Lecture 7

• Greedy Algorithms cont’d
Review

• In a DFS tree of an undirected graph, can there be an edge \((u,v)\)
 – where \(v\) is an ancestor of \(u\)? (“back edge”)
 – where \(v\) is a sibling of \(u\)? (“cross edge”)

• Same questions with a directed graph?

• Same questions with a BFS tree
 – directed?
 – undirected?
Interval Scheduling Problem

- Job j starts at s_j and finishes at f_j.
- Two jobs are **compatible** if they do not overlap.
- **Find**: maximum subset of mutually compatible jobs.

![Interval Scheduling Diagram](image-url)
Greedy: Counterexamples

- for earliest start time
- for shortest interval
- for fewest conflicts
Formulating Algorithm

- Arrays of start and finishing times
 - \(s_1, s_2, \ldots, s_n \)
 - \(f_1, f_2, \ldots, f_n \)

- Input length?
 - \(2n = \Theta(n) \)
Greedy Algorithm

• **Earliest finish time:** ascending order of \(f_j \).

```plaintext
Sort jobs by finish times so that \( f_1 \leq f_2 \leq \ldots \leq f_n \).

\[
A \leftarrow \emptyset \quad \Delta \text{ Set of selected jobs}
\]

\[
\text{for } j = 1 \text{ to } n \{ \\
\quad \text{if (job } j \text{ compatible with } A) \\
\quad \quad A \leftarrow A \cup \{j\}
\}
\]

\[
\text{return } A
\]
```

• **Implementation.** \(O(n \log n) \) time; \(O(n) \) space.

 – Remember job \(j^* \) that was added last to \(A \).

 – Job \(j \) is compatible with \(A \) if \(s_j \geq f_{j^*} \).
Running time: \(O(n \log n) \)

\begin{align*}
O(n \log n) & \\
O(1) & \\
n \times O(1) & \\
\end{align*}

Sort jobs by finish times so that
\[f_1 \leq f_2 \leq \ldots \leq f_n. \]

\begin{align*}
A & \leftarrow \text{(empty)} \quad \triangle \text{Queue of selected jobs} \\
j* & \leftarrow 0 \\
\text{for } j = 1 \text{ to } n \{ \\
\quad \text{if } (f_{j*} \leq s_j) \\
\quad \quad \text{enqueue}(j \text{ onto } A) \\
\} \\
\text{return } A
\end{align*}
Analysis: Greedy Stays Ahead

• Theorem. Greedy algorithm is optimal.

• Proof strategy (by contradiction):
 – Suppose greedy is not optimal.
 – Consider an optimal strategy… which one?
 • Consider the optimal strategy that agrees with the greedy strategy for as many initial jobs as possible
 – Look at first place in list where optimal strategy differs from greedy strategy
 – Show a new optimal strategy that agrees more w/ greedy

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
• Theorem. Greedy algorithm is optimal.

• Pf (by contradiction): Suppose greedy is not optimal.
 – Let $i_1, i_2, \ldots i_k$ denote set of jobs selected by greedy.
 – Let $j_1, j_2, \ldots j_m$ be set of jobs in the optimal solution with $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$ for the largest possible value of r.

```
Greedy:       OPT:                                 job $i_{r+1}$ finishes before $j_{r+1}$
i_1           j_1                                  ↓
i_2           j_2                                  ↓
i_r           j_r                                  ↓
i_{r+1}       j_{r+1}                                  ↓
```

why not replace job j_{r+1} with job i_{r+1}?
Analysis: Greedy Stays Ahead

• Theorem. Greedy algorithm is optimal.

• Pf (by contradiction): Suppose greedy is not optimal.
 – Let i_1, i_2, \ldots, i_k denote set of jobs selected by greedy.
 – Let j_1, j_2, \ldots, j_m be set of jobs in the optimal solution with
 $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$ for the largest possible value of r.

