)
 – Best-case (how meaningful?)

• Exact times depend on computer; instead measure **asymptotic growth**
Asymptotic notation

\(O \)-notation (upper bounds):

We write \(f(n) = O(g(n)) \) if there exist constants \(c > 0, \ n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

Example: \(2n^2 = O(n^3) \) \((c = 1, n_0 = 2) \)

functions, not values

funny, “one-way” equality

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Set Definition

\[O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

Example: \(2n^2 \in O(n^3) \)

(Logicians: \(\lambda n.2n^2 \in O(\lambda n.n^3) \), but it’s convenient to be sloppy, as long as we understand what’s really going on.)
Examples

• $10^6 n^3 + 2n^2 - n + 10 = O(n^3)$

• $n^{\frac{1}{2}} + \log(n) = O(n^{\frac{1}{2}})$

• $n (\log(n) + n^{\frac{1}{2}}) = O(n^{3/2})$

• $n = O(n^2)$
Ω-notation (lower bounds)

\[\Omega(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} \]

\textbf{Example:} \quad \sqrt{n} = \Omega(\log n) \quad (c = 1, \ n_0 = 16)

\textbf{O-notation} is an upper-bound notation. It makes no sense to say \(f(n) \) is at least \(O(n^2) \).
Ω-notation (lower bounds)

- **Be careful:** “Any comparison-based sorting algorithm requires at least $O(n \log n)$ comparisons.”
 - Meaningless!
 - Use Ω for lower bounds.
Θ-notation (tight bounds)

\[\Theta(g(n)) = \Omega(g(n)) \cap \Omega(g(n)) \]

Example: \(\frac{1}{2} n^2 - 2n = \Theta(n^2) \)

Polynomials are simple:
\[a_d n^d + a_{d-1} n^{d-1} + \cdots + a_1 n + a_0 = \Theta(n^d) \]
o-notation and ω-notation

O-notation and Ω-notation are like \leq and \geq.

o-notation and ω-notation are like $<$ and $>$.

\[
o(g(n)) = \{ f(n) : \text{for any constant } c > 0, \text{ there is a constant } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0 \}
\]

Example:

\[2n^2 = o(n^3) \quad (n_0 = 2/c)\]
\(o - \text{notation and } \omega - \text{notation} \)

\(O\)-notation and \(\Omega\)-notation are like \(\leq \) and \(\geq \).
\(o\)-notation and \(\omega\)-notation are like \(< \) and \(> \).

\[\omega(g(n)) = \{ f(n) : \text{for any constant } c > 0, \text{there is a constant } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0 \} \]

Example: \(\sqrt{n} = \omega(\lg n) \) \((n_0 = 1 + 1/c) \)
Common Functions: Asymptotic Bounds

- **Polynomials.** \(a_0 + a_1 n + \ldots + a_d n^d \) is \(\Theta(n^d) \) if \(a_d > 0 \).

- **Polynomial time.** Running time is \(O(n^d) \) for some constant \(d \) independent of the input size \(n \).

- **Logarithms.** \(\log_a n = \Theta(\log_b n) \) for all constants \(a, b > 0 \).

 - Can avoid specifying the base.
 - Log grows slower than every polynomial.

 For every \(x > 0 \), \(\log n = O(n^x) \).

- **Exponentials.** For all \(r > 1 \) and all \(d > 0 \), \(n^d = O(r^n) \).

- **Factorial.**

 \[
 n! = \left(\sqrt{2\pi n} \right) \left(\frac{n}{e} \right)^n \left(1 + o(1) \right) = 2^{\Theta(n \log n)}
 \]

 - Grows faster than every exponential.

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Sort by asymptotic order of growth

\[a) \quad n \log(n) \]
\[b) \quad \sqrt{n} \]
\[c) \quad \log(n) \]
\[d) \quad n^2 \]
\[e) \quad 2^n \]
\[f) \quad n \]
\[g) \quad n! \]
\[h) \quad n^{1,000,000} \]
\[i) \quad n^{1/\log(n)} \]
\[j) \quad \log(n!) \]
\[k) \quad \binom{n}{2} \]
\[l) \quad \binom{n}{n/2} \]