Algorithm Design and Analysis

LECTURE 11
Divide and Conquer
• Merge Sort
• Counting Inversions
• Binary Search
• Exponentiation
Solving Recurrences
• Recursion Tree Method

Sofya Raskhodnikova

9/19/2008
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Divide and Conquer

– Break up problem into several parts.
– Solve each part recursively.
– Combine solutions to sub-problems into overall solution.

• Most common usage.
 – Break up problem of size n into two equal parts of size $n/2$.
 – Solve two parts recursively.
 – Combine two solutions into overall solution in linear time.

• Consequence.
 – Brute force: $\Theta(n^2)$.
 – Divide-and-conquer: $\Theta(n \log n)$.

Divide et impera.
Veni, vidi, vici.
- Julius Caesar

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Sorting

• Given \(n \) elements, rearrange in ascending order.

• Applications.
 – Sort a list of names. (obvious applications)
 – Display Google PageRank results.
 – Find the median.
 – Find the closest pair.
 – Binary search in a database.
 – Find duplicates in a mailing list.
 – Data compression
 – Computer graphics
 – Computational biology.
 – Load balancing on a parallel computer.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Mergesort

– Divide array into two halves.
– Recursively sort each half.
– Merge two halves to make sorted whole.

Jon von Neumann (1945)

\[
\begin{array}{cccccccc}
A & L & G & O & R & I & T & H & M & S \\
A & L & G & O & R & & I & T & H & M & S \\
A & G & L & O & R & & H & I & M & S & T \\
A & G & H & I & L & M & O & R & S & T \\
\end{array}
\]

divide \(O(1) \)

sort \(2T(n/2) \)

merge \(O(n) \)
Merging

• Combine two pre-sorted lists into a sorted whole.
• How to merge efficiently?
 – Linear number of comparisons.
 – Use temporary array.

• Challenge for the bored: in-place merge [Kronrud, 1969]
 using only a constant amount of extra storage
Recurrence for Mergesort

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1; \\
2T(n/2) + \Theta(n) & \text{if } n > 1.
\end{cases} \]

• \(T(n) \) = worst case running time of Mergesort on an input of size \(n \).

• Should be \(T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) \), but it turns out not to matter asymptotically.

• Usually omit the base case because our algorithms always run in time \(\Theta(1) \) when \(n \) is a small constant.

• Several methods to find an upper bound on \(T(n) \).
Recursion Tree Method

- Technique for guessing solutions to recurrences
 - Write out tree of recursive calls
 - Each node gets assigned the work done during that call to the procedure (dividing and combining)
 - Total work is sum of work at all nodes
- After guessing the answer, can prove by induction that it works.
Recursion Tree for Mergesort

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \lg n$

$T(1)$

#leaves $= n$
Recursion Tree for Mergesort

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \log n$

\[
\begin{align*}
T(1) & \\
\text{#leaves} = n
\end{align*}
\]
Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \log n$

$T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$

$T(1)$ $#leaves = n$
Recursion Tree for Mergesort

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \log n$

$T(n / 2^k)$

#leaves $= n$
Recursion Tree for Mergesort

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \lg n$

$\Theta(1)$

$\#leaves = n$

$T(n / 2^k)$

Total = $\Theta(n \lg n)$
Music site tries to match your song preferences with others.
- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
- My rank: 1, 2, ..., n.
- Your rank: a₁, a₂, ..., aₙ.
- Songs i and j inverted if i < j, but aᵢ > aⱼ.

Brute force: check all $\Theta(n^2)$ pairs i and j.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Applications

– Voting theory.
– Collaborative filtering.
– Measuring the "sortedness" of an array.
– Sensitivity analysis of Google's ranking function.
– Rank aggregation for meta-searching on the Web.
– Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Algorithm

• Divide-and-conquer
Counting Inversions: Algorithm

• Divide-and-conquer
 – Divide: separate list into two pieces.

Divide: \(\Theta(1) \).
Counting Inversions: Algorithm

• Divide-and-conquer
 – Divide: separate list into two pieces.
 – Conquer: recursively count inversions in each half.

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>4</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>11</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
</table>

Divide: \(\Theta(1) \).