Greedy: $i_1 \quad i_2 \quad i_r \quad i_{r+1}$

OPT: $j_1 \quad j_2 \quad j_r \quad i_{r+1}$

job i_{r+1} finishes before j_{r+1}

↑ solution still feasible and optimal, but contradicts maximality of r.

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Interval Partitioning Problem

• Lecture j starts at s_j and finishes at f_j.
• **Find**: minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

• **E.g.**: 10 lectures are scheduled in 4 classrooms.
Interval Partitioning

• Lecture \(j \) starts at \(s_j \) and finishes at \(f_j \).

• **Find**: minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

• **E.g.**: Same lectures are scheduled in 3 classrooms.
Lower Bound

• **Definition.** The **depth** of a set of open intervals is the maximum number that contain any given time.

• **Key observation.** Number of classrooms needed \(\geq \) depth.

• **E.g.:** Depth of this schedule = 3 \(\Rightarrow \) this schedule is optimal.

\[
\begin{array}{cccccccccc}
9 & 9:30 & 10 & 10:30 & 11 & 11:30 & 12 & 12:30 & 1 & 1:30 & 2 \\
3 & c & & & & & & & & & \\
2 & & b & & & & & & & & \\
1 & a & & & e & & & h & & & \\
\end{array}
\]

- a, b, c all contain 9:30

• **Q:** Is it always sufficient to have number of classrooms = depth?

9/10/2008

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Greedy Algorithm

• Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that \(s_1 \leq s_2 \leq \ldots \leq s_n \).

\[
d \leftarrow 0 \quad \Delta \text{Number of allocated classrooms}
\]

\[
\text{for } j = 1 \text{ to } n \{ \\
\quad \text{if (lecture } j \text{ is compatible with some classroom } k) } \\
\quad \quad \text{schedule lecture } j \text{ in classroom } k \\
\quad \text{else } \\
\quad \quad \text{allocate a new classroom } d + 1 \\
\quad \quad \text{schedule lecture } j \text{ in classroom } d + 1 \\
\quad d \leftarrow d + 1
\}
\]

• Implementation. \(O(n \log n) \) time; \(O(n) \) space.
 – For each classroom, maintain the finish time of the last job added.
 – Keep the classrooms in a priority queue (main loop \(n \log(d) \) time)
• **Observation.** Greedy algorithm never schedules two incompatible lectures in the same classroom.

• **Theorem.** Greedy algorithm is optimal.

• **Proof:** Let $d =$ number of classrooms allocated by greedy.
 – Classroom d is opened because we needed to schedule a lecture, say j, that is incompatible with all $d-1$ last lectures in other classrooms.
 – These d lectures each end after s_j.
 – Since we sorted by start time, they start no later than s_j.
 – Thus, we have d lectures overlapping at time $s_j + \varepsilon$.
 – Key observation \Rightarrow all schedules use $\geq d$ classrooms. ▪
Scheduling to minimize lateness

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Scheduling to Minimizing Lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_j units of processing time and is due at time d_j.
- If j starts at time s_j, it finishes at time $f_j = s_j + t_j$.
- Lateness: $\ell_j = \max \{0, f_j - d_j\}$.
- Goal: schedule all jobs to minimize maximum lateness $L = \max \ell_j$.

Ex:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

lateness = 2 lateness = 0 max lateness = 6

<table>
<thead>
<tr>
<th>$d_3 = 9$</th>
<th>$d_2 = 8$</th>
<th>$d_6 = 15$</th>
<th>$d_1 = 6$</th>
<th>$d_5 = 14$</th>
<th>$d_4 = 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_j.

- [Earliest deadline first] Consider jobs in ascending order of deadline d_j.

- [Smallest slack] Consider jobs in ascending order of slack $d_j - t_j$.
Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_j.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>d_j</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

 counterexample

- [Smallest slack] Consider jobs in ascending order of slack $d_j - t_j$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>d_j</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

 counterexample