Algorithm Design and Analysis

LECTURE 30
Computational Intractability
• Polynomial Time Reductions

Adam Smith

A. Smith; based on slides by S. Raskhodnikova and K. Wayne
Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$.

up to cost of reduction
Simplifying Assumption: Decision Problems

Search problem. Find some structure.
Example. Find a minimum cut.

Decision problem.
- X is a set of strings.
- Instance: string s.
- If $x \in X$, x is a \textit{YES} instance; if $x \notin X$ is a \textit{NO} instance.
- Algorithm A solves problem X: $A(s) = \text{yes}$ iff $s \in X$.

Example. Does there exist a cut of size $\leq k$?

Self-reducibility. Search problem $\leq_{P,\text{Cook}}$ decision version.
- Applies to all (NP-complete) problems in this chapter.
- Justifies our focus on decision problems.
Polynomial Transformation

Def. Problem X polynomial reduces (Cook) to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial transforms (Karp) to problem Y if given any input x to X, we can construct an input y such that x is a \textit{yes} instance of X iff y is a \textit{yes} instance of Y.

Note. Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X.

Open question. Are these two concepts the same?

Caution: KT abuses notation \leq_p and blurs distinction
Reduction By Simple Equivalence

Basic reduction strategies.
- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.
INDEPENDENT SET: Given a graph $G = (V, E)$ and an integer k, is there a
subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most
one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6? Yes.
Ex. Is there an independent set of size ≥ 7? No.
VERTEX COVER: Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4? Yes.
Ex. Is there a vertex cover of size ≤ 3? No.
Claim. VERTEX-COVER \equiv_p INDEPENDENT-SET.

Pf. We show S is an independent set iff $V - S$ is a vertex cover.
Vertex Cover and Independent Set

Claim. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET} \).

Pf. We show \(S \) is an independent set iff \(V - S \) is a vertex cover.

\(\Rightarrow \)

- Let \(S \) be any independent set.
- Consider an arbitrary edge \((u, v) \).
- \(S \) independent \(\Rightarrow u \notin S \) or \(v \notin S \) \(\Rightarrow u \in V - S \) or \(v \in V - S \).
- Thus, \(V - S \) covers \((u, v) \).

\(\Leftarrow \)

- Let \(V - S \) be any vertex cover.
- Consider two nodes \(u \in S \) and \(v \in S \).
- Observe that \((u, v) \notin E \) since \(V - S \) is a vertex cover.
- Thus, no two nodes in \(S \) are joined by an edge \(\Rightarrow S \) independent set.
Reduction from Special Case to General Case

Basic reduction strategies.
- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.
SET COVER: Given a set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The ith piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

Ex:

\[
\begin{align*}
U & = \{ 1, 2, 3, 4, 5, 6, 7 \} \\
k & = 2 \\
S_1 & = \{3, 7\} & S_4 & = \{2, 4\} \\
S_2 & = \{3, 4, 5, 6\} & S_5 & = \{5\} \\
S_3 & = \{1\} & S_6 & = \{1, 2, 6, 7\}
\end{align*}
\]
Claim. \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
Pf. Given a \(\text{VERTEX-COVER} \) instance \(G = (V, E), k \), we construct a set cover instance whose size equals the size of the vertex cover instance.

Reduction: On input \(< G = (V, E), k>\)

- Output \(\text{SET-COVER} \) instance:
 - \(k = k \), \(U = E \), \(S_v = \{e \in E : e \text{ incident to } v \} \)

Correctness claim:
- Set-cover of size \(\leq k \) iff vertex cover of size \(\leq k \).
Reductions by Encoding with Gadgets

Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.
Satisfiability

Literal: A Boolean variable or its negation.
\[x_i \text{ or } \overline{x_i} \]

Clause: A disjunction (OR) of literals.
\[C_j = x_1 \lor \overline{x_2} \lor x_3 \]

Conjunctive normal form: A propositional formula \(\Phi \) that is the conjunction (AND) of clauses.
\[\Phi = C_1 \land C_2 \land C_3 \land C_4 \]

SAT: Given CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.
\[\text{each corresponds to a different variable} \]

Ex: \((\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \)

Yes: \(x_1 = \text{true}, \ x_2 = \text{true} \ x_3 = \text{false} \).
3 Satisfiability Reduces to Independent Set

Claim. 3-SAT \leq_p \text{INDEPENDENT-SET}.

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance \((G, k)\) of \text{INDEPENDENT-SET} that has an independent set of size \(k\) iff \(\Phi\) is satisfiable.

Reduction: On input \(\langle \Phi \rangle\),

- Let \(G\) contain 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.
- \(k = |\Phi|\) \(\\\\\\\\k=\#\text{ of clauses in }\Phi\)
- Output \(\langle G, k \rangle\)

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]
3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.
- S must contain exactly one vertex in each triangle.
- Set these literals to true. \leftarrow and any other variables in a consistent way
- Truth assignment is consistent and all clauses are satisfied.

Pf \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. $

\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$
Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET \equiv_p VERTEX-COVER.
- Special case to general case: VERTEX-COVER \leq_p SET-COVER.
- Encoding with gadgets: 3-SAT \leq_p INDEPENDENT-SET.

Transitivity. If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).

Pf idea. Compose the two algorithms.

Ex: 3-SAT \leq_p INDEPENDENT-SET \leq_p VERTEX-COVER \leq_p SET-COVER.