5 blue-blue inversions
5-4, 5-2, 4-2, 8-2, 10-2

8 green-green inversions
6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Conquer: \(2T(n / 2) \)
Counting Inversions: Algorithm

• Divide-and-conquer
 – Divide: separate list into two pieces.
 – Conquer: recursively count inversions in each half.
 – **Combine**: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

```
1  5  4  8  10  2  6  9  12  11  3  7
```

Divide: $\Theta(1)$.

```
1  5  4  8  10  2
6  9  12  11  3  7
```

Conquer: $2T(n/2)$

5 blue-blue inversions
8 green-green inversions
9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Combine: ???

Total = $5 + 8 + 9 = 22$.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_j are in different halves.
- Merge two sorted halves into sorted whole.

13 blue-green inversions: $6 + 3 + 2 + 2 + 0 + 0$

Count: $\Theta(n)$

Merge: $\Theta(n)$

$T(n) = 2T(n/2) + \Theta(n)$. Solution: $T(n) = \Theta(n \log n)$.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Implementation

• Pre-condition. [Merge-and-Count] A and B are sorted.
• Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (r_A, A) ← Sort-and-Count(A)
 (r_B, B) ← Sort-and-Count(B)
 (r, L) ← Merge-and-Count(A, B)

 return r = r_A + r_B + r and the sorted list L
}
Binary search

Find an element in a sorted array:

1. **Divide:** Check middle element.
2. **Conquer:** Recursively search 1 subarray.
3. **Combine:** Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary search

Find an element in a sorted array:

1. **Divide:** Check middle element.
2. **Conquer:** Recursively search 1 subarray.
3. **Combine:** Trivial.

Example: Find 9
Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.

Example: Find 9
Binary search

Find an element in a sorted array:

1. **Divide:** Check middle element.

2. **Conquer:** Recursively search 1 subarray.

3. **Combine:** Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

```
3  5  7  8  9  12  15
```
Binary search

Find an element in a sorted array:

1. **Divide**: Check middle element.

2. **Conquer**: Recursively search 1 subarray.

3. **Combine**: Trivial.

Example: Find 9

\[
3 \quad 5 \quad 7 \quad 8 \quad \boxed{9} \quad 12 \quad 15
\]
Binary Search

BinarySearch(\(b, A[1 \ldots n]\)) \(\triangleright\) find \(b\) in sorted array \(A\)

1. If \(n=0\) then return “not found”
2. If \(A[\lfloor n/2 \rfloor] = b\) then return \(\lfloor n/2 \rfloor\)
3. If \(A[\lfloor n/2 \rfloor] < b\) then
 4. return **BinarySearch**(\(A[1 \ldots \lfloor n/2 \rfloor]\))
5. Else
6. return \(\lfloor n/2 \rfloor + \text{BinarySearch}(A[\lceil n/2 \rceil + 1 \ldots n])\)
Recurrence for binary search

\[T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n/2) + \Theta(1) & \text{if } n > 1 \end{cases} \]
Recurrence for binary search

\[T(n) = 1 \cdot T(n/2) + \Theta(1) \]

\# subproblems \quad subproblem size \quad work dividing and combining

\Rightarrow \quad T(n) = T(n/2) + c = T(n/4) + 2c \\
\cdots \\
= c \left\lfloor \log n \right\rfloor = \Theta(\lg n) \]

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne
Exponentiation

Problem: Compute a^b, where $b \in \mathbb{N}$ is n bits long.

Question: How many multiplications?

Naive algorithm: $\Theta(b) = \Theta(2^n)$ (exponential in the input length!)

Divide-and-conquer algorithm:

$$a^b = \begin{cases}
 a^{b/2} \cdot a^{b/2} & \text{if } b \text{ is even;} \\
 a^{(b-1)/2} \cdot a^{(b-1)/2} \cdot a & \text{if } b \text{ is odd.}
\end{cases}$$

$$T(b) = T(b/2) + \Theta(1) \Rightarrow T(b) = \Theta(\log b) = \Theta(n).$$
So far: 2 recurrences

- Mergesort; Counting Inversions
 \[T(n) = 2 \ T(n/2) + \Theta(n) \quad = \Theta(n \log n) \]

- Binary Search; Exponentiation
 \[T(n) = 1 \ T(n/2) + \Theta(1) \quad = \Theta(\log n) \]

Master Theorem: method for solving recurrences